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Development of Survey Instruments Suitable for
Determining Nonhome Activity Patterns

WERNER BROG, ARNIM H. MEYBURG, AND MANFRED J. WERMUTH

Generation of travel behavior data by means of empirical surveys is an impor-
tant el t of transportation planning. At the same time, relatively litde
attention has been paid to the rules for collecting and determining the
methodological quality of the data. The methodological deugn of such
surveys is relatively pli d b of a ber of infl

factors that may ultimately be reflected in the validity of the resuits. The
issue of survey instrument design is discussed in detail. A number of method-
ological tests are examined that were intended to improve one of the weak
points in surveys of travel behavior—the design of such instruments. Initially,
it was concluded that a diary-type instrument would have to be used to en-
sure proper recording of trip details. An ideal diary was developed that was
used in several surveys. But it became evident that this instrument design, in
spite of its high methodological quality, was unsuitable for large-scale surveys,
such as those frequently used in transportation planning, because of organiza-
tional and cost problems. Therefore, an additional series of tests was devel-
oped to simplify these diaries and to transform them into a form suitable for
large-scale maii-back surveys. Each test series was tested empirically with de-
tailed documentation of reporting deficiencies. Thus it was possible to present
in an understandable the develop t of a survey instrument of de-
sirable quality. The final version of the instrument design, which was the
outgrowth of the empirical tests, has been used quently in ous
large-scale applications in several countries. In the course of these applica-
tions the methodological quality of the design was confirmed, which ulti-
mately justified the development costs.

The influence of measurement procedures and measure-
ment (survey) instruments on measurement results has
to be recognized at the outset of any empirical sur-
vey. Therefore, the survey procedure has to be in-
cluded as part of the overall research approach
(1). Typically, a measurement process (i.e., survey
procedure) is composed of a number of elements that
can be subsumed under the following categories (2,3):

1. Problem formulation,
frame, analysis concept;

2. Base population, sampling unit, sampling pro-
cedure, weighting, population values;

3. Survey method and instrument(s):

4., Survey implementation, response rates; and

5. Data preparation, evaluation, and analysis.

theoretical reference

The third and fourth categories are the subjects of
this paper. The development and use of survey in-
struments designed to measure actual nonhome activ-
ity patterns are described in this paper.

Empirically measured travel behavior is the most
important input to transportation planning decisions
because it constitutes the basis for explanation and
prediction of future travel activities. Methodolog-
ical deficiencies of this measure have direct conse-
quences for all subsequent phases of the transporta-
tion planning process.

Meanwhile, the mail-back household survey, which
measures nonhome activity patterns, has become a
standard component of transportation planning. Gen-
erally, the survey instruments used in this process
are the result of years of developmental work. 1In
this paper such a developmental process is retraced
in terms of content and chronology on the basis of
the KONTIV design (4).

Two aspects will be emphasized. First, the la-
borious path of such developmental work, including
its accompanying setbacks, is illustrated. Second,
it will be shown that basic methodological research
also can produce, as by-products, fundamental and
substantive analytical and theoretical insights.

EARLY DEVELOPMENTS

When preliminary developmental work toward the im-
provement of methods for measuring nonhome activity
patterns started in Germany in 1972, the generally
accepted method for empirical surveys was the per-
sonal interview. For example, in an intensive per-
sonal interview survey (5), the course of the daily
trips to work or school was investigated in addition
to various other aspects. Three main bases for
criticism arose out of such survey efforts:

1. The survey measured averaqge rather than ac-
tual travel behavior;

2. Information (e.g., about travel time) was es-
timated by the interviewee; and

3. Only a segment of the individuval's mobility
was investigated.

Consequently, the results of such interview in-
formation were unsatisfactory when validated on the
basis of objectively measured values for travel
time, distance, and cost. For example, only three-
quarters of automobile drivers estimated their
travel time within a tolerance level of 25 per-
cent. (Admittedly, the generation of objective com-

parative data is difficult in this instance.) On

average, travel time was underestimated by 1l per-
cent (1l).

For the transit user the situation was quite dif-
ferent. Although the share of respondents with re-
ports of travel time within the tolerance level of
+25 percent was greater (namely, 79 percent), the
average error was substantially higher and in the
opposite direction, namely an average overestimation
of 36 percent (see Table 1 (4)].

The strong distortions caused by these misesti-
mates are described in Table 2 (4), which gives a
breakdown of trips into their access, egress, and
travel-time components. Automobile drivers claim to
have spent, on average, only a total of 6 min on ac-
cess and egress, including the search for parking
spaces, whereas transit users recorded 62 min for
access, egress, waiting, and transfer times.

The methodologically oriented reader of such re-
sults could draw two significant conclusions.
First, the reported travel behavior and characteris-
tics deviated substantially from reality even though
these respondents experienced the real values of
these trip elements twice during each working
(school) day. Second, the biases are of a system-
atic nature and apparently are related to the user's
attitude toward the respective travel mode. Hence,
in the case of public transit, the particularly dis-
turbing access, egress, waiting, and transfer times
are overestimated drastically.

From a conceptual point of view, these results
{which were substantiated in several other studies
(6)] indicated that the subjective perception of
such measures constitutes an important determinant
of travel modal choice. This concept has found
entry into the relevant models under the terms per-
ception and perceived value€s (7). The methodolog-
ical analysis of these findings “leads to two conclu-
sions. First, data about travel behavior must not
be collected (inquired about) in a general form
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Table 1. Accuracy of travel-time esti for au biles and transit (4).
Reported (interview) Travel
Time for
Item Automobile Public Transit
Sample size 800 520
Correct estimates (within +25 percent error) (%) 72 79
Incorrect estimates (> 25 percent error) (%) 28 21
Index of average deviation from the correct travel time 89 136

(objective time = 100)

Table 2. Reported estimates of travel-time components for automobile and
transit users (4).

Travel
Time
Item (min)
Automobile users (n = 800)
Walk from residence to parking; from parking to destination 6
In-vehicle travel time 41
Search for parking at destination 1
Total 48
Transit users (n = 520)
Walk from residence to boarding stop; from alighting stop to 28
destination
In-vehicle travel time 22
Total waiting and transfer time 34
Total 84

(i.e., not in terms of average values); they need to
have a concrete temporal reference. Second, activ-
ities cannot be viewed in isolation. Instead, com-

plete daily activity patterns are needed to consti--

tute the basis of analysis.

It could be shown, for example, that the record-
ing of beginning and termination times of a trip is
more accurate than the direct reporting of trip
lengths. The implications of this for further meth-

Figure 1. Cover of trip diary for en routs use.

odological considerations are as follows. First,
the data about travel behavior need to be collected
for specific survey days. Second, a diary-type sur-
vey instrument should be used, which requires en-
tries about complete daily activity sequences.
Third, a written survey form is preferable to the
personal interview. However, this does not indicate
by what means the survey instrument should be de-
livered to the respondents, i.e., by mail or by
means of an interviewer.

DEVELOPMENT OF AN ACTIVITIES DIARY

Based on the recognition that surveys about general
(or average) travel behavior and of estimated infor-
mation lead to invalid results, an activity diary
(8) was developed in 1972, in which the target popu-
lation (sample) was asked to record in writing its
complete daily activity set for specific survey
dates.

This diary (see Figures 1-4) was a brochure of
about 8 x 6 in. in size, the cover of which listed
the name of the target person, the day of the week,
and the date of the respective survey day. On the
inside cover were 12 numbered lines for trip en-
tries, where the odd-numbered trips were designated
by a different color in order to make this page of
the diary visually clearer and more appealing. On
this page the respondents were supposed to enter the

Name of
Respondent

Day of
the Week

Date
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Figure 2. Inside of trip diary,
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Figure 4. Trip register for accompanying person(s).
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most important aspects of their sequence of activ-
ities during that day; i.e., location of the day's
first activity (usually home), starting time of the
first trip, activity associated with that trip
(e.g., work), and time of arrival at destination.

All subsequent trips for that day were recorded
according to the same pattern on the inside cover.
Thus the temporal sequence of activities and the
reasons (trip purposes) for the diverse nonhome ac-
tivities were determined. At the same time, the
format and layout of the instrument ensured that
this rough record of daily activities could be out-
lined in the course of the day (i.e., en route,
close to the time of the occurrence of any partic-
ular activity). This constituted the basis for the
additional questions in the activities diary.

Separate survey sheets for each trip were afixed
to the top of the inside right cover. There were
two sheets for each trip; the first was to be used
by the target person who was completing the diary.
The second trip sheet referred to any possible ac-
companying traveler. These individual survey sheets
were equipped with a register that made it simple to
locate quickly the two sheets that belonged to any
one trip. A color code was used for each trip that
corresponded to the color scheme of even- versus
odd-numbered trips recorded on the left inside cover.

The survey form for a specific trip performed by
the respondent contained the following information:

1. Accurate address of destination,

2. Specification of up to three accompanying
persons (e.g., neighbor, son, uncle),

3. All travel modes used on a particular trip,
and

4. Detailed description of the destination ac-
tivity.

A window was cut in the space where the specifi-
cation of the accompanying person was recorded so
that this specification appeared on both sheets (for
the respondent and the accompanying person) without
the need to record the same information twice. The

form for the accompanying person contained informa-
tion as to whether that person had accompanied the
respondent from the start of the trip, whether the
person stayed with the respondent at the destina-
tion, and, if applicable, what the person 4id subse-
quently.

ORGANIZATIONAL PROCESS FOR USE OF ACTIVITY DIARY

The diary was intended to be completed by the re-
spondents, but the demands on the respondents both
in terms of time and contents comprehension were
substantial, especially for first-time use. The
necessary instructions could not be transmitted
easily in writing to the respondent. Hence the use
of interviewers was necessary, but they played the
role of advisors rather than interviewers.

The procedure went as follows. PFirst, the inter-
viewer conducted a preinterview with the respondent,
collecting the relevant sociodemographic data. The
interviewer explained the structure of the diary and
helped fill in the sequence of activities for the
day before the interview. Then the diaries were
handed to the respondent for subsequent unassisted
reporting of activities on the specified survey days.

Finally, a postinterview was arranged to discuss
the respondents' experiences with the diaries, to
review the completed diaries, to make any correc-
tions or additions that came to light at that time,
and to collect the completed diaries. By this tech-
nique it was possible to determine how well respon-
dents had fared with the diaries and how complete
the recorded information was.

The technique of a personal trip diary repre-
sented significant progress both in terms of content
and method. With respect to content, the diary,
which required the reporting of entire activity se-
quences, by necessity also provided information for
the transportation planner about walk and bicycle
trips that had been ignored typically up to that
time. The high share of nonmotorized travel in
total individual mobility was registered with some
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Figure 5. Timetable for interview work plan.
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Table 3. Influence of interviewsr on reported number of trips (8).

Avg No. of Mobility Index
Day Trips (first day = 100.0)
1 5.14 100.0
2 A4.90 95.3
3 4.66 90.7
Visit by interviewer
4 5.02 97.7
5 4.66 90.7
6 4.76 92.6
7 4.43 86.2
Visit by interviewer
8 4.82 9338
9 4.45 86.6
10 4.67 90.9
11 4.74 92.2
Visit by interviewer
12 4.83 94.0
13 4.52 87.9
14 4.48 87.2
surprise, at least in the Pederal Republic of
Germany.

Prom a methodological point of view, progress was
achieved because travel behavior had not been re~
corded in general and average terms, but rather ac-
cording to actual activities, and estimates had been
replaced by methodologically superior techniques.
Nevertheless, the problems remained that one survey
day provided only a segment of an individual's mo-
bility behavior, and that travel behavior could vary
from day to day.

Based on these problems it was decided to inves-
tigate the travel activities of a population for two
consecutive weeks, with each day requiring the com-
Pletion of a separate diary. Because it could be
expected that the wotivation for completing these
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diaries would decrease with time, the interviewers
took on the additional task of visiting the sample
households and providing the respondents with re-
newed encouragement. Also, respondents were handed
diaries for only 3 to 4 days at a time, which were
then checked and exchanged against new ones for the
next set of days. Only highly qualified and sensi-
tive interviewers could be used for this difficult
task. Therefore the sample was divided into several
subsamples for which the survey weeks were stag-
gered. Hence the interviewers 4did not have to con-
duct all preinterviews and postinterviews on the
same days. Instead, they received a rather compli- -
cated work plan (see Pigure 5) according to which
they had to conduct the preinterviews, the repeat
visits, and the postinterviews on specific days for
specific households.

This form of survey organiszation permits a time-
series investigation with AQiaries. It is clear,
however, that such surveys have to be limited in
terms of sample size because of organizational and
financial constraints. )

The evaluation of the data collected by means of
these diaries indicates that the expensive advisory
function performed by the interviewers was abso-
lutely necessary. As indicated by the data in Table
3 (8), the number of trips recorded for the first
day was highest, with all subsequent days showing a
decline. This continuity was interrupted only for
the days following a visit by an interviewer, i.e.,
the number of reported trips increased only to de-
crease again until the next visit.

PURTHER DEVELOPMENTS OF ACTIVITY DIARY

It became clear that, from a methodological point of
view, this diary approach constituted the best in-



strument in the early 19708. However, it was not
suitable for use in large-scale surveys that cover
large geographical or time dimensions. The objec-
tives for further developmental work were the elimi-
nation of the interviewer (advisor) and the simpli-
fication of the diary to such a degree that
self-administered, mail-back surveys would become
feasible.

In the course of a new pretest series, the d4ia-
ries were still delivered by interviewers. But the
interviewers would only hand out an instruction
sheet' to the sample households, rather than provid-
ing detailed verbal explanations. The completed di-
aries were returned by mail, thus eliminating the
possibility of checking the diaries for accuracy and
completeness.

The these reasons, this pretest was subjected to
a systematic error analysis of each diary, which re-
vealed the following results:

1. About one-third of the diaries did not con-
tain any recognizable errors,

2. About one~fifth contained mistakes that could
be corrected subsequently by means of careful data
preparation (e.g., missing return trips home, inac-
curate destination address), and

3. Another fifth showed mistakes of such sever-
ity that the diary was unusable or only partly us-
able [gee Table 4 (8), Version 1].

A more detailed analysis of the mistakes indicated
that

1. Forty percent of the errors pertained to the
trip destination address, most of which could be
corrected subsequently;

2, Approximately 25 percent of the errors oc-

curred in the trip-purpose specification, most of
which could be corrected; and

3. A ljittle less than one-quarter of the defi-
ciencies pertained to incomplete information, mostly
missing trips; only 14 percent of these could be re-
constructed in the data preparation phase [see Table
5 (8), Version 1).

Table 4. Response quality for activity disry (8).

Item Version 1* Version 2°
Sample size 118 133
Usable diaries (%) :

Without mistakes 62 60

With small mistakes 18 20

Total . 80 80
Unusable or only partly usable diaries (%) 20 20

®Every activity represents a trip. bEvcry mode used constitutes a trip.

Table 5. Reporting errors for activity diary (8).
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Overall, about three-quarters of the recognizable
errors could be corrected (Table S5). This result
was considered satisfactory. In principle, it ap-
peared feasible to conduct such surveys with purely
written instructions accompanying the survey instru-
ment. The relatively high number of unusable or
only partly usable survey responses were attribut-
able to the complexity of the required recording
procedure that had not been altered up to this stage
in the development of the survey instrument.

Before tackling this particular issue, another
problem had to be addressed, which pertained to the
content of the survey instrument, namely the defini-
tion of the term trip and the recording of travel
modes. Up to this version of the diary, a trip was
understood as the activity that links two geographi-
cally separate places where the respondent pursued
activities. Therefore, it was necessary to record
all modes of travel that were necessary to overcome
the spatial separation. This aspect resulted in the
following issues:

1. It was possible that respondents did not re-
cord walk trips that were necessary in conjunction
with the use of individual or public transportation
modes; '

2, If a travel mode had to be used repeatedly
(e.g., different subway, bus, or street car lines),
this mode could only be recorded once; and

3. The sequence of use for the different modes
was not immediately discernable from the diary en-
tries.

The methodological solution that eliminated these
issues completely could only lie in the definition
of trip as comprising each individual mode used on a
specific travel segment. This meant that a separate
survey sheet would have to be used for each change
of mode. The obvious disadvantage was the increased
reporting effort required of the respondent.

The results of a test with a diary that used the
trip definition just outlined were as follows.

1. The number of usable diaries did not change.

2. The number of diaries with correctable minor
errors increased slightly (see Table 4, Version 2).

3. The number of recorded trips per diary in-
creased from 4.21 to 4.79, as was to be expected.
Of course, this increase was directly related to the
change in trip definition. 1In fact, when the number
of trips were compared on the basis of the same trip
definition, the second, more work-intensive version
of the diary led to a reduction in the number of
trips by about 10 percent. .

4. The total number of errors per diary de-
creased from 3.41 in the pretest to 3.05, which was
attributable mainly to improvements in the reporting
of destination addresses. This is plausible because
this address now was the parking garage, the bus
stop, and so forth.

Total (n = 2,522)

Version 1* (n = 402)

Version 2° (n = 405)

Correctable Correctable Correctable

Item Percent Errors (%) Percent Errors (%) Percent Errors
Error in destination address 60 46 40 36 26 19

Error in trip purpose 20 16 28 24 52 45

Error in mode used 4 2 3 1 1 -

Error in specification of time 5 2 5 2 i -
Incomplete reporting _u _6 2_3_ E _21 _8

Total 100 72 99 77 101 72

'Ev«y activity represents a trip. "Evuy mode ussd constitutes a trip.
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5. The number of incorrectable errors increased
from 0.78 to 0.85 per daily diary. More than half
of the errors pertained to trip-purpose information
(see Table 5, Version 2).

These results suggested a return to the former trip
definition because the problems that gave rise to a
change in trip definition could be overcome by other
meanst

1. Walk trips as access and egress elements
could be supplemented at the time of data prepara-
tion (verification);

2. The sequence of travel mode used and multiple
use of a mode on a single trip could be constructed
easily on the basis of origin-destination informa-
tion, in case this is important information for a
specific study; and

3. The majority of investigations that deal with
explanation and prediction of, and the ability to
influence, travel behavior are mainly directed to-
ward the main mode used on a trip.

FROM ACTIVITY DIARY TO PERSONAL SURVEY PORM

From a methodological and theoretical point of view,
it can be concluded that the diary met the require-
ments of methodological quality extremely well.
Nevertheless, as stated previously, the use of a
diary becomes problematic for large, possibly widely
dispersed, populations. The financial and organiza-
tional costs for the necessary interviewer advice
and for the instrument layout make it somewhat ques-
tionable.

This implied that a survey instrument had to be
developed for large-scale surveys that maintained
high methodological quality while at the same time
was technically simpler and more suitable for self-

Figure 6. Row version of questionnaire.

administration by the respondents. With the survey
content given (namely measurement of all trips dur-
ing a day characterized by times, purpose, destina-
tion, and travel mode used), the following aspects
gained importance in the further development of the
survey {nstrument: formulation of questions, ar~
rangement of questions, layout, and communications
between respondents and survey administrators.

Pirst Pretest Phase for Questionnaire Development

A multiphase pretest series was performed in order
to transform the activity diary to a survey instru-
ment suitable for large-scale surveys (9). The main
effort during the first pretest concentrated on gen-
erating preferably a single-sheet questionnaire out
of an extensive diary, while still being able to re-
cord all trips of a survey day. This requirement
had several consequences: {(a) the number of re-
corded trips had to be more limited, (b) the brief
summary of the sequence of the day's activities (in-
side front cover of diary) had to be deleted, and
{c) space for comments and open guestions was to be-
come limited.

Two questionnaires were developed for this first
pretest that differed with respect to the formula-
tion and arrangement of the questions and the lay-
out. In the first questionnaire trips had to be re-
corded in rows. Trip purpose had to be entered in
longhand rather than checked off on a preprinted
1isting. All trip characteristics could only be
1isted once. Each trip row contained fields for
making longhand entries and squares for checkoff
marks (Figure 6).

In the second version of this questionnaire trips
had to be recorded in columns. Trip purpose had to
be recorded in longhand. Por each block the most
frequent and obvious categories of answers were
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given for easy checkoff; all other answers had to be
provided in longhand (Figure 7).

The results of this first pretest stage can be
summarized as follows.

1. .The percentage of usable forms for the column
version of the questionnaire was higher (97 percent)
than the row version (92 percent) {see Table 6 (10)]).

2, Sixty-two percent of the reported trips con-
tained incorrect or incomplete information; 46.4
percent were correctable ([see Table 7 (8,10), First
Pretest Phase].

Figure 7. Column version of questionnairs.
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3. Most deficiencies in reporting pertain to the
destination address (41.9 percent of all trips), but
most of them are minor problems because the majority
of the addresses can be located, given the geograph-
ical aggregation level typically used in transporta-
tion planning (see Table 7, First Pretest Phase).

4. In the row version an increasing number of
errors occurred with respect to trip purpose for the
return trip home. This is attributable to the open
form of the question used in this version.

5. The average number of daily trips measured in
this pretest was 3.59 trips per person compared with
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Tabie 6. Reporting quality for column and row versions of questionnaire (10).

Usable Questionnaires (%)
Unusable or
Questionnaire Sample Without Correctable Partly. Uub!e
Version Size Error Questionnaire Total Questionnaire (%)
Column layout 59 88 9 97 3

Row layout 58 89 3 92
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Table 7. incorrect and incomplete reporting (8,10).

Incorrect Reports per 100 Trips by Trip Characteristic

Timing of Departure Incomplete Reports

Destination Address Purpose Mode and Arrival per 100 Trips
Pretest
Phase Total Noncorrectable Total  Noncorrectable Total Noncorrectable Total  Noncorrectable Total  Noncorrectable
First 41.9 29 4.4 2.6 1.6 1.0 5.5 3.6 8.6 55
Second 29.6 8.1 4.7 1.6 1.9 0.8 0.8 04 20 04

4.21 trips reported in the diary. The reasons for
this lie in the absence of an interviewer providing
additional motivation for responding and in the lay-
out of the questionnaire.

Second Pretest Phase

The second pretest again made use of the row and
column versions of the questionnaire (see Figqures 6
and 7). However, this time the layout was improved
substantially. Dual color printing made the ques-
tionnaire more readable and visually more appeal-
ing. In the column version the fields and squares
for recording answers and checkmarks, and in the row
version all odd-numbered trips, appeared in a dif-
ferent color from that used on the rest of the
form. Also, emphasis of certain important informa-
tion was achieved through varying letter size and
thickness,

These changes in layout were supposed to improve
the results of the first pretest phase in two re-
. spects. Pirst, the clearer distinction between in-
dividual trips impresses more on the respondent that
all trips for a day were to be recorded. Second,
the visual emphasis was supposed to reduce the share
of unanswered questions because the respondent could
gee immediately where entries were expected to be
made.,

The second pretest phase is distinguishable from
the first one mainly because the questionnaires were
to be tested under the conditions of a mail-back
survey; l.e., respondents had to master the ques~-
tionnaire responses exclusively on the basis of the
written instructions provided, and the respondents
had to be motivated in writing to participate in the
survey.

Two variations of the column version, distin-
guished by their different spatial arrangements,
were developed for purposes of a mail-back survey.
Both variations were printed on one sheet, one of
them a folded version where all trips could be re-
corded across that page. The other version was
printed on both sides of a smaller sheet, with the
implication that the sheet had to be turned over
after the first four trips had been recorded on the
front. This laat version, of course, had a postage
cost advantage.

* 7, Second Pretest Phase).

The results of this second pretest phase were as
follows.

1. The number of reported trips increased from
3.59 during the first phase to 3.97 trips, which can
be attributed to the improved layout. The remaining
discrepancy with respect to the 4.20 trips per per-
son per day obtained in the diary is explainable be-
cause no control and immediate corrections function
can be provided in the mail-back questionnaires.

2. The row version contained the largest number
of incomplete answers (39.9 percent of all trips),
whereas the front and back column version contained
the fewest (37.9 percent). These differences are
not dramatic, but it should be emphasized that the
number of errors was successfully reduced for all
questionnaire versions compared with the first pre-
test phase [see Table 8 (9,10)].

3. The number of mistakes with respect to the

destination address decreased from 41.9 to 29.6 per-
cent. Unfortunately, the share of noncorrectable
errors increased from 2.9 to 8.1 percent (see Table
It is worth mentioning
that the first pretest phase was conducted in Mu-
nich, where a greater amount of professional deci-
phering of address information could be provided by
the administering agencies (Socialdata GmbH and
Technical University Munich) than in the case of the
second pretest phase, which took place in other
German cities. Of course, the three questionnaire
versions used were identical; i.e., the destination
address had to be provided in longhand [see Table 9
(9,10) 1.
T §. The row version had more errors in the trip
purposes, as was the case in the first pretest
phase. Again, the reason was because of the open
answer format (Table 9).

5. The number of unusable questionnaires and
noncorrectable entries increased with the age of the
respondent. Older people had particular difficul-
ties with the accurate reporting of trip purposes.

6. For complicated trip sequences (i.e., those
that involve more than travel to and from a single
destination or involve several intermediate activi-
ties), the number of unusable responses was high.
Trip purpose and destination address appeared to
cause the most difficulties.

Table 8. Incorrect and incomplets reporting of trips in relation to different questionnaire versions (9,10).

Incorrect and Incomplete

Incorrect and Incomplete

Trip Reports Reports per 100 Trips
Reported
Questionnaire Version Trips Total Noncorrectable Total Noncorrectable
Column version with foldout 1,384 540 146 39.0 10.6
Column version with front-to-back printing 1,148 436 138 37.9 12.1
Row version 1,253 500 144 39.9 11.5
Total 3,785 1,476 428 39.0 11.3
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Table 9. Incorrect and incomplete trip reports by trip characteristic and questionnaire version (9,10).

Incorrect Reports per 100 Trips by Trip Characteristic

Destination Address Purpose

Timing of Departure

Incomplete Reports
Mode and Arrival

per 100 Trips

Questionnaire Version Total Noncorrectable Total Noncorrectable Total Noncorrectable Total Noncorrectable Total Noncorrectable
Column version with foldout 29.7 7.8 4.0 0.9 1.9 1.1 1.4 0.8 2.0 0.0
Column version with front-to- 29.7 9.7 4.0 1.0 1.1 04 0.6 0.1 2.5 0.9
back printing
Row version 29.5 7.3 6.1 2.9 2.7 0.7 0.2 0.2 14 04
Total 29.6 8.1 4.7 1.6 1.9 0.8 0.8 0.4 2.0 04

In summary it can be concluded that the column
version resulted in higher reporting accuracy. The
decisive impetus to use this version in future sur-
veys, however, was provided by a second criterion
that was investigated in this pretest phase--will-~
ingness to respond.

The front-to-back variation on the column version
led to a better response rate: approximately 80
percent as compared with the row version of about 70
percent.

Communication Between Survey Agency and Respondent

In the previous sections a distinction was made be-
tween two forms of communication: personal delivery
and pickup of the survey forms (first pretest) and
self-administered mail-back surveys (second pre-
test). The impact of these two methods on response
accuracy was investigated. However, communication
still has two additional important implications:
response rate and survey cost per respondent.

These two aspects were investigated in another
pretest series. Eight different forms of communica-
tion were tested, including a mix of personal and
postal delivery and pickup. For the case of postal
service use, additional distinctions were made as to
whether prior notification by postcard was provided,
and whether the recipients of the survey instrument
received reminders by telephone on the actual pre-
scribed survey day.

The results of these methodological tests were
clear (Table 10 (8)]. Even the simplest postal ser-
vice method (method 1) resulted in a better response
rate (73 percent) than the most costly personal at-
tention method (method 7) by means of interviewers
(70 percent response rate). A response rate 3f 81
percent was achieved by means of the most expensive
postal method [i.e., including notification and re-
minder by telephone (method 4)]. Even this method
is less expensive than the least-expensive personal
method (method 5).

On the basis of these results it was decided to
conduct such surveys in writing by the mail-back
process and to ensure as good a response rate as
possible by written notification and reminder
notices (8).

Table 10. Response rates and survey cost as a function of q

Further Aspects of Survey Instrument Design

Three additional aspects of questionnaire design
that often are relevant in specific practical appli-
cations are as follows: (a) ease of coding for com-
puter analysis, (b) consistency of questionnaire
contents, and (c) surveys for foreign nationals.

Questionnaire Design for Computer Processing

Frequently, questionnaires were and are designed
such that they meet the demands of researchers in
the best possible manner. These demands and stan-
dards, however, often run counter to the needs of
the survey respondent. Outstanding examples for
this are the attempts to design the survey question-
naires in machine-readable form. A comparison of
two substantially identical questionnaires, one in
machine-~readable format and the other with a normal
layout, produced the following results (ll):

1. The machine-readable form produced 10 percent
fewer activities,

2. The number of deficient questionnaires was
almost 3 times as high,

3. The number of unusable questionnaires was al-
most 4 times as high, and

4, wWith identical strategies for increasing the
response rate, the machine-readable form produced a
66 percent rate and the normal layout a 79 percent
rate.

Consistency of Questionnaire Content

In addition to the design and layout, the question-
naire content has a significant effect on the will-
ingness to respond. The logic of the questionnaire
content (as perceived by the respondent) rather than
the length is important. In this context it can be
shown that it is feasible to transmit to the respon-
dent the necessity of answering related and inter-
nally consistent sets of questions, but that the re-
spondent's comprehension and willingness to respond
is reduced@ markedly when this rule is violated.

distribution and collection methods (8).

Response Cost-Index Sample Size
Distribution and Collection Method Rate (%) per Response (households)
Method 1-postal distribution and return 73 100 1,188
Method 2-notification, postal distribution and return 78 101 1,196
Method 3-postal distribution, reminder on survey day, postal return 17 104 . 1,193
Method 4-notification, postal distribution, reminder on survey day, postal return 81 113 1,191
Method 5-postal distribution, personal pickup 64 188 544
Method 6-personal delivery, postal return 63 215 517
Method 7-personal delivery, personal pickup 70 278 1,071
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Figure 8. Column version of questionnaire for foreigners,
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This point is illustrated in the following table
on the basis of three surveys (4) with different
degrees of internally logical sets of questions:

Version

1: 2: 3:

Complete Partial No

Internal Internal Internal
Item Logic Logic Logic
Sample size 55,107 19,380 12,091
Response rate (%) 81 77 67

Version 1 contained questions about demographics and
nonhome activities (i.e., the internal logic was
fully recognizable). Version 2 included additional,
somewhat related questions (i.e., 2 logical unit was
present, in part). Pinally, in version 3 sets of
questions of entirely different content were added
(i.e., the logical unity was lost). The data in the
table indicate that the response rate was affected
quite substantially.

Surveys for Poreign Nationals

In several countries with sizable groups of foreign
nationals it is sometimes necessary to survey this
population segment of a specific study area. Typi-
cally, one of the following survey techniques is
used. Either the foreigners receive the standard
local-language form as it is distributed to the do-
mestic population sample in the hopes that they have
acquired sufficient local-language facility, or they
receive a version prepared in their native language.

The second method obviously is the better ap~-
proach, but it is not sufficient to generate ade-
quate response in terms of numbers and quality. Be-
cause foreigners do not only differ in their native

language but also in terms of mentality (e.g., per-
ception of time), forms of expressions, and communi-
cations, a straight technical translation of the
survey instrument cannot suffice to provide them
with a survey form adequate for their needs (see
Figure 8). 1In order to generate a questionnaire of
equal content it was necessary to conduct similar
types of pretest series as were described for the
development of the local-language questionnaire in
earlier sections of this paper. Different tech-
niques and presentations had to be tested.

Such a questionnaire was developed for Turkish
and Yugoslav residents of Berlin, Germany, and it
was used in the context of a large-scale survey in
that city (12). A meaningful comparison of the re-
sponse quality between the German and foreign-~
langquage versions of the questionnaire can be made
for the reporting of trip destinations because that
aspect was probably most difficult for foreigners to
answer accurately. The results indicated that the
difference in response accuracy was insignificant,
and it was certainly much better than had been ob-
served in other surveys involving foreign residents

[see Pable 11 (12)].

Table 11. Exampile of response quality for German and Turkish and Yugosisy
residents of Berlin, Germeny (12).

German Turkish and Yugoslav
Item Residents Residents
Sample size 19,000 2,000
Reporting quality of destination
address (%) .

Directly usable 78 72

Usable with extra effort 20 18

Not usable 2 10
Response rate (%) 77 71
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The questionnaire design for foreigners also has
a direct impact on the response rate. A 13 percent
difference in response rates could be observed be-
tween a straight technical translation and a spe-
cially designed survey form. According to the data
in the following table (12), an additional increase
of 9 percent was possible by means of special
foreign-language telephone and written assistance
and information:

Sample Response

Survey Size Rate (%)
Straight technical

translation 3,000 49
Specially designed

survey form 1,084 62
Specially designed survey

form with special

assistance provided 2,712 7

CONCLUSIONS

The details of the developmental process involved in
generating a survey instrument that meets criteria
of high methodological quality, high expected re-
sponse rates, suitability for 1large-scale surveys
into travel behavior, and relatively low costs have
been described. Through a number of real-world
tests it was demonstrated that a variety of design
aspects can have substantial influence on one or
more of the preceding criteria. Each test series
was tested empirically, with detailed documentation
of reporting deficiencies.

The tests revealed how important methodological
research into improved survey design can pay off in
terms of better and more complete survey results
and, hence, in terms of more reliable and valid in-
puts into travel modeling and transportation plan-
ning. Uncritical use of unproven survey instruments
can have a profound influence on the efforts by
transportation planners and policy decision makers.

In this paper the evolution of better travel sur-~
vey instruments bagsed on diary-generated information
through research performed in Germany has been dis-
cussed. It should be made clear that many of the
methodological insights gained in the course of
these developments have been implemented in sophis-
ticated travel data-collection efforts in the United
States. BExcellent examples of such efforts have
been presented in two recent papers (13,14).
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Sequential, History-Dependent Approach to

Trip-Chaining Behavior
RYUICHI KITAMURA

The characteristics of trip-purpose chains are ex d, and a sequential

del of trip chaining, which ists of history-dependent probabilities
of activity choice, is developed. Statistical analyses of the study indicate
that there is a consistent hierarchical order in sequencing activities in a
chain whers less-flexible activities tend to be pursued first. The analyses
also indicate that the set of activities pursued in s chain tends to be
homogeneous. Thus activity transitions are more organized and systematic
than what a Markovian model would depict. Based on these findings, a
sequential model of activity choice is formulated that, in spite of its simpli-
fied representation of the history of a chain, satisfactorily represents the
observed behavior. Aithough the focus of the modet is on direct linkages
between activities, the model is capable of representing those characteris-
tics associsted with the entire set of activities in a chain. The resuits of the
study strongly support the seq ial modeling approach snd indicate its
practical usefufness in the analysis of trip-chaining behavior.

The importance of understanding trip-chaining be-
havior has long been recognized in connection with
nonresidential trip generation (1) or with urban
land use development (2). Underlying this is the
dissatisfaction with the way tripmaking has been
dealt with in the conventional transportation plan-
ning process or in location theory (3). As planning
emphases in transportation shifted from infrastruc-
ture construction toward systems management and pol-
icy development, it was recognized that there was an

increased need for a more fundamental understanding

of travel. behavior (4-6). The responses of urban
residents to the recent oil crises (1,8) have made
evident the importance of investigating trip-chain-
ing behavior. 1Its importance is clearly seen when
considering how the temporal and spatial distribu-
tion of trips in- an urban area is affected by the
way people organize their daily schedule of activi-
ties and combine trips. Statistical analyses have
been accumulated to form a substantial body of em-
pirical evidence [reviews of previous works on re-
lated subjects can be found in Hanson (5) and Damm
(9)). Yet many questions that have arisen in model-
building efforts of trip-chaining behavior remain to
be answered.

In this study one of the critical issues in trip
chain modeling is addressed: representation of the
decision structure involved in trip chaining. FProm
the viewpoint that people plan and schedule before-
hand a set of activities to be pursued in a ¢trip
chain, the decision process can be best represented
as a simultaneous one that concerns the entire set.
However, only few studies (10) have taken this ap-
proach in the past because of enormous difficulties
involved in developing a practical simultaneous
model of trip chaining. Most previous studies took
sequential modeling approaches, which include the
Markovian approach that has been traditionally used
in trip chain analysis (1,3,11-14). The validity of
the Markovian models, however, has not been thor-
oughly examined in the past, although several empir-
ical observations (15-18) have indicated that trip
chaining is not Markovian.

The objective of this study  is to demonstrate
that the inadequacy of previous sequential models is
caused by their failure to represent patterns of
activity sequencing and activity set formation in
trip chaining, and further to demonstrate that trip-
chaining behavior can be adequately described by
sequential probabilities of activity choice that
incorporate the history dependence of the behavior

in a simple manner. The sequential approach has an
obvious advantage because it represents the behavior
by a simple model structure while avoiding combina-
torial and other problems that may otherwise arise.
At the same time, the approach may appear to be in-
congistent with the viewpoint that trip chains are
planned and scheduled beforehand while considering
the entire set of activities, and not the transi-
tions between activities. Whether a sequential
analysis can adequately describe the behavior is,
therefore, a critical question to be examined, be-
cause if the sequential approach is proven to be
valid, it will lead to practical models of trip
chaining that can be developed for a wide range of
study objectives., This study is an effort to estab-
lish a basis for such development.

In examining the adequacy of the sequential ap-
proach, two aspects are discussed: sequencing of
activities in a trip chain, and tendencies or pref-
erences in formation of the set of activities to be
pursued in a trip chain. (This study is concerned
with types and sequences of activities in a chain,
but not with their spatial or temporal attributes.
A modeling effort that extends the present study
into the temporal dimension can be found in a paper
by Kitamura and Kermanshah presented elsewhere in
this Record.) How these two aspects affect sequen-
tial probabilities of activity choice is demon-
strated. Following this, empirical observations are
made, and the nature of trip-chaining behavior is
characterized.

BACKGROUND

The equivalence of the sequential and simultaneous
approaches can be found in the following identity.
By letting X, be the nth activity in a trip chain
for the case of three activities,

Pr(X,; = A, X, =B, X3 =C) = Pr(X; = CIX, = A, X; = B)Pr(X; = BIX,
= API(X, = A) M

The probability that a given set of activities is
chosen and pursued in a given order can be repre-
sented by a set of sequential and conditional proba-
bilities. (The same identity has been used in re~
lating simultaneous and sequential formulations of
discrete choice.) When the conditionality in Equa-
tion 1 is appropriately represented in sequential
probabilities, then the sequential approach is
equivalent to the simultaneous approach to trip
chaining.

It may be argued that activity choice cannot be
adequately described by probabilities that are con-
ditioned only on the past; activity choice may also
be dependent on future activities because a set of
activities to be pursued may have been planned be-
forehand. Nevertheless, it can be seen that the
backward dependency on the past implies forward
dependency on the future-as well. By using Bayes's
rule,

Pr(X;(X;) = [Pr(X1 X )Pr(X; )]/[;E Pr(X,1X, )Pr(Xl)] @
1
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Pr(X, X, X3) = [Pr(X31X,, X3)Pr(X31X; Pr(X )]
+ [ z Pr(x3|xl,x2>Pr(x2|x1)Pr(xl>] 3)
1

and so forth. A forward dependent probability can
be always expressed as a function of backward depen-
dent probabilities. That a choice is conditioned on
the past implies that it is also conditioned on the
future.

The preceding discussion indicates that the prob-
lems of previous sequential analyses, many of which
ugsed Markov chains, do not lie in their segquential
structure, but rather they lie in their inadequate
representation of the conditionality. In the fol-
lowing discussion it is assumed that there are pat-
terns in sequencing activities in a set, and also
that the choice probability of a given activity set
is predetermined. The intensity of direct linkages
between activities, or transition probabilities,
which have been the main focus of previous studies,
is viewed as a consequence of the patterns and pref-
erences in choosing activity sets and sequencing
activities. It is then shown that these patterns
and preferences can be represented by the condi-
tional transition probability, whereas the two
Markovian assumptions--history dependence and sta-
tionarity (or time homogeneity)-~-are inadequate.

Suppose the number of activities in the set (de-
noted by k) is fixed and the individual is com-
pletely indifferent to the sequence of activities.
Consider an activity set (w) and two activity
types (A and B). Because the sequencing is com-
pletely random, all the sequences obtained by permu-

tating the activities in » have the identical
probability. Accordingly, for all w,

Pr(X, = A, X+ = Blw)=Pr(Xg = A, X+ = Blw) 4)
and

Pr(X, = Alw) =Pr(X, = Ajw) mn=1,2,...,k-1 5)

Then, if A is included in at least one activity set,

Pr(X,., =BIX, = A) = [E Pr(Xn = A, Xpe) = Blw)Pr(w)]
+ [E Pr(X,, = AIw)Pr(w)]
=Pr[Xmes = BiXm = Al 6)

Namely, the pairwise activity transition probabili-
ties are stationary. Note that this conclusion is
not affected by the probability with which « is
chosen (Pr{(w)}, i.e., it does not depend on the
preferences in activity set choice.

Although the pairwise activity transition proba-
bilities are stationary, they are not history inde-
pendent even in this simplified case of random
activity sequencing. Suppose that the choice proba-
bilities of sets that include activities A, B, and D
are zero, while those of other sets are positive.
Then

Pr(Xn+; =Bl ..., Xe=C,.... X, =A)>0 )
and

Pr(X,,; =Bl ..., X¢=D,...,X;=A)=0 (8)
Therefore, Pr(Xp,1!X3s Xgr « « «» Xp) # Pr(Xpeq1X5) e

For the activity transitions to be Markovian, the
probabilities with which respective activity sets
are chosen must conform with those depicted by the
transition matrix of a Markov chain, a condition
rather groundless to assume.

The pattern of sequencing activities in a trip
chain is another source of history dependence, which
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algso yields nonstationarity. Suppose activity a
tends to be pursued before B, but the individual is
indifferent to the sequencing of activity C. fThen
for w that involves A, B, and C, the probability
Pr(X +1 B! ... = C, w) varies depending on
whetger A has been pursued before C. Now suppose
both A and B tend to be pursued earlier in a chain,
but again C is equally likely to be pursued in any
order. Then, Pr(Xmsy = AlXp = C, w) > Pr(Xpyy =
AlXp =C, w) ifm<n, The first example indicates
that sequencing patterns cause history dependence,
and the latter indicates that pairwise transitions
become nonstationary.

Any Markov chain exhibits certain patterns of
activity set formation and sequencing. But the re-
versal is not always true; i.e., given patterns of
set formation and sequencing cannot always be repre-
sented by a Markov chain. The discussion in this
section also implies that sequencing and activity
set formation can be represented when the condi-
tional probabilities of activity transitions are
appropriately specified. The failure of Markov
chain models is caused by their invalid representa-
tion of the conditionality. 1In the following sec-
tions characteristics of trip chaining are first
observed, and then a sequential model is proposed.

DATA SETS

Empirical observations of this study are made by
using the 1965 Detroit area transportation and land
use study (TALUS) data set, the 1977 Baltimore
travel demand data set, and published transition
frequency matrices from Chicago, Buffalo, and Pitts-
burgh [reported by Hemmens (19)). The TALUS data
gset is most extensively analyzed, whereas the other

‘sets are used to examine the generality of the re-

sults obtained. A significant advantage of the
TALUS data set--a conventional origin-destination
survey result--is its ample sample size, which is
crucial for the analysis carried out in this study.

The original TALUS data file, which contained
records of 320,090 trips made by 82,050 individuals,
was screened to exclude those individuals who did
not have a closed series of trips that originated
and terminated at home (which may include intermedi-
ate returns to home), who had no car available to
the household or did not hold a driver's license,
who were younger than 18 years old, who used travel
modes other than car, and those who made work trips
on the survey day (walk trips are not recorded in
the TALUS data unless they were work trips). The
last criterion is introduced because of the substan-
tial differences 'in travel and time use patterns
between those who worked and those who did not on
the survey day (20,21). As a result of this screen-
ing, the sample analyzed includes 76,025 trips and
27,901 trip chains made by 16,520 individuals (a
geographical subsample of this was used in previous
studies (16,20,21)]).

All screening criteria are also applied to the
Baltimore data set, and a sample of 1,789 trips and
697 trip chains made by 435 individuals is ob-
tained. The transition frequency matrices from the
other three metropolitan areas include all observa-
tions without comparable screening. As is clear
from the screening criteria, the internal howoge-
neity of the sample is emphasized in this study,
whereas some aspects of travel behavior are placed
out of its scope, such as the effect of travel mode
on trip chaining. Individuals with transit trips
are eliminated for this reason, and they are not
analyzed because their sample size is too small for
statistical analysis.

The 27,901 trip chains in the sample from the
TALUS data set contain 48,124 sojourns with an aver-



Transportation Research Record 944

age chain length (average number of sojourns per
chain) of 1.725. Although 62.2 percent of the total
chains are single-sojourn chains, they account for
only 36.0 percent of the total sojourns, and approx-
imately two~-thirds of the sojourns belong to multi-
sojourn chains. The significance of multisojourn
chains is evident. The average chain length of the
Baltimore sample is 1.57, approximately 10 percent
less than that of the TALUS sample. The average
number of chains per person is 1.60, which compares
with 1.689 of the TALUS sample.

The direct transitions between activities in trip
chains in the TALUS and Baltimore samples were first
analyzed by using a transition matrix, with the as-
sumption that trip chaining can be represented by a
stationary and history-independent Markov chain.
These two samples are different from those of other
studies in that the individuals who made work trips
are excluded, Nevertheless, this preliminary anal-
ysis of the pooled transition matrices indicated
that the present samples share many of the trip-
purpose linkage patterns reported in the literature
(1,11,19).

NONSTATIONARITY OF ACTIVITY TRANSITIONS

Although traditional Markov chain analysis (which
uses the pooled transition matrix) offers a conve-
nient means of data summarization, the implicit sta-
tionarity assumption that the same transition matrix
applies to all transitions in a trip chain is too
restrictive for rigorous analysis of the behavior.
In this section the nature of trip chaining is ex-
plored by using a nonstationary Markov chain, where
each step of transition has its own transition ma-
trix that is not necessarily identical to those of
other steps (the first step of transition refers to
the transition from the first purpose to the second,
the second step of transition is the one from the
second purpose to the third, and so forth).

Nonstationarity in Trip~Purpose Chains

Nonstationarity in the obgerved trip-purpose transi-
tions 1is statistically examined by applying the
likelihood~ratio test (22). The results are summa-
rized in Table 1. To eliminate empty cells in the
frequency matrices for as many steps as possible,

Table 1. Likelihood-ratio test of stationarity in trip-purpose transitions.

Fors=1,...,9 Fors=2,...,9

Row Column Row Column
Trip Purpose Total® Total® Total® Total®
Home - 357.6° - 77.9¢
Personal business’ 337.6° 155.2° 46.0% 399
Social-recreation” 603.7° 157.4° 38.8 65.7°
Shopping 374.1¢ 36.5 93.0° 26.9
Serve p gers 270.1° 878.7° 132.2° 99.6°
Total! 1,585.4%9 158540 3100 310.0%k

Note: In places where degrees of freedom are indicated, the df for the column tota}
cannot be defined in the conventional manner; therefore the ratio ((total df) + (no.
of columns)] is presented here.

34 = 32,
bar = 25.6.
Caf =28,
df = 22.4.
Significant at o = 0,005,
Includes school.
'Signiﬁclm ata = 0.08,
‘Includes eat-meal trips.
'2\ d)eﬂnltion of the log-likelihood ratio statistic is given in Anderson and Goodwin
22).
Jaf = 128,
df = 112,
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two trip purposes with fewer observed frequencies
are merged with others, as indicated in the table.
The test is conducted for the first nine transition
matrices, and also for the eight matrices from steps
2-9. The null hypothesis is strongly rejected in
both ‘cases.

Together with the overall chi-square values, the
data in Table 1 present chi-square statistics for
the row and column of each trip purpose, where the
row total represents the nonstaticnarity in the
transition probabilities from the trip purpose, and
the column total represents that to the trip pur-
pose. PFor the first case (stepa =1, 2, , ., ., 9),
all rows and columns have significant statistics,
except the column total for shopping, which indi-
cates that shopping is pursued with a relatively
stationary probability throughout a chain. The
large chi~-square value associated with the transi-
tions to serve-passenger trips and that from social-
recreation trips are also noted.

The second test excludes the transition matrix of
the first step., The drastic reduction in the over-
all chi-square value from the first test indicates
the extreme distinctiveness of the matrix for the
first transition. Note that the first transition
determines whether the individual pursues only one
or more than one sojourn in a trip chain. The data
in Table 1 also indicate that the variation in link-
ages with serve-passenger trips is a major source of
nonstationarity in the second step and thereafter.

The pairwise distinctiveness of two successive
transition matrices was also tested, and the first
four matrices were found to be significantly differ-
ent from each other (with chi-square values of 783.3
between the first and second steps, 92.1 between
second and third, and 38.9 between third and fourth,
all with d4df = 16). No significant difference was
found after the fourth step. This is at 1least
partly caused by the reduced sample size in the
transition frequency matrices of later steps. At
the same time, the implication of the result that
the transition probabilities are stabilized in later
steps of a trip chain is intuitively agreeable.

Variations in Linkage Patterns

The nonstationarity in trip~-purpose transitions im-
plies that a pair of activities may have strengthen-
ing or weakening linkages with each other, and that
some activities tend to be pursued earlier or later
in a chain. The data in Table 2 indicate by step of
transition those trip-purpose pairs for which more
than expected transitions are observed in respective
steps. Many of the diagonal cells are significant
in all steps, which indicates that activities of the
same type continue to have strong linkages among
themselves throughout the chain. There are also
several trip-purpose combinations that are signifi-
cant only in the first few steps or in later steps.

Table 2. Salient trip-purpose linkages in nonstationary transition matrices
for steps 1-4.

Category HOME PBNS SREC MEAL SHOP SCHL SVPS

PBNS 123,4 1
SREC 1 1

MEAL 1 :
SHOP 1,2 1234

SCHL 1 2
SVPS 3 1 . 1 1,2,3,4

3

Note: Steps i through 4 indicate the step of transition for which the cell has a chi-
square value of 7.879 or greater with an expected frequency of § or greater. Ab-
breviations for trip-purpose categories are as follows: PBNS = personal business,
SREC = social-recreation, MEAL = eat meal, SHOP = shopping, SCHL = school,
and SVPS = serve passengers.
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Bspecially noted is the transition from serve-
passenger trips to home in the third step. The sig-
nificance of this trip-purpose combination in this
particular step is caused by the dominance of the
trip-purpose sequence: serve passengers to other
activity to serve passengers to home (a later sec-
tion indicates that this is a typical sequence when
a trip chain involves serve-passenger trips). Thus
the result suggests that the observed nonstationar-
ity is partly caused by the sequencing by the trip-
maker of the activities within a trip chain.

The variations in trip-purpose linkages were fur-
ther characterized by evaluating for respective
steps the mean first passage times (MFPTs); that is,
the expected number of transitions from an origin
state until a destination state is visited for the
first time (23). The result indicated that the
linkages to personal business become weaker in later
steps of a chain. On the other hand, the MFPTs to
serve-passenger and social-recreation trips revealed
strengthening linkages between these activities and
others in later steps.

This analysis of nonstationarity in trip-purpose
chains strongly suggests the existence of patterns
in sequencing activities., An earlier section indi-
cated that another possible source of the observed
nonstationarity is the dependence of activity choice
on the set of activities already pursued, which is
closely related with the preferences in the choice
of activity set. 1In the following sections these
two aspects are discussed, and the reasons why such
nonstationarity exists in trip-chaining behavior are
illuminated.

ACTIVITY SEQUENCING IN A TRIP CHAIN

Consider the transition frequency matrix presented
in Table 3, which gives direct transitions between
activities in 10,555 multisojourn trip chains in the
TALUS sample., The matrix is obviously not symmet-
ric, i.e., the frequency of (i,j) transitions is not
always similar to that of (j,i) transitions. Exami-
nation of this asymmetric nature of the matrix leads
to inferences as to the sequencing of activities
within a trip chain.  Suppose that three activities
(A, B, and C) are to be pursued in a chain. If the
tripmaker is completely indifferent to the sequence
of these activities, all of the 3! possible sequences
would have the equal likelihood of occurrence, and
the occurrence of each one of the 6 (= 3C; 2) pos-
gible direct transitions would have the identical
probability. Accordingly, the observed transition
frequency matrix must be symmetric. The asymmetric
matrix of Table 3, therefore, suggests that certain
activities tend to precede others in multisojourn
chains.

Tsble 3. Asymmetry of pooled transition frequency matrix.

Category PBNS SREC MEAL SHOP  SCHL SVPS
PBNS 1,527 g1sb 212 1820 27° 515°
SREC 462¢ 1,563% 285 1,091 15¢ 722
MEAL 1144 277 16* 191 17 158
SHOP 8449 1,122 188 3,109* 8¢ 687°
SCHL 46° 43 27 sg® 23t s9f
SVPS 618° 737 140 1,030° 938 1,564%

Note: Abbreviations are defined in Table 2.- The footnotes in the table, except a, give
the significance of the asymmetry between (i, j) and {j, i) cells.
*Not part of the examinanion of asymmetry.
‘Observation greater than expectation; significant at a = 0.005.
€Observation less than expectation; significant at @ = 0.05.
Observation less than expectation; significant at a = 0.005.
€Observation grester than expectation; significant at @ = 0.05.
Observation less than expectation; significant at a = 0.01.
80bservation greater than expectation; significant at a = 0.01.

i
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Tendencies in Activity Sequencing

Examination of the pooled transition frequency ma-
trix of Table 3 indicates that the transition fre-
quencies that are statistically most asymmetric
involve personal business; for example, 815 transi-
tions from personal business to social-recreation
versus 462 transitions from social-recreation to
personal business; 212 transitions from personal
business to eating meal versus 114 from eating meal
to personal business; and so forth (the differences
are significant at o = 0,005). Obviously, per-
sonal business tends to be pursued in a chain before
the other activities. School trips have a similar
tendency, and they precede personal business trips
more frequently, and serve-passenger trips have a
tendency to precede school and personal business
trips.

There are also several pairs of trip purposes of
whose sequences the tripmaker is apparently indif-
ferent: 285 transitions from social-recreation to
eating meal versus 277 from eating meal to social-
recreation; 1,091 from social-recreation to shopping
versus 1,122 from shopping to social-recreation; and
so forth. None of these differences is sgtatisti-
cally significant at any appropriate level. '

Nine of the 15 (= ¢C2) pairs of aifferent
trip purposes have statlstfeany significant asym-~
metry (a = 0.05). Based on these relationships, a
hierarchy diagram is constructed to show the tenden-
cies in sequencing activities within a trip chain
(Figure la). The perfect consistency in the hier-
archical relationship among the trip purposes is
shown in the figure; for example, serving passen-
gers, which precedes school, also precedes those
trip purposes that school precedes. These consis-
tent tendencies in the observed direct transitions
are quite noteworthy.

Hierarchical relationships among activities are
evaluated in the same manner by using transition
frequency matrices from Chicago, Buffalo,. and Pitts-
burgh; these are summarized in Pigure 1lb. The re-
sult is in satisfactory agreement with the TALUS
result. This is also the case for Baltimore, but
the sample size is insufficient to be conclusive.

Activity Sequencing and Uncertainty

The hierarchical order of activities presented in
Pigure la,b indicates that activities in the higher
order tend to be accompanied with spatial or tem-
poral fixity, or both. For example, serving a pas-
senger quite often implies that a person must be
chauffeured to a given location by a given time,
personal business such as banking must be pursued at
a predetermined location, and so forth. The result
indicates that activities of less flexibility tend
to be pursued in a trip chain before more flexible
activities, such as social-recreation and shopping.
Cullen and Godson (24) argued that an individual's
itinerary for a day is formed by articulating activ-
ities with less fixity around those activities with
high spatial or temporal fixity or both, which act
as pegs in daily activity scheduling. A previous
study (20) revealed that serve-passenger trips
largely prescribe an individual's daily travel pat-
tern because of their fixity. The present study
reveals another tendency in urban travel behavior:
a relationship between sequencing of activities and
their fixities.

The information available from the data set does
not allow statistical determination of the reason
why this sequencing pattern is observed. Neverthe-
less, the consistent observations from the four met-
ropolitan areas offer the basis for constructing
behavioral inferences on the subject. A rather
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Figure 1. Hierarchy in activity sequencing in trip chains: TALUS (Detroit), Buffalo, Chicago, and Pittsburgh.

a. TALUS (Detroit)

b. Buffalo, Chicago, and Pittsburgh1

! A solid arrow indicates that the hierarchical

relationship is observed in all three metro-
politan areas. A broken arrow indicates that
the relationship is observed in the area
indicated by the initial (e.g., "B" for Buffalo).

-
Includes eating meals. Serving passengers is
excluded from the original tabulation
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straightforward conjecture postulated here is that
the sequencing pattern observed in this study is a
result of individuals' consideration of uncertainty
in activity planning.

Consider the case where an individual is combin-
ing both fixed and flexible activities into a
chain. Quite typically, the exact amount of time
required to accomplish an activity is not known to
the individual beforehand. If a flexible activity
is pursued first, and if it takes longer than ini-
tially thought, then the individual may not be able
to attend the fixed activity in time. Note that an
activity with spatial and temporal fixity by defini-
tion demands the individual to be at a certain loca-
tion by a certain time. On the other hand, if the
flexible activity takes less time, an unexpected
block of time must be somehow spent. In either
case, if the individual recognizes this uncertainty,
it appears logical for him to pursue the fixed ac-
tivity first. The observed activity .sequencing
pattern thus suggests that uncertainty plays a sig-
nificant role in the activity planning of an indi-
vidual. The pattern is perhaps a result of an indi-
vidual's effort to minimize risks because of the
uncertainty and to pursue a set of activities effi-
ciently in a trip chain.

HISTORY DEPENDENCE IN ACTIVITY CHOICE

An earlier section indicated that preferences in
activity set choice in general make activity transi-
tions history dependent. The sequencing pattern ob-
served in the previous section implies that activity
choice depends on the series of activities already
pursued in a trip chain. The strong direct linkages
among activities of the same type also suggest his-
tory dependence. However, little exploration of the
nature of history dependence in trip chaining has
been made in the past, and most analyses were con-
cerned only with direct linkages bhetween pairs of
activities. The analysis of this section, which
focuses on the entire series of activities in trip
chains, reveals additional characteristics of activ-
ity set formation and activity sequencing.

Although there are many possible ways of statis-
tically examining the history dependence in trip
chaining (e.g., triples used by Parkes and Wallies
(25); also see Anderson and Goodman (22)], most of
them encounter problems with sample size because of
the scarcity in the sample of chains with a large
number of sojourns. Accordingly, this study takes
on an approach of tabulating the frequency of chains

Note: Transit frequency tabies are reported in Hemmens (18).

by the trip-purpose sequence and directly examining
the history-independence assumption by using a con-
tingency table analysis technique.

History Dependence of Three-Sojourn Chains

Consider those trip chains with three sojourns,
namely, Xy, X;, and X3 ¥ home, and X; = home. The
history-independence assumption can be stated for
these chains as

Pr(X; =kIX, =i,X; =j}=Pr(X; =kiX; =)) ®

for all 1, j, and k £ home. Namely, the conditional
probability that the third activity is k given the
second activity (= j) is independent of the first
activity (= i). This null hypothesis can be tested
by tabulating, for given X;, the frequencies of
the third activity categories by the first catego-
ries, then by examining the independence of the re-
sulting two-way contingency table. This contingency
analysis is equivalent to applying a nonstationary
Markov chain of the first order to test the history
independence of three-sojourn chains. The results
for 2,760 three-sojourn chains found in the TALUS
sample are given in Table 4. To ensure a sufficient
number of observations for each sequence of trip
purposes, the original six trip-purpose categories
are collapsed into four, as in Table 1.

In part A of Table 4 the results for those three-
sojourn chains whose second trip purpose is personal
business (including school) are presented. The row
represents the first trip purpose, and the column
representgs the third trip purpose. If the history-
independent assumption holds, then every row should
have the same distribution of cell frequencies. The
expected cell frequencies under this independence
assumption are shown in parentheses.

As expected, the four contingency tables (parts
A-D, Table 4) are all highly significant, which in-
dicates that the conditional probability that a cer-
tain activity is pursued as the third activity,
given the second one, does depend on the first ac-
tivity pursued in the chain. Especially notable are
the much higher-than-expected frequencies of the
diagonal cells; tripmakers tend to repeat the same
type of activity as the first and third activities
in a trip chain. This recurrence of the same activ-
ity type is particularly noticeable for serve-
passenger trips when the second purpose is not serv-
ing passengers (see parts A-C of Table 4). The
diagonal cell for serving passengers alone accounts
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Table 4. Frequencies of three-sojourn chains by sequence of trip purposes.

)
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A X2 = PBNS C X.,= SHOP
_— X ——
3 X4
X ) PBNS SREC SHOP SVYPS Total X 1 PBNS SREC SHOP SVPS Total
PBNS 107 3 87 13 25 PBNS 82 50 163 16 31
(66.2) (42.5) (84.6) (51.7) {54.7] w2.1) (66.1) (153.2) (49.7) {65.2]
SREC 11 36 22 6 75 SREC 7 35 66 26 13
(20.3) (13.0) (25.9) (15.8) [51.5] (24.9) (39.1) {90.6) (29.4) [73.9]
SHOP 2 16 65 7 12 SHOP 6 67 254 s 381
(30.2) (19.4} (38.7) (23.6) {3t.5] (51.6) (80.9) (187.6) {60.9) {62.6}
SVPS 23 16 37 103 179 SVPS 9 24 41 118 1
(48.3) (31.1) (61.8) (37.8) [te3.1]) (25.4) (39.9} (92.6) (30.0) (280.4)
165 106 211 129 611 I 226 524 170
Total 1064
[44.0} (49.0} (28.5) [159.3] {280.9] Total [61.9] (66.6} [59.5) [294.0] {682.1]
B_ X, = SREC X, = SVPS
X3 X.’
X 1 PBNS SREC SHOP 5VPS Total i PBNS SREC SHOP SVPS Total
PBNS 50 45 50 22 167 PBNS 11 10 10 17 48
(17.6) (65.8) (35.9) 47.7) [85.3) (6.8) (8.5) (10.3) (22.5) [4.2]
SREC 19 183 47 29 278 SREC 6 15 3 16 45
(29.4) (109.5) (59.8) (79.4) {87.8] (6.4) {7.9) (9.6) (21.1) [7.8)
SHOP 9 51 50 3 118 SHOP 7 is 15 9 45
(12.5) (46.5) (25.4) (33.7) (44.9) (6.4) (7.9 (9.6) 1.1 [14.7}
SVPS 3 23 18 160 208 SVPS 21 17 35 107 180
(21.5) (30.3) (43.9) (58.2) {249.9] (25.5) L7 (38.5) (86.3) {15.0)
s 302 165 219 767 Y] 5 Py 149 33
T
oral (80.0] (97.3] [47.4] (263.1] wery) ol (3.5] (18.1] (3.6] [15.61 140.7]

Personal business (PBNS) includes school, and social-recreation (SREC) includes eating meal. For other abbreviations, see Table 2.

( )% Expected ceil frequency
[ ): Row, column, or grand total of chi-square values.

for 40.0 percent of the total chi~square value of
part A where the second purpose is personal busi-
ness. The corresponding values are 38.1 percent for
part B (X, = social-recreation),
for part C ( = shopping). The sequence of serve
passengers to other activity to serve passengers is
obgserved much more frequently than the expectation
under the history-independence assumption, and it is
found in 12.2 percent of the all three-gojourn
chains, or in 36.6 percent of those three-sojourn
chains that involve serve-passenger trips at all.
The corresponding statistics from the Baltimore sam-
ple are 14 and 36 percent, respectively. This se-
quence pattern is obviously caused by the typical
requirement that a person chauffeured and dropped
off at a place has to be picked up later. The exam-
ination of individual cells of parts A-C also indi-
cates that the probability that the third purpose is
serving passengers is significantly smaller than the
expectation when the first and second purposes are
not serving passengers.

The data in Table 4 also indicate that the activ-
ities pursued in a chain quite often all fall within
one trip-purpose category. For example, the se-
quences shopping to shopping to shopping and social-
recreation to social-recreation to social-recreation
are the most frequently observed sequences. This,
together with the recurring tendency previously dis-~
cussed, indicates that the activities pursued in a
chain tend to be homogeneous. Of the 2,760 chains,
61.9 percent involve only one trip-purpose category,
23.6 percent involve two, and only 14.5 percent in-
volve three different trip-purpose categories as
defined here. These observations differ substan-
tially from the expected values obtained by assuming
complete independence in trip-purpose transitions
{i.e., Markov chain of the Oth order): 6.9, 56.8,
and 35.3 percent, respectively. In the Baltimore
sample 72 percent of chains with three or more so-
journs involve only one or two trip-purpose cate-
gories.

The sequences of

activities in these three-

and 48.8 percent’

sojourn chains showed exactly the same hierarchical
order as in Figure 1. Note that this analysis takes
into consideration the sequences of indirectly
linked activities. This can be seen in part by
examining the asymmetry of the matrices presented in
Table 4.

Similar tabulations and analyses were done for
1,164 four-sojourn chains in the TALUS sample with
the same classification of trip purposes into four
categories., However, of the 256 (= 4%) possible
sequences of trip purposes, 150 had observed fre-
quencies of 3 or less, which warranted only limited
statistical examination of these chains. Even a
data set of 76,025 trip records appears insufficient
for rigorous statistical investigation of history
dependence in trip chains. Nevertheless, available
statistics indicate that the inferences made for the
three-sojourn chains are likely to apply to the
four-sojourn chains. Por example, 547 (47 percent)
of the all four-sojourn chains involved only one or
two trip-purpose categories. Again, tripmakers tend
to pursue only a few types of activities in a
chian. Of the 292 chains that contain two or three
serve-passenger trips, 220 (75.3 percent) involve
the sequences of serve passengers to other activity
to serve passengers, or serve passengers to other
activity to other activity to serve passengers.

Possible Explanation of Bonoéene:lty

Obviously, the temporal and spatial distributions of
opportunities are among the factors that contribute
to the homogeneity of activity types pursued in a
trip chain. For example, pursuing personal business
is not likely in the evening because businesses or
shops are typically closed, and chains made in the
evening tend to be social-recreation oriented. Com-
mercial corridor development provides many shopping
opportunities in close proximity, thus making shop-
ping trip chains convenient and economical.

It may also be hypothesized that the individual
has clear perception as to the compatibility of d4if-
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ferent types of activities in a chain [closely re-
lated is the viewpoint that individuals perceive
different time periods of a day as suitable for dif-
ferent types of activities (15,24)]. 1In some ex-
treme cases a set of activities may be viewed as a
full course of activities and pursued as such; for
example, movie to late dinner to home, or visit a
friend to bowling lane to a pizza house to drive the
friend home to home. The latter forms a four-
sojourn chain that involves social-recreation and
serve-passenger trips. If a bundle of activities is
perceived as one integrated activity, introduction
of a heterogeneous activity into the chain may not
be acceptable to the individual. Bven the way the
individual is dressed may affect trip chaining. If
the individual leaves home to pursue a homogenecus
set of activities and is dressed suitably for this
set, he may feel uncomfortable to visit locations
for heterogeneous activities where he may be over-
dressed or underdressed. This may be especially the
case in the TALUS sample because of its survey date
and the conservative nature of the region.

SEQUENTIAL MODEL OF TRIP CHAINING

Based on the results of the previous sections, which
examined the nature of trip-chaining behavior from
various viewpoints, a simple model of the behavior
is developed and tested. The key issue in the
modeling effort is how to represent the past history
of a chain in a simple and practical form.

Model Framework

The model development effort is based on the premise
that the observed characteristics of trip chaining
can be adequately represented by making the transi-
tion probabilities dependent on the past history of
the chain. The findings that activities in a chain
tend to be homogeneous and that inflexible activi-
ties tend to be pursued first suggest a rather sim-
ple and systematic structure of history dependence.
The probability of a given activity transition
strongly depends on the types of activities already
pursued, but may not depend on the number of times
these activities were engaged in or on the exact
order in which they were pursued. For example, the
sequencing pattern implies that once flexible activ-
ities have been pursued, the probability of an in-
flexible activity is small, but the number of the
previous flexible activities and their sequence may
have only a negligible effect on the probability.
The exact representation of the history, as shown in
Equation 1, may not be necessary, and a simpler rep-
resentation may be adequate.

The conditional probability of activity choice is
formulated as follows:

Pr(xn¢l|xl’x2) e vxn)=Pr(xn+lIxn; DlnvD‘an . 'DKn) (10)

where D;, is a binary (0-1) variable, which indi-
cates whether activity type 3 has been pursued in
the chain by the nth transition, and K is the number
of activity categories used to represent the history
of the chain. The model assumes that activity tran-
sition probabilities depend on direct linkages; thus
the probability of the next activity (X,4;) 1is
conditioned on the current activity (X,). History
of a chain, however, is not represented by the en-
tire series of activities pursued, but by a set of
binary variables (Dy,, « - <, Dgp)-

For example, suppose that activities are classi-
fied into four categories (serve passengers, per-
sonal business, social-recreation, and shopping),
and the Djn's are defined for j = 1, 2, 3 as
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Dy, = 1 if serving passenger has been pursued by
n, 0 otherwise;

Dy, = 1 if personal business has been pursued by
n, 0 otherwise; and

Dy, = 1 if social-recreation or shopping has been
pursued by n, 0 otherwise.

Two activity categories (social-recreation and shop-
Ping) are grouped together in defining the D;_.'s
(note how they are tied in the activity seque i‘ng
in Pigure la). There are eight possible values of
vector D, = (Dy,, Dans D3p). Recall that some tran-
sitions are likely to occur with the sequencing pat-
tern found earlier, whereas others are less likely
to occur. Naturally, the probabilities of the first
group will be larger than those of the second group
for given X, and  X,. The activity choice
probability og' tJﬁe model captures this variation be-
cause it is conditioned on D, and thus replicates
the sequencing pattern. The preferences in activity
set choice are represented by the conditional prob-
ability in a similar manner.

The process (X;, X,, . . .) depicted by the
history-dependent ptobabilu:y "("nu"‘n’ Dine Dape
D3,) can be represented as a stationary, history-
1n3ependent Markov chain process if the states are
redefined and the state space is expanded appropri-
ately. The set of states and the structure of the
transition matrix for this example are shown in Pig-
ure 2. The states are now defined in terms of both

Figure 2. Stationary transition matrix of history-dependent trip-chaining
model.

“TO" STATE
SPSSSPSSSPSSSPSSSPSSH
"FROM" STATE VBRHVBRHVBVYVRHBRHVBRHO
PNEOPNEOPNPEONEOPNEOM
D" SSCPSSCPSSSCPSCPSSCPE
1. (1,0,0) SVPS * L ) «
2. (0,1,0) PBNS * * * o *
3. (0,0,1) SREC * o * * *
4. (0,0,1)  SHoP * > * * *
5. (1,0,0) svps * L *
6. (0,1,0) PBNS * * *ox *
7. (0,0,1) SREC * * * *
8. (0,0,1)  sHoP il v * *
9. (1,1,0) Svps * * woro
10. (1,1,0) PBNS * o i
n. (1,0,1) SvPS *owow * *
12. (1,0,1) SREC oo * *
13. (1,0,1)  SHOP R * *
14. (0,1,1) PBNS i *
15. (0,1,1)  SREC i *
16. (0"’]) SHOP * * * *
17. (1,1,1) svps Fowowowow
18. (1,1,1)  PBNS e ww
19. (1,1,1) SREC e
20. (1,1,1) sHoP el

Note: States 1 through 4 are only for the first transition.
A "*" indicates that the transition probabiligy between
the states are positive; otherwise the probability is zero.

PBNS includes personal business and school, SREC includes
social-recreation and eating meals, SHOP represents shop-
ping, and SVPS represents serving passengers.

activity type and past history of the chain (i.e.,
vector D). Accordingly, the past history, as
expressed by D,, 1is automatically specified when
the state of the process is designated, which im-
plies that

Pr(Xi+ 1 =X =i;Dyp, Doa, D3n) = PrXpuy =jlXa =) =Py an

where X', is the redefined nth state. Namely, the
process (x'l, x'z, e « o) is a Markov chain pro-
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cess. This expansion makes the analysis quite
straightforward, and statistical evaluation of the

model can be done as in a standard Markov chain
analysis.

Estimation Result

Sequential models of activity linkage are estimated
by using the 27,901 trip chains in the TALUS sample
with the classification of activities into four
types, as in the preceding example. Five models
with different transition structures are examined:

1. Stationary, history-independent model;

2. Nonstationary, history-independent model;

3. History-dependent model with three elements
in D ;

4? History-dependent model with four elements in
Dpi and

S. History-dependent model, a hybrid of models 3
and 4.

Models 1 and 2 are studied here as references
against which the history-dependent models are com-
pared. Based on the results presented earlier,
model 2 assumes a stationary transition matrix after
the fourth transition. Model '3 is the one described
in the previous example. The history indicator Dp,
of model 4 is defined for the four activity types
without grouping shopping and social-recreation to-
gether, as in model 3. Model 5 uses the same D,
as model 4. However, no further difference is as-

_Table 5. Performance of alternative models of activity transition.

Transportation Research Record 944

sumed in model 5 as to the history dependence of

activity transitions after serving passengers, per-
sonal business, and either one of social-recreation
or shopping are all pursued in a chain.

Transition probabilities‘of each model are esti-
mated by the maximum likelihood method. The good-
ness of fit in terms of the log-likelihood value and
square sum of errors in predicting the frecquency of
each activity sequence is given in Table S. The
latter statistic excludes chains with five or more
sojourns (about 4 percent of the entire sample) for
computational reasons. The improving goodness of
fit of the model found in the table as the number of
parameters increases is not surprising. More im-
portant, however, is that systematic prediction er-
rors diminish as more thorough treatment of history
dependence is made. The agreement between the ob-
served and predicted frequencies of respective ac-
tivity sequences is shown in Pigure 3 for models 1
and 5.

Model 1 (Figure 3a), a standard Markov chain
model, significantly underestimates the frequencies
of single-sojourn chains, overestimates most of two-
sojourn sequences, and makes extremely large errors
in evaluating the frequencies of chains that involve
recurrence of activities, especially those involving
the following sequence: serve passengers to other
activities to serve passengers. The nonstationary
model (model 2) almost perfectly replicates the dis-
tribution of chain lengths. Nevertheless, chains
starting with shopping are mostly underestimated,
and sequences that involve serve-passenger trips are
estimated with large errors.

~2(AL)

No. of ——

No. Model Parameters L Chi-Square df SSE
1 Stationary, history independent 20 -58,403 - - 723,648
2 . Nonstationary, history independent 100 -57,668 1471.2 80 117,969
3 History dependent, three-element

Dy 100 -56,642 3,522.0 80 34,330
4 History dependent, four-element

Dq 180 -56,336 4,1334 160 8,689
s History dependent, hybrid 150 -56,362 4,083.0 130 8,737

Note: L = log likelihood; -2(AL) = -2[(L of model 1) - (L of the model)] ; and SSE = square sum of errors.

Figure 3. Observed and expected frequencies of trip-purpose sequences.
a. STATIONARY, HISTORY INDEPENDENT MODEL (MODEL 1)
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The history-dependent models (models 3-5) largely
improve these defects. Model 3, however, still
shows significant errors for chains that involve
social-recreation or shopping trips, which suggests
that grouping these two activity types when repre-
senting the history of a chain is not adequate.
Examination of the log-likelihood value between this
model and models 4 and 5 also indicates this, The
performances of models 4 and 5 (Pigure 3b) are sat-
isfactory, and only few activity sequences are pre-
dicted with significant errors. Note that model S
performs almost as well as model 4, even though it
has 30 less parameters. The satisfactory agreement
between the observed and predicted frequencies im-
Plies that the patterns in activity sequencing and
activity set formation are well represented by the
model, and also that the model adequately captures
the history of a chain, A simple representation of
the history of a trip chain by means of a set of
binary varjiables makes possible a satisfactory rep-
lication of trip-chaining behavior.

CONCLUSIONS

The statistical analysis of this study found that
there is a consistent hierarchical order in sequenc-
ing activities where less-flexible activities tend
to be pursued first. It was also found that the set
of activities pursued in a trip chain tends to be
homogeneous. Thus activity transitions are more
organized and systematic than what a Markovian pro-
cess would depict. The homogeneity of activity
types, patterns in sequencing activities, history
dependence, and nonstationarity in activity transi-
tions are all closely interrelated. Accordingly, it
was possible to develop a sequential, history-
dependent model of activity transition that, in
spite of its simplified representation of the his-
tory of a chian, well replicated the observation.
Although the focus of the model was on direct tran-
sitions of activities, the model was capable of rep-
resenting those characteristics found for the entire
chain (e.g., homogeneity and recurrence of activi-
ties and patterns in indirect ¢transitions). The
result strongly supports the sequential modeling
approach adopted in this study. The usefulness of
the model can be enhanced when the history-dependent
probabilities are related to exogeneous factors.
This is another step that must be taken before the
sequential model can be applied to practical
problems.

Although the focus of this study was on the basic
characteristics of trip chaining and its representa-
tion by sequential probabilities, the study results
have some practical implications. The strong regu-
larity implied by the homogeneity of trip chains
suggests that people's responses to changes in the
travel environment may be limited, as far as trip
chaining is concerned. People organize their trip
chains while considering the types of activities,
but they may not necessarily minimize travel dis-
tance or cost. The importance of uncertainty in
activity scheduling suggested by the observed se-
quencing pattern also implies this. Thus travel
patterng may be less sensitive to travel cost than
what was expected. The rather surprising result
that the post-energy crisis Baltimore sample has a
mean chain length that is 10 percent shorter than
that of the 1965 Detroit sample also supports this
claim. This conjecture, however, is subject to fur-
ther investigation. Additional subjects that can be
suggested for future investigation include examina-
tion of hierarchical relationships in time alloca-
tions and spatial choices for activities in a trip
chain, extension of the analysis to incorporate tem-
poral and spatial aspects and verifying the present
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findings in that context, and investigation of the
characteristics of all trip chains made by an indi-
vidual within the study period and of the interde-
pendence among these chains.
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Identifying Time and History Dependencies of

Activity Choice

RYUICHI KiTAMURA AND MOHAMMAD KERMANSHAH

In this study a sequential model of activity patterns is formulated that con-
sists of time- and history-dependent modeis of activity choi This analytical
framework is used to identify time-of-day and history-dependent characteris-
tics of activity choice by statistically testing a series of hypotheses. The re-
sults indicate that the simplest expression of the history of activity engage-
ments is ln ldoqum descriptor, and also that non-home-based activity choice
is di dependent of the activities in the previous chains, given the
activities pursued in the current trip chain. interdependencies of activity
types across trip chains are also characterized by estimated model coefficients.
The results of the study indicate that the decisions associated with the entire
activity pattern can be decomposed into interrelated activity choi h
conditional dependencies can be statistically evaluated.

The way individuals schedule their daily activities
and organize their itineraries has immediate impacts
on the spatial and temporal distribution of trips,
or needs for trips, in an urban area. Therefore,
representing how the choice and scheduling of activ-
ities are done and how travel patterns are formed
are critical elements in travel-demand forecasting
as well as in basic travel-behavior research (1-3).
Thise is especially so when attempting to forecast
the impacts of novel changes in the travel environ-
ment or when seeking a transportation policy that
will accomplish given objectives most effectively.
The mechanism by which trips as induced demand
are generated is complex. Even when only scheduling
is considered (i.e., when and in what order a given
set of locations is visited and how these visits are
arranged into trip chains), there are numerous
"scheduling possibilities. Choice of activities and
their locations further complicates the problem.
Constraints that govern the behavior are not limited
to monetary and time budgets as in the classical
utility maximization framework in economics, but

include spatial and temporal fixity constraints as-
sociated with the respective activities (4), inter-
personal linkage constraints (5), and other types of
constraints that portray the travel environment of
each individual (6). The interrelated activity
choices underlying an activity-travel pattern are
dependent on the time of day, as many previous stud-
ies on time use have indicated (7,8). Previous em-
pirical evidence (9, and paper by Kitamura elsewhere
in this Record) at the same time indicates that the
choices are dependent on history, i.e., the set of
activities already pursued on that day.

These aspects of daily activity and travel be-
havior are all of particular importance for the un-
derstanding and forecasting of the behavior. In
particular, the time-of-day and history dependencies
of activity choice may be viewed as the most funda-
mental elements, whose adequate representation will
lead to representation of other important aspects of
the behavior as well. For example, the preferences
in forming a set of activities in a trip chain can
be described by sequential probabilities of activity
choice when their history dependencies are appropri-
ately incorporated (see paper by Kitamura elsevwhere
in this Record). By specifying the structure of the
time~of-day and history dependencies and .estimating
the model statistically, an important objective can
be accomplished: characterization of activity and
travel patterns along the time dimension. When the
model includes exogenous factors that are related to
changes in the travel environment or in the popula-
tion characteristics, then the model serves as a
tool for forecasting possible changes in activity
and travel behavior.
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An extension of a previous sequential analysis of
activity linkages is described in this study (see
paper by Kitamura elsewhere in this Record), and an
attempt is made to identify the structure of time
and history dependencies of activity choice. The
objective is to demonstrate that the conditional
dependency of activity choice can be properly repre-
sented by a simple model structure that can be sta-
tistically estimated and conveniently applied to
practical problems. The dependency is examined by
testing a set of hypotheses and by inferring its
characteristics. Alternative model specifications
are examined, and home-based and non-home-based
activity-choice models are estimated.

The results of hypothesis testing and model esti-
mation indicate that a simple indicator of the his-
tory of the behavior--a set of binary variables each
representing whether an activity of a given type has
been pursued--best explains the activity choice.
Home-~based choice that determines the first activity
in a trip chain is shown to be dependent on the past
activity engagement, but non-home-based choice is
conditionally independent of the activities in the
previous chains, given the activities pursued in the
present chain. Strong time-of-day dependencies in
activity choice, whose temporal variations are well
captured by the model, are also shown in the satudy.
The results of the study consistently indicate that
the time and history dependencies of the behavior
can be represented by a simple model structure, and
suggest that a set of sequential activity-choice
models can be developed to represent and forecast
the characteristics of daily activity and travel
behavior.

BACKGROUND

Because individuals develop their daily itineraries

while considering the set of activities to be pur-

sued during a certain period, activity choices (or
travel choices) cannot be analyzed individually, but
the interdependencies among them must be adequately
accounted for. Such interdependencies have been
noted across different time periods of a day (9), or
among activity choices in a trip chain (see paper by
Kitamura elsewhere in this Record). Another aspect
of activity and travel behavior is the existence of
various types of constraints that govern behavior
(5,6,10). Many constraints are unobservable if typ-
ical survey data are the only information sources.
All these characteristics of tripmaking make causal
representation of the behavior quite complex.

A possible representation of activity- and
travel-choice behavior uses the concept of optimiza-
tion together with the assumption that the observed
activity-travel pattern is the one preferred the
most by the individual (ll). Let be the type
of nth activity, t, be its starting time, dn be
its duration, and 1, be the location where the
activity is pursued. PFor simplicity, only these
four aspects are considered here. By letting a =
(8gresarlyyy)s and so forth, the activity- and

travel-scheduling behavior can be formulated as
follows:
Maximize U =U(a,t,d,®) (03]

Subject to  tney = (tn +dg) =8(%, %41, ta + dn)
0Qty,.. ., they < T; 2y =8N,y =home
0<d,

23, 6C,%€e¢eE n=1,...,N
g (3,t,d,9=0 i=1,...,G

where

8(i,j,8) = travel time between locations i and 3}
when the trip begins at time s,
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N = total number of sojourns (including in-
termediate sojourns at home),

C = get of activity types, and

E = gset of opportunity locations.

The first constraint simply represents the temporal
continuity condition, the second represents the con-
dition where the individual's path must originate
and terminate at home within time T, and the third
condition is the nonnegativity of activity dura-
tions. Additional constraints are represented in a
general form by function g in this formulation.
Punction U, which may be called a utility function,
includes not only the type and duration of each ac-
tivity but also its starting time., This is because
the regularity and rhythms in time use patterns
strongly suggest that the utility of an activity of
a given type is a function of the time when it is
pursued.

Not quite obvious from this formulation is the
discrete nature of the optimization problem, i.e.,
resources are not always allocated to all activities
and some activities simply may not be pursued at all
during a given period. Accordingly, the classical
constrained optimization approach (12,13) is not
applicable to this problem if this formulation is to
be applied to disaggregate data where behavior dur-
ing a relatively short period (e.qg., 1 day) is re-
corded. The problem is also much more complex than
that of a traveling saleaman. Not only the order of
visits, but also the number of visits, their loca-
tions, the way these visits are organized into trip
chains, and their timing must be endogenously deter-
iined. When this complexity as a mathematical pro-
gramming problem is combined with the additional
constraints, the task involved in representing the
behavior as an optimization problem and obtaining
its solution appears to be prohibitive. Perhaps the
number of possible activity-travel patterns recog-
nized by the individual is relatively small (2) be-
cause of the constraints sand limited information the
individual has, but this is not the case for the
observer who attempts to analyze and predict the be-~
havior without comparable knowledge on microscopic
factors that influence each individual.

{The approach taken by Adler and Ben-Akiva (14)
avoids these difficulties and at the same time re-
tains the simultaneous structure of analysis by
modeling the behavior as a discrete choice among al-
ternative activity-travel patterns, The approach is
quite effective in analyzing characteristics of
activity-travel choice. Determining the probability
with which a given pattern will be chosen, however,
requires that all feasible patterns be enumerated.]

An alternative approach to the analysis of activ-
ity and travel patterns is a sequential one, which
is based on the following identity:

N
Pr(a,t,d,2) = no Prlan+i tas1s dner, Tnetl2n)s
n=

ta)> dnys Un)] @

where a(n) is a vector of the first (n + 1) elements
of a, i.e., = (ag,a ,...,an); and t v d&

and are sim&laxly de%ined. This approach ere
choicés are analyzed one by one in a sequence, repre-
sents the preferences in choosing patterns given
that, if U(a,t,d,1) < U(a*,t',d4',2'), then Pr(a,t,qd,
L) < Pr(a',t’ ,d4',2'), The approach has an advantage
in that it reduces the size of the problem to a man-
ageable one, and the preferences to the entire pat-
tern can be correctly represented if the conditional
dependencies of the sequential probabilities are
properly incorporated. A recent study indicated
that the sequence of activities in a trip chain can
be adequately represented by a simple sequential



24

model, whereas failure to capture the conditional
dependency leads to erroneous results (see paper by
Kitamura elsewhere in this Record).

An interesting example of a sequential approach
can be found in Horowitz (15), where the concept of
time-dependent. utility is used. A similar concept
is used in the present study, but emphasis is on the
identification of time and history dependencies of
the behavior. The works by Damm (9), Damm and Ler-
man (16), and Jacobson (17) are noted here because
certain facets of the complex behavior are carefully
selected in these studies so that the size of the
problem can be reduced and the analysis can be car-
ried out meaningfully and effectively by using
econometric methods.

There are two tasks involved in developing a
sequential model of activity and travel for fore-
casting purposes. The first is the identification
of the structure of the conditional dependency,
which is a prerequisite for proper functioning of
the model. Because representing the history as in
Equation 2 will not serve practical purposes because
of its excessive information requirements, some sim-
ple yet accurate forms must be sought. The second
task is to relate the sequential probabilities to
exogenous factors, especially those that closely
represent planning options and policies.

The time factor is of critical importance in de-
veloping such a probabilistic model of activity
choice because of the strong correlation between
time of day and activity, as noted earlier. 1Incor-
porating the time variable is also important because
it will make probabilistic representation of the
constraints that affect the behavior more meaningful
and accurate. In particular, the effect of time
constraints cannot be appropriately represented
without the time variable ([e.g., Hagerstrand's prism
is approximated by time-dependent probabilities of
spatial choice (18)]. A previous study (19) indi-
cated that married women who are not employed and
who are in the childbearing stage tend to return
home early in the evening; this can be viewed as
being a result of the constraints imposed by family
responsibilities. The sequential probabilities can
depict such constraints when they are specified as
time-of-day dependent and when they include appro-
priate variables that represent individuals' at-
tributes.

APPROACH

In this study the activity choice along the time
dimension is analyzed, and the main focus of the
study is on the identification of the time- and
history~dependent nature of the choice., The spatial
aspect is suppressed in this study. The model spec-
ification and estimation effort is based on the fol-
lowing formulation of the sequential probability:

dPrfan+ystneg Ia(n) rt(n)] .
= Pl’(%n“m-l;a(n). t(n)] de[tnﬂla(n)yt(n)]
=Prlagsyltneys a(n)vt(n)] dPr(t,.

—tn'amtma(n-l)»t(n-l)] 3)
where Ay = (ao, A1s o o s an) as before,
and - is called the sojourn duration in

the ntltlstate that, in this formulation, includes
the duration of the nth activity and trip time to
its location (the activity duration and trip time
are treated separately in the empirical analysis
presented in later sections). The sequential prob-
ability is expressed as a product of activity-choice
probability given the time of the choice and the
probability density of the duration of the nth so-
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journ. The focdus of this study 18 on the first
element: time- and history-dependent activity-
choice probability.

The activity-choice probability is formulated as
a function of time, history, and other factors. by
using the multinomial logit structure, i.e.,

Prlagsy =jltas s =tiagn), teny, v1
= exp{V; [t, &n)» t(n)» )’]}/Ek exp{ Vi [t, 3n), t(n), Y1} @)

where y is a vector of socioceconomic attributes of
the individual and t is the time of day. The condi-
tional dependence in Equation 3 is now represented
in the model by its explanatory variables that rep-
resent the history of the behavior and the time of
day. It is therefore assumed that the random error
terms of the model possess all the desirable proper-
ties, including their statistical independence
across the choices in the sequence. Although it is
possible to use more elaborate formulations of the
random elements (20,21), which may lead to an in-
teresting examination of history dependence, this
study does not extend its scope to analysis of the
dependence structure of the unobservables. {Note
that the validity of the error term specification
depends on model specification, and it is an empiri-
cal issue in that sense (22).]

The time dependency of activity choice is repre-
sented by introducing time variables into the logit
function. PFor example, suppose that the effect of
time of day on relative activity-choice odds can be
expressed by gamma functions, i.e.,

exp[Vj (t, .. )]/exp[Vi(t, .. )] = [Kt* exp(=bt)]
+ [t€ exp(=dt)] abcdK>0 (5a)

(Note that neither the numerator nor the denominator
is necessarily a distribution function.) Then,

Vi(t,.. )= Vit,.. )= K + @@ - c)fnt ~ (b —d)t (5b)

Although it is not possible to determine these pa-
rameter values uniquely, the time effects can be
represented simply by introducing t and an(t) into
function V. The model specification effort in the
following sections also considers polynomial and
exponential functions of t.

By using this framework, various hypotheses re-
garding the nature of the conditional dependencies
can be examined statistically and the model can be
specified subsequently. This study rejects without
exarination the null hypothesis that activity choice
is independent of time of day. The critical hypoth-
eses that need to be examined statistically include
the following:

1. Activity choice is independent of the set of
activities pursued in the past;

2. Activity choice is conditionally independent
of the set of activities pursued in previous trip
chains, given the activities pursued in the current
chain;

3. Given whether activities of respective types
have been pursued or not, activity choice is condi-
tionally independent of the number of times the-ac-
tivities were pursued;

4. Given whether activities of respective types
have been pursued or not, activity choice is condi-
tionally independent of the amount of time spent in

the past for each type of activity;

5. Activity choice is independent of the number
of trip chains made in the past; and

6. Activity choice does not depend on the time

spent since the individual left home.
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An appropriate representation of the history of an
activity pattern is sought through the examination
of these hypotheses, and the nature of history de-
pendency is inferred from the results.

DATA SET AND VARIABLES

In this study the statistical analysis of a sample
from the 1977 Baltimore travel demand data set is
used. Analysis of nonwork activities is the main
subject of this study, and only those individuals
who did not make work trips on the survey day are
analyzed. The records in the data set are screened,
and individuals who were younger than 18 years old,
who did not hold a driver's 1license, and whose
households did not have a car available are elimi-
nated. A detailed description of the screening cri-
terta used can be found in Kitamura (see paper else-
where in this Regord)., The screened sample used in
this study includes 927 activity choices in 356 trip
chains made by 217 individuals.

Activities are defined in terms of the trip-
purpose categories in the data set, which are
grouped into four types: personal business, social-
recreation, shopping, and serve passengers. Home-
based activity-choice models are estimated with
these activity types as alternatives. Two addi-
tional categories enter models of non~home-~based
choice: temporary return to home and permanent re-
turn to home for the day [similar binary classifica-
tion of the home atate can be found in Lerman
(23)]. Accordingly, the non-home-based models are
estimated with six alternatives.

As variables representing {ndividuals' attri-
butes, the age, sex, education, employment status,
household income, household size, number of chil-
dren, family life cycle, household role, and car
ownership are examined in this study. The house-
hold-role variable is defined in terms of the sex
and employment status of the individual. The life-
cycle~stage variable is defined in terms of the
marital status of the adult members, their ages, and
the age of the youngest child. The definitions of
those variables that appear in the models presented
in this paper are given in Table 1.

HOME-BASED ACTIVITY-CHOICE MODEL

Becaugse the examination of alternative hypotheses
regarding the structure of time and history depen-
dencies is an important concern of the study, a
series of models, each being developed to test a
specific hypothesis, is presented in this section.
The first in the series involves only socioeconomic
attributes of the individual - as its explanatory
variables (model 1 of Table 2)., The model as a
whole 1is significant with o = 0,005, but the
amount of variation explained by the model is rela-
tively small (p? = 0.0256). Nevertheless, mean-
ingful relationships are found from the estimation
result. The coefficient of the variable that repre-
sents the presence in the household of children aged
between 5 and 12 (SCHLAG) indicates a positive con-
tribution of this variable to the engagement of
serve-passenger trips. The role variable (ROLE),
which has a value of 1 when the individual is female
and not employed, indicates that these individuals

carry out shopping and serve-passenger trips more

often than do the others., The coefficient of the
number of children (CHLDRN) indicates the negative
effect that the presence of children has on the en-
gagement in social-recreation by the adult members.
The fit of the model improves when time variables
are introduced into the model with six additional
coefficients (model 2). The 1log-likelihood ratio
gtatistic has a value of y? = 46.14, with degrees
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Table 1. Definition of explanatory variables in activity-choice models.

Variable and Abbreviation Definition

School-aged children (SCHLAG) Binary variable: 1 if the age
of the youngest child in the
household is between 5 and
12, 0 otherwise

Binary variable: 1 if the in-
dividual is a female and not
employed, O otherwise

No. of household members
who are 17 years old or
younger and not married

Median value of the house-
hold’s annual gross income
category ($)

No. of cars avzilable to the
household

Time of days in hours; the
study period begins at 4:00
a.m. when t = 4.0, and ends
at 4:00 a.m. the next day
whent = 28.0

Household role (ROLE)

No. of children (CHLDRN)

Household income (INCOME)

No. of cars (CARS)

Time of day (t)

Activity engagement in previous chains in
Personal business (PBNSO1H)
Social-recreation (SRECO1H)

Shopping (SHOPO1 H)
Serve passengers (SVPSO1 H)

Activity engagement in the current chain in
Personal business (PBNS0I1C)
Social-recreation (SREC01C)

Shopping (SHOPQ1C)
Serve passengers (SVPS01C)

Out-of -home time (OHTIME)

Binary variable: 1 if activi-
ties of the indicated type
were pursued in the trip
chains previously made

Binary variable: 1 if activi-
ties of the indicated type
have been pursued in the
current trip chain

Cumulative amount of time
spent so far outside home
for both trips and activities

Cumulative number of home-
based trip chaing made so
far

No. of chains (CHAINS)

Current activity
Personal business (PBNS)
Socialrecreation (SREC)
Shopping (SHOP)
Serve passengers (SVPS)

Binary variable: 1 if the
current activity is of the
indicated type

of freedom (df) = 6 for the six new coefficients.
Clearly the time of day has a substantial influence
on activity engagement. The nature of the time de-
pendency of activity choice is presented later in
this section by using a history-dependent model.

Examination of the history dependence of home-
based choice uses the following variables to repre-
sent the past history of activities: 0-1 binary
variables, each representing whether an activity of
a given type has been pursued in the past; the num-
ber of sojourns made for each activity type; and the
cumulative amount of time spent for each activity
type. These variables are used because of their
conciseness - as summary variables of the history.
The possible effects on activity choice of the exact
sequence of the past activities, their respective
durations, and their occurrence times are considered
to be negligible.

Each set of history variables is tested, and on
the basis of its significance the nature of history
dependence is inferred. The results indicate that
the simplest representation of the history--the set
of binary indicators of activity engagement--
explains the choice better than any other sets ex-
amined here (model 3). Although the other sets of
variables are all significant, they do not explain
as large a portion of variations as does the set of
binary variables. Whether the individual has pur-
sued an activity of a given type or not does affect
the home-based activity choice, but how many times
and how long the activities were engaged in do not
have as decisive an effect. This rather unexpected
result is encouraging because of its implication
that the history of behavior can be expressed in
quite a simple manner in representing the condi-
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Table 2. Home-based activity-choics models.
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Activity Type

Personal Business Social-Recreation Shopping Serve Passengers
Variable Coefficient  t-Statistic Coefficient  t-Statistic Coefficient  t-Statistic Coefficient  t-Statistic
Model 1*
Constant -0.5797 -0.86 ~0.0485 -0.08 0.0698 0.11
SCHLAG 0.8583 2.76
ROLE 0.4968 1.99 0.5702 1.92
CHLDRN -0.1895 -2.02
2n (INCOME) 0.2877 1.23 0.5893 2.37 0.2801 1.23
Model 2°
Constant -3.3830 -5.55 -10.984 ~2.01 5.0561 1.01
SCHLAG 0.8585 2.76
ROLE 0.4787 1.89 0.5743 1.93
CHLDRN -0.2469 -2.52
£n (INCOME) 0.3299 1.37 0.5063 2.02 0.2136 0.92
t -0.4240 -1.57 -0.2050 -0.76 -0.7928 -2.85
2n (t) 4.1127 1.21 0.4227 1.18 10.498 2.90
Model 3¢
Constant -3.7499 -0.65 -11.876 -2.10 4.8241 5.25
SCHLAG 0.6289 1.89
ROLE 0.3895 1.44 0.6413 1.96
CHLDRN -0.2086 -2.07
2n (INCOME) 0.3542 1.42 0.5169 1.97 0.2093 0.87
t -0.3522 -1.22 -0.1310 -0.46 -0.7315 -2.56
2 (t) 3.7260 1.04 4.0236 1.08 10.634 2.89
PBNSOIH -0.8605 -1.98 -1.6576 -3.34 -1.0187 -1.90
SRECO1H 0.6166 0.91 0.8793 1.25 1.5780 2.20
SHOPOIH -0.2300 -0.47 -0.5662 -1.09 -0.2014 ~0.36
SVPSO1H 0.3252 0.52 0.9638 1.67 1.8125 3.14

Note: Sample = 356 home-based activity choices. L(B) = log-likelihood with the model coefficients, L{(C) = logdikelihood without explsnatory varisbles
(constant terms atone), L(0) = log-ikelihood without any coefficients, and 02 = 1 — L(8)/L(C). The chi-square vaiues presented are defined as -2[ L(C) -

L) 1.
81(0) = 493.52, L(C) = -490.27, L(8) = ~477.70, x2 = 25.14 (df = 7), and p2 = 0.0256.

L(P) = -454.63, x2 = 71.29 (df = 13), p2 = 0.0727, and X2 for the set of time variadbles = 46.14 (df = 6).
CL(8) = 434.36, x2 = 111.81 (df = 25), o2 = 0.114, and x2 for the set of activity indicators = 40,54 (df = 12).

tional dependency of activity choice. Another his-
tory descriptor-~the number of chains completed in
the past--was found to be insignificant.

These models are developed primarily to examine
alternative hypotheses; thus the selections of ex-
planatory variables are not necessarily finalized as
they are presented in Table 2. A similar model is
estimated after eliminating some of the insignifi-
cant variables of model 3, and its coefficients for
the binary variables are given in Table 3 to indi-
cate how the past engagement in an activity of one
type affects the choice of another activity type.
In the table the estimated set of coefficients is
adjusted by adding a constant to the coefficients
for each activity type. The value of the constant
is arbitrary, and that value that makes the row sum
of the adjusted coefficients zero is used in devel~
oping the table.

The result indicates that engagement in personal

Table 3. Effects of activity engagements in previous chains on home-based
activity choics.

First Activity of Current Chain

Activity Engagement Personal  Social- Serve

in Previous Chains® Business  Recreation Shopping Passengers
Personal business 0.8278 0.0602 -0.7564  -0.1317
Social-recreation 04109 -0.4109 0.0612 0.7606
Shopping 0.1024 0.1024 -0.3072 0.1024
Serve passengers -0.6059 -0.6059 0.1782 1.0336

i engaged, 0 otherwise,

business in the past has a positive influence on the
choice of the same activity type later. The same
tendency can be found for serving passengers;
choices of personal business or serve-passenger
trips are positively correlated across trip chains.
The negative diagonal value for shopping indicates
that people tend not to pursue shopping in two or
more trip chains; it suggests that people have been
consolidating their shopping trips into fewer trip
chains. A negative coefficient of social-recreation
on personal business indicates that there are pat-
terns in sequencing activities across trip chains,
and personal business tends not to be pursued if the.
previous chains included social-recreation trips.
The pattern found here is quite similar to that
found earlier as to the sequencing of activities
within a trip chain (see paper by Kitamura elsewhere
in this Record).

The time-dependent nature of home-based activity
choice can be seen in Pigure .1, which presents
against the time axis both the observed relative
frequencies of chosen activity types and the choice
probabilities depicted by the model. The observed
shopping frequency coincides naturally with the typ-
ical stores' hours, and it peaks in the early after-
noon. Personal business tends to be pursued in the
morning, whereas the relative frequency of social-
recreation increases toward the end of the day. The
serve-passenger activity has a rather irregular pat-
tern with peaks in the early morning (chauffeuring
children or workers, perhaps), early afternoon, and
late evening.

The data in the figure indicate that the observed
tendencies are well replicated by the estimated
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Figure 1. Observed and predicted probabilitiss of home-besed
sctivity choice.
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OBSERVED RELATIVE FREQUENCY
OF ACTIVITY CHOICE
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4 DEPICTED BY THE MODEL*
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*Independent variable values used are: INCOME = 20000, CHLDRN = 4, ROLE = O,
SCHLAG = 1, PBNSOIH = 0, SRECOTH = O, SHOPOIK = 0, and SYPSOIH = 0.

activity-choice model. The activity-choice proba-
bilities are evaluated by assuming the independent
variable values, as shown in the figure; therefore,
they are not readily comparable with the observed
relative frequencies that represent the entire sam-
ple. Nevertheless, satisfactory agreement is shown
in the figure between the observation and the pre-
diction by the model. The irregularities in the
probability of serve-passenger trips are not well
represented by the model, although the overall ten-
dency is captured. If it is shown that the observed
irregularities are not caused by the small sample
size, then the model specification must be altered
to reflect them.

NON~-HOME-BASED ACTIVITY CHOICE

Non-home-bagsed activity choice is studied in a man-
ner similar to home-based activity choice by examin-
ing hypotheses of history and time dependencies of
the choice. AAditional hypotheses that are included
here are concerned with the relative magnitudes of
the dependencies on the activities in the previous
trip chains and on those in the current chain. Also
of interest are the effects of elapsed time since
the beginning of the chain and the total out-of-home
time on the decision to return home. The variables
used to represent the history of the behavior in-
clude 0-1 activity engagement indicators defined for
the current chain and for the chains previously
made, total activity time by activity type in the
current chain and in the previous chains, number of
sojourns made by activity type in the current chain
and in the previous chains, number of chains made in
the past, elapsed time since the individual left
home, and the cumulative ocut-of-home time spent.

The models tested and their goodness of fit are
given in Table 4 without presenting the estimated
coefficients of the respective models. The conclu~
sions of this hypothesis testing are summarized as
follows:

l. Given the history of the current chain, ac-
tivity choice is condittionally independent of the
activity engagement in the previous chains;

2. The number of sojourns made and the time
spent for each activity type in the current chain
are correlated with the observed activity choice,
but the 0-1 activity engagement indicators best ex-
plain the choice; .

3. The elapsed time since the beginning of the
chain is not a significant factor influencing the
decision to return home;

4. The non-home-based choice is most closely
correlated with the time of day, whereas activity
history and sociceconomic attributes of the indivia-
ual have less effects on choice; and

S. The choice of the next activity is affected
by the type of current activity.

Perhaps the most significant finding is that non-
home-based activity choice is conditionally indepen-
dent of the history of activity engagement in the
previous chains. (No sets of history variables for
the previous chains were statistically significant
when they were included in the model together with a
set of history variables for the current chain.)
This may appear to indicate that activity choice re-
peats itself and that all chains made by an indivia-
ual are probabilistic replicas of each other. How-
ever, this is not the case because the home-based
choice that determines the first activity of a chain
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Table 4. Alternative specifications of non-home-based activity-choics models.
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History Indicators

Time of
Model No.  Indicator Day Socioeconomic  Set 1 Set 2 L X* (df = 4)
" X X X -813.585 b
2 X X X X -810.396 =<
3 X X X X No. of sojourns, past -807.659 5474
4 X X X X Activity time, past -806.258 8.276
b X X X X 0-1 activity, past -808.649 3.494
6 X X X X No. of sojourns, cumulative -803.366 14.060
7 X X X X Activity time, cumulative -807.694 5.404
8 X X X X No. of sojourns, present -800.499 19.794
9 X X X X Activity time, present -805.467 9.858
10 X X X X 0-] activity, present -797.013 26.766
1 X X X 0-1 activity, present -842.981 -4
12* X X X 0-1 activity, present -808.820 -
Note: The origin indicator includes thres binary variables: PBNS, SREC, and SVPS. Time of day is rep d by thees independeont vari-
ables: t up(l). and exp(~t). The sst of sociceconomics includes four variables: ber of 0-1 bimary for p of school.
aged and ber of cars. The history indicators include two -u of bk ists of v tofh: time,

olapsod time, lnd number of chains made p

riously ; and set 2 |

hades the &

cluded in the model.

:Tl\on models are tested against model 10; the other models are tested against model 2.
Effect of history, x2 = 33.14, df = 7.

SReference model.
Effect of time of day, x3 = 91.94,df = §.

®Effect of direct linkages, x3 = 23.61, df = 10.

is dependent of the past history, as discussed in
the previous section. Thus the history dependence
of the non-home~based choice is indirectly repre-
sented through the history dependence of the home-
based choice.

The strong time dependency of non-home-based
choice must be noted. The contribution of the five
time coefficients to the explanatory power of the
model is represented by a chi-square statistic of
91.9 (4f = 5), whereas that of the socioceconomic
variables is 16.1 (4f = 4), and that of the history
variables is 33.1 (4f = 7). Obviously, time of day
is the most critical determinant of the non-home-
based choice.

The final form of the non-home-based activity-
choice model that was selected on the basis of the
hypothu{- testing results is given in Table S. A
set of three binary variables (PBRS, SREC, BSHOP) is
used to represent the type of current activity,
i.e., the activity just completed at the time of the
transition to the chosen activity. Many of the nine
coefficients that apply to these variables are sig-
nificant and indicate the strength of direct link-

Table 5. Non-home-besed activity-cholcs model.

din thn table. X indicates that the variable s in-

ages between activity types. Compared with the
home-based choice models, fewer socioceconomic at-
tribute variables are used in the model. The number
of children and the presence of school-aged children
have the same effects on activity choice as in the
home-based choice model.

The coefficients of the car-ownership variable
are positive (but not significant) for the temporary
return to howe, and they are negative for the per~
manent return to home. The indication is that the
individuals from households with more cars tend to
make more trip chains, but the number of sojourns in
a chain may tend to be fewer. A similar tendency
was found in a previous study that analysed a 1965
Detroit data set (24). The negative ocefficients of
the cumulative out-of-home time and the number of
chains are quite noteworthy, although they are not
statistically significant at a = 0,05. The coef-
ficients apply to the permanent return to howme and
imply that the more time the individual has spent
outside home and the more chains he has made, the
less likely he is to terminate his out-of-home ac-
tivity pursuit of the day. The result suggests that

Activity Type
Personal Business Social-Recreation Shopping Serve Passengers Home Absorbing Home
Coefli- Coefll- Coeffi- Coeffi- Coeffi- COoeffl-
Varisble clent t-Statistic cient t-Statistic clent t-Statistic cient t-Statistic cient t-Statistic cient t-Statistic
Constant -0.5306 -1.01 -2.4408 -3.08 =2.7799 -3.19 -2.5840 -2.89 0.9237 1.17
PBNS 1.4074 1.59 1.7789 217 2.7420 2.87 1.1598 1.44 1.1598 1.44
SREC 1.1186 1.96 1.8218 2.28 0.5169 1.09 0.5169 1.09
SHOP 0.9220 1.29 03812 -1.10 03812 ~-i.10
t 0.1809 3.23 0.0884 1.74 0.1490 2.52
exp(-t/10) 13261 0.77 6.04
exp(t/10) 22116 166 0.0520
LDRN . -
LAG 0.4998 1.3t
CARS 0.0880 0.59 <0.2478 =232
PBNSOIC 1.2327 2,62 0.4349 1.16
SRECOIC 0.6284 1.51 0.21:: ;}g
SHOPOIC 1.47
SVPS01C 1.2009 2.83
OHTIME -0.0009 -1.30
CHAINS 0.1498 -1.26

Note: L(0) = =1023.090, L(C) = 905.723, L{g) = =794.778, x3 = 221.89 (4 = 26), and #? = 0.123. Semple is besed on §71

o N g ity ohok
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individuals pursue either very few or very many ac-
tivities on a given day. This may be a result of
activity scheduling over a longer time span, e.g., a
week,

In summary, the hypothesis testing and model
specification efforts presented in these two sec~
tions have indicated that the activity choice is
dependent on both the time of day and the history of
the activity., But the structure of the history de-
pendency is rather simple. The binary history indi-
cators that represent whether activities of respec-
tive types have been pursued in the past or not are
correlated with the activity choice more strongly
than is the number of sojourns or the time spent for
each activity type in the past. Furthermore, non-
home~based activity choice is found to be condition-
ally independent of the activity history in the pre-
vious chains, given the history in the current
chain. It appears that activity choice is dependent
more strongly on more recent activities. The sig-
nificance of the variables that represent the direct
linkages also indicates this.

DISCUSSION OF RESULTS

Identifying the dependencies across a series of ac-
tivity choices is critically important for the de-
velopment of a practical tool for analyzing and
forecasting daily activity and travel behavior. In
this study the structural form of a sequential model
of activity patterns was formulated, and conditional
probabilities of activity choice that used the mul-
tinomial logit structure were specified. This
framework was then used to examine the nature of
time and history dependencies in activity choice
with the assumption that time of day and the history
of the behavior are the most fundamental factors
that influence activity choice.

The examination of a series of hypotheses indi-
cated that the simplest representation of the his-
tory of the behavior--a set of binary activity en-
gagement indicators--is an adequate descriptor and
best explains activity choice. Non-home-based ac-
tivity choice is strongly affected by time of day
and also by current activity type, but socioeconomic
attributes of the individual and history variables
have less influence on non-home-based choice than on
home-based choice. Non-home~based activity choice
was also found to be conditionally independent of
the activity history in the previous chains, given
the activity history in the current chain, whereas
home-based activity choice had interdependencies in
the activity types across trip chains. The results
of the study are encouraging and indicate that a set
of simple models that can be conveniently estimated
is capable of representing individuvals' ‘daily ac-
tivity and travel behavior together with the inter-
dependencies across the choices involved. The study
has indicated that the decisions associated with the
entire activity pattern can be decomposed into in-
terrelated activity choices whose conditional de-
pendencies can be statistically evaluated.

The models presented in this study, however, are
not immediately applicable to practical problems be-
cause the types of exogenous variables included are
limited, This limitation is mainly caused by the
aspatial nature of the study. The models must be
extended to spatial activity-choice models with land
use and transportation network variables introduced
as explanatory variables, Note that the land use
variables in this context must be defined in terms
of both the spatial distribution of opportunities
and their availabilities along the time dimension.
When land use variables are defined in this manner,
then the activity choice can be related to the
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availabilities of various opportunities in different
time periods of a day.

Such effort of modeling the activity choice in
the spatial dimension will encounter a new problem:
representation of the attractiveness of an oppor-
tunity, or a group of opportunities such as a zone.
This is not a trivial task when the assumption of
the conventional approach that a travel choice can
be geparated from the rest and can be analyzed inde-
pendently is discarded, and when the interdependen-
cies across the choices are acknowledged. The
interdependencies imply that a choice of an oppor-
tunity is influenced by both the past and intended
future behavior. The conventional formulation of
the attractiveness of a zone that uses the attri-
butes of that zone alone is not adequate when the
individual has in mind additional activities to be
pursued elsewhere. In other words, when trip chain-
ing is considered, the traditional definition of the
attraction becomes inadequate, and the attractive-
ness of a zone as an origin from which the next ac-
tivity site will be reached must be evaluated and
incorporated into the attraction measure. This can
be done by using the concept of expected utility, in
which the attractiveness of a zone is a function of
not only its own attributes but also those of other
zones. Another aspect, which was not emphasized in
this study, is the structural relationship between
the activity duration and activity choice. It may
be the case that the relationship varies depending
on the time of day or on the past history of the be-
havior. Examination of the interdependence struc-
ture of the unobservables also remains as a subject
of future research.
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Equilibrium Traffic Assignment on an Aggregated Highway

Network for Sketch Planning

R.W. EASH, K.S. CHON, Y.J. LEE, AND D.E. BOYCE

An application of the squilibrium traffic assignment algorithm on a simplified
highway netwark, such as might be used for sketch planning, is described.
Analysis zones in the assignment are slso substantially larger than in most
conventional traffic assignments. The slgorithm for equilibrium traffic as-
signment is introduced, followed by a discussion of the problems with equi-
librium tratfic assignment in a sketch-planning application. Next, the network
coding procedures for the case study are examined. Results of the sketch-
planning assignment are then evaluated against a comparable regional assign-
ment of the same trips. Finally, there is a discussion of how this research fits
into the programs of a transportstion planning agency.

An application of equilibrium traffic assignment to
sketch planning is presented in this paper. Trips
are assigned onto an aggregated network with a
limited number of links, nodes, and zone centroids.
One arterial link in the sketch-planning network is
equivalent to a number of links in a conventionally
coded regional highway network, and one sketch-plan-
ning zone is substantially larger than a zone in the
regional assignment at the same location. The
traffic assignment algorithm used in the study
converges to approximately equal path travel times
for multiple paths between origin-destination zone
pairs. The algorithm is available to most transpor-
tation planning agencies.

A major portion of the paper is spent on a com- -
parison of this sketch-planning assignment with a
regional traffic assignment of a large trip table
onto a detailed coded highway network. This compari-
son is complicated by the different number of intra-
zonal trips in the two traffic assignments; there-
fore, a procedure was developed to determine the
significance of the additional intrazonal trips in
the sketch-planning assignment. Vehicle miles of
capacity and travel, vehicle hours, and average
speeds predicted by the two assignments are summa-
rized at the regional and zonal levels.

In the introductory sections of the paper the
equilibrium traffic assignment algorithm and the
network coding procedures for the sketch-planning
network are documented. A simple method for aggre-
gating links and summing regional link capacities
into sketch-planning link capacities is then de-
scribed. The question of the best network aggrega-
tion procedure is not considered. Moreover, a solu-
tion of this network aggregation problem was not an
objective of the research, but rather a data re-
quirement. The principal concern of this paper is
to demonstrate a satisfactory correspondence between
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traffic assignments on the sketch plan and regional
networks. Finally, a few implications of this re-
search for work programs of transportation planning
agencies are discussed.

METHODOLOGICAL APPROACH

The equilibrium concept was first formulated for
minimum time-path traffic assignment by Wardrop
(). Given that travel times on a network 1link
increase with traffic, a highway network is in
equilibrium if the travel times along all paths that
are used between each origin-destination are equal,
and no unused path has a lower time. In other words,
no driver has an incentive to change paths.

Several algorithms were developed in the early
19708 to determine the equilibrium traffic flows,
and one version of the algorithm is now available in
the Urban Transportation Planning System (UTPS)
computer programs for transportation planning sup-
ported by UMTA and PHWA (2). The formulation of the
algorithm discussed here follows the work of Nguyen
(3) and LeBlanc et al. (4) and is consistent with
the algorithm available in the UTPS program UROAD.

For a given trip table, the equilibrium assign-
ment of traffic may be found by solving a nonlinear
mathematical programming problem. The solution to
this problem is that set of traffic flows on network
links that minimizes a nonlinear convex mathematical
function (called an objective function), the value
of which depends on the traffic flows. These flows
must also satisfy a second set of linear equations
called constraints. In general terms, the con-
straints on the objective function ensure that all
solutions are feasible trip assignments; that {s,
all trips in the trip table are assigned to the
network, and negative link flows are prohibited.

The objective function is to minimize the sum of
the areas under each link's travel-time and traffic
volume congestion function from zero to the assigned
flow. To understand the interest in minimizing the
sum of these areas requires some mathematical analy-
sis beyond the scope of this paper. It is only
important to understand that the 1link flows that
correspond to the minimum value of this objective
function are those that satisfy the equilibrium
conditions.

Summary of Equilibrium Traffic Assignment Algorithm

The algorithm to solve the equilibrium traffic as-
signment problem is based on a nonlinear optimiza-
tion technique developed by Prank and Wolfe (5).
Theirs is an iterative approach that starts with an
initial feasible solution that satisfies the con-
straints, determines a feasible direction to move
that improves the objective function, and then cal-
culates how far to move in this direction. This
results in a new feasible solution, and the proce-
dure iterates until the objective function cannot be
improved.

A network composed of links with congestion func-
tions, a trip table for assignment, and a first
solution that is a feasible assignment of trips to
the network are given. The equilibrium conditions
are normally not met by this first trip assignment.
Application of the method by Prank and Wolfe then
involves the following steps.

1. Compute the travel time on each link by using
volumes in the current solution.

2. Trace minimum time-path trees from each
origin to all destinations by using the link times
computed in step 1.

3. Assign all trips for each origin to each
destination to the minimum paths computed in step 2
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(this produces an all-or-nothing trip assignment).

4. Linearly combine the current 1link volumes
(va) of the solution and the new all-or-nothing
link volumes (w,) of the 'auignnent to obtain a
new current solution (v,) that minimizes the
objective function:

25 s )

where

v; = (1l-\)vya + AWa = new current
solution volume on link a,
Sa(x) = link congestion function for link a, and
A = constant between 0 and 1.

5. If the solution has converged sufficiently,
stop; otherwise return to step 1.

The sequence of program steps is shown in the flow-
chart in Pigure 1.

Figure 1. Equilibrium sigorithm program steps.
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Equilibrium Traffic Assignment and Sketch Planning

The obvious problems in applying equilibrium traffic
assignment to sketch planning are how to simplify
the traffic assignment network and analysis zones
and the nature of the travel-time and traffic volume
congestion function for such a network. Previously,
researchers have constructed sketch-planning net-
works either by eliminating minor and lightly
traveled links (6) or by aggregating links in a
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detailed network into summary links (7). The sketch-
planning network for this project combines these two
approaches and includes all freeway and expressway
links with a grid network of aggregate 1links for
arterial streets.

A number of time and volume relationships have
been developed for traffic assignment when the coded
network resembles an actual highway network (8).
The most widely used is the Bureau of Public Roads
(BPR) formula available in the program UROAD:

T=T, [l +0.15 (v/c)*) )]
where

Ty = uncongested (zero traffic flow) travel
time on the link,
T = estimated link travel time, and
v/c = ratio of link traffic volume to link
capacity.

In a conventionally coded highway assignment
network, each link is a street or highway segment,
the attributes of which can be observed. To illus-
trate the detail coded into these networks, only
local streets and rural roads used principally for
land access are omitted in the regional network used
by the Chicago Area Transportation Study (CATS). It
is reasonable, therefore, to assert that the coded
network built from all these individual links re-
flects the supply characteristics of the regional
highway network.

If the regional network links to be combined in a
sketch-planning link can be identified and accept-
able regional network 1link congestion functions
exist, then two methods for developing aggregate
congestion functions appear plausible, First, the
regional time and volume relationships can be mathe-
matically combined to form an aggregate congestion
function. Alternatively, a general 1link congestion
function can be applied to a summary link, the at-
tributes of which are aggregate quantities. Both
methods were attempted in this project.

Purther problems in using equilibrium assignment
for sketch planning are caused by the larger analy-
sis zones and the corresponding smaller trip table.
For a conventional regional assignment, an analyst
might have a trip table with a thousand or more
zones. By comparison, no more than a few hundred
zones can be used in a sketch-planning application.

More trips occur within a zone when larger zones
are used in a traffic assignment. Because intrazonal
trips are not assigned to the highway network, this
means that estimated traffic is reduced. This under-
assignment of trips, in turn, affects congestion in
the highway network and the travel times predicted
by the 1link congestion functions. The effect of
this larger number of intrazonal ¢trips on the
sketch-planning assignment was evaluated in this
project.

The smaller trip table causes cell values to
increase, and more trips are loaded onto the network
at zone centroids. The links immediately adjacent
to centroids are then loaded with all the traffic
from the larger area covered by the sketch~planning
zone. These links tend to be overassigned, which
also affects the travel times predicted by the link
congestion functions. Fortunately, this problem is
mitigated by running more iterations of the equilib-
rium algorithm to load more paths in the sketch-
planning network.

Coding the Sketch-Planning Network

The first step in coding the sketch-planning network
was selection of the system of analysis zones. The
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zone system used in the project was developed by
combining the CATS regional zones into a suitable
number of areal units. FEach sketch-planning zone
usually includes four to nine regional zones. The
resulting zone system covers the eight-county north-
eastern 1Illinois (six counties) and northwestern
Indiana (two counties) region; it is shown in Pigure
2. There are 317 sketch-planning zones compared to
the 1,797 zones used in the CATS regional traffic
assignments.

Figure 2. Sketch-planning zone system.
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The basic areal unit in the region is the survey
township, a roughly 6-mile? land unit originally
surveyed in the mid-18008, All of the CATS zone
systems, including the sketch-planning zones, make
use of these survey townships. A majority of the
sketch-planning zones are quarter-townships (approx-
imately 9 miles?), with full townships as the next
largest group of zones. At the state line between
Indiana and 1Illinois, a few zones are slightly
larger than full townships, and several smaller
odd-sized zones are along the lakefront.

Zones are covered by a network of bidirectional
arterial and freeway links (9). Each zone's centroid
is located at .the center of a zone and is connected
by two to four arterial street links to produce a
fairly regular grid network over the region. Freeway
and expressway links are then coded on top of this
regular grid of arterial street links, with inter-
changes placed approximately at their actual loca-
tions. A portion of the sketch-planning network is
shown in Figure 3.

Links are coded as either arterials or freeways
(expressways) . Attributes coded for each sketch-
planning 1link include beginning and ending node
numbers, link length, type of area where 1link is
located, link free speed, and link capacity. The
type of area where the link is located is coded by
using municipal boundaries and zone populations.
Link free speed is then estimated for each 1link by
using the area and facility types. All coding was
done in the usual UTPS format, except that the traf-
fic count field was used for link capacity and UROAD
was altered to accept link capacities in this field.

Arterial Link Capacity and Congestion Functions

The original approach in the project to develop
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Figure 3. Example of sketch-planning network coding.
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sketch-planning arterial street network congestion
functions was to aggregate mathematically the BPR
formula congestion functions used in the regional
network, as described by Morlok (10). This approach
can straightforwardly be applied for two or more
congsecutive links, or for two parallel links between
the same two nodes. The intent was to construct the
sketch plan arterial network congestion functions
frome#the regional network congestion functions by
repeated aggregation using these two relationships.
This approach proved far too time consuming to be
completed manually, and it was believed that prepar-
ing suitable software to accomplish the work re-
quired substantial efforts beyond the scope of the
project.

Given the. geometry of the sketch-planning network
and the arrangement of zones (two regular grid pat-
terns offset so that each zone boundary is usually
crossed by only one summary arterial street 1link),

Figure 4. Estimation of sketch-planning arterial link capacities.
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an obvious method for estimating sketch-planning
arterial link capacities was to sum regional arte-
rial network capacities along the edge of a sketch-
pPlanning zone. This was accomplished by first over-
laying the sketch-planning zones on the regional
highway network to identify the regional arterial
street links crossing a zone boundary, and then
summing the appropriate regional 1link capacities.
This procedure is shown in Figure 4., Note that in
this example the capacity of the first regional link
is shared with the adjacent zone.

EVALUATION OF SKETCH-PLANNING ASSIGNMENT

Because there are separate zone systems in the re-
qgional traffic assignment and in the sketch-planning
traffic assignment, intrazonal trips in the two
assignments are different. This makes it difficult
to compare the two assignments because fewer trips
are assigned onto the sketch-planning network and
fewer vehicle miles of travel are produced. To
remove this bias from the comparison of the regional
sketch-planning assignments, an estimate of
these added intrazonal trips and wmissing vehicle
miles was needed.

A second assignment of trips onto the regional
highway network was performed with a trip table that
contained only the additional intrazonal trips in
the sketch-planning assignment, i.e., the trips that
became intrazonal when the regional zones were ag-
gregated. This partial trip table was created by
scanning the regional trip table and eliminating all
entries that would be intrazonal in the sketch-plan-
ning zone system. The resulting intrazonal trip
table was then assigned onto the same minimum time
paths used in the regional traffic assignment. The
proportion- of the intrazonal trip table assigned to
each minimum time path was the same as the propor~
tion of the full trip table assigned to that minimum
time path. Link volumes from the intrazonal trip
assignment were then subtracted from the original
link volumes of the regional assignment to produce a
revised vehicle mile estimate.

Another difference between the two assignments is
the number of iterations of the equilibrium algo-
rithm, In the regional traffic assignment, five
separate all-or-nothing assignments are completed,

S l5"

Zone Boundory
Regionol Sketch Plon
Link Copacity Link cit
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which correspond to four iterations of the equilib-
rium algorithm. For the sketch-planning assignment,
10 all-or-nothing assignments are prepared (9 itera-
tions of the equilibrium algorithm):  therefore, each
interchange has the opportunity to travel 5 added
paths. However, the sketch-planning assignment is
still less expensive in computer costs. This points
out the trade-off between detail in the assignment
network and the number of paths that can be practi-
cally loaded in the equilibrium algorithm. As the
network becomes more detailed, the cost of building
minimum time paths increases, thereby restricting
the number of iterations of the equilibrium algo-
rithm that can be completed.

The CATS regional and sketch-planning assignments
in the project are given in Table 1. Both assign-
ments are for a l-hr 1975 trip table in the morning
peak period. The sketch-planning network is less
than one~tenth the size of the regional network,
even allowing for the fact that the regional network
extends slightly beyond the eight-county area
covered by the sketch-planning network. The data in
Table 1 indicate that the number of trips in the two
assignments is slightly different because of round-
ing during the allocation of the regional trip table
into sketch-planning zones. There are an additional
137,000 intrazonal ¢trips in the sketch-planning
assignment,

Table 1. Summary of regional and sketch-planning network assignments.

Sketch-Planning Regional
Item Network Network®
Analysis zones 317 1,797
Network nodes 820 12,040
One-way links 2,422 37,065
Assigned interzonal trips 1,016,900 1,140,400
Unassigned intrazonal trips 192,800 55,800
Number of iterations (all-or-nothing assign- 10 s
ments)

Computing time® (CPU) 3 min, 45 sec 163 min,

: 7 sec
Memory requixed" (maximum bytes) 600K 540K

“The regional network covers a slightly larger area than the eight-county Chicago region.
t’ll!M 3033, Operating System VS2.

The last two items in Table 1 give the relative
computer costs of the two assignments. The sketch-
planning assignment was accomplished with the UTPS

" program UROAD (slightly modified to use link capac-
ities from the network link file and an efficient
line-search procedure), whereas the regional assign-
ment made use of the PLANPAC programs originally
prepared in the mid-1960s by the FHWA (1ll1l), with a
separate program for the equilibrium algorithm (12).
Different programs are required because of the size
of the regional network, which is too large for the
version of the UROAD program used in the project.
Identical functions (path building, assignment, line
search between all-or-nothing assignments, and cal-
culation of 1link times) are carried out in both
cases.

Computer memory requirements for the two assign-
ments are about equal because UROAD allocates memory
space according to the largest node number (more
than 6,000 in this case) instead of the number of
nodes in the network, and also because the indivia-
ual PLANPAC programs can be written more efficiently
for memory use because each program performs only a
single function. The computer time required to run
the sketch-planning assignment is almost insignifi-
cant compared with the regional assignment, even
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though twice as many iterations are performed for
the sketch~planning assignment.

Regional Travel Comparison

The results of the regional and sketch-planning
assignments within the eight counties are given in
Tables 2-5, Because the sketch-planning network
does not include any ramps between freeways or be-
tween freeways and arterials, ramps are not included
in the regional vehicle miles of capacity (Table
2). Even without ramps, slightly more capacity is
available in the regional network than in the
sketch-planning network., Total arterial capacity in
the two networks is surprisingly close, however,
considering the crude method used to estimate the
capacity of the sketch~planning arterial street
links.

Several reasons can be cited for the discrepancy
between the freeway capacities in the two networks.
A few short freeway segments, most only a mile or so
in length, are omitted from the sketch-planning
network. Another reason is that the sketch-planning
freeway 1links are coded somewhat abstractly as
straight links between freeway interchanges. This
tends to understate the actual length of these links.

The data in Table 3 give vehicle miles of travel
for the two networks. Vehicle miles on ramps are
included in the regional assignments, even though
their capacity was omitted. Although ramps are not
coded in the sketch~planning network, the vehicle
miles of travel that would occur on ramps are ap-
proximated by additional travel to reach the single
interchange node. Vehicle miles on ramps that con-
nect freeways are included in the freeway category,
and vehicle miles on ramps between freeways and
arterials are split evenly between both route types
in the regional assignment figures., Only vehicle
miles within the eight counties are tabulated.

The data in Table 3 also describe the impact of
the intrazonal trips in a comparison of the two
assignments., When the sketch-planning and regional
assignments are first compared, there is a differ-
ence of 4 percent in the division of vehicle miles
between freeways and arterials. Twenty-nine percent
of the unadjusted regional vehicle miles are as-
signed to freeways, whereas 31 percent of the
sketch-planning vehicle miles occur on freewvays.
When the regional assignment is adjusted for the
different number of intrazonal trips, part of this
difference 18 explained. The great majority of
trips in the intrazonal trip table is assigned onto
arterials because these trips are short and are not
likely to use a freeway.

The difference between the total vehicle miles in
the sketch-planning assignment and the adjusted
regional assignment is about 5 percent, and the
extra vehicle miles on sketch-planning network free-
waye account for nearly all of the difference.
After reviewing the coding of the two networks, it
is clear that freeways in the sketch-planning net-
work have some advantages that freeways in the re-
gional network do not have. In addition to the
slight undercoding of distance along sketch-planning
freeway links noted earlier, the only radial links
included in the sketch-planning network are freeway
1links, so paths made up only of arterial links must
be longer than comparable paths in the regional
assignment network.

Vehicle hours of travel for the assignments are
given in Table 4. These estimates follow the pattern
established in Table 3. Although total vehicle
hours in the sketch-planning assignment and in the
adjusted regional assignment are nearly equal, the
distribution of the vehicle hours between freeways
and arterials is somewhat different. In the sketch-
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Table 2. Vehicle miles of capacity for sight-county region.
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Vehicle Miles of Capacity (000s)

! . Regional Less Sketch Plan/
Highway Sketch Plan Regional® Intrazonal Intrazonal Regional
Freeway 3,870 4,241 NA NA 0.91
Arterial 14,286 14,584 NA NA 0.98
Total 18,156 18,825 NA NA 0.96
Note: NA = not applicable.
'Ramp capacities not included.
Table 3. Vehicle miles of travel for eight-county region.
Vehicle Miles of Travet (000s)
Sketch Plan/
. Regional Less Regional Less
Highway Sketch Plan Regional Intrazonal Intrazonal Intrazonal
Freevyny 3,476 2,985 3 2,982 1.17
Arterial 7,001 7,315 289 7,026 1.00
Total 10,477 10,300 292 10,008 1.05
Table 4. Vehicle hours of travel for eight-county region.
Vehicle Hours of Travel
Sketch Plan/
Regional Less Regional Less
Highway Sketch Plan Regional Intrazonal Intrazonai Intrazonal
Freeway 104,962 81,549 103 81,446 1.29
Arterial 261,048 298,704 12,040 286,664 0.91
Total 366,010 380,253 12,143 368,110 0.99
Table 5. Average travel speed for sight-county region.
Avg Travel Speed (mph)
Sketch Plan/
Regional Less Regional Less
Highway Sketch Plan Regional Intrazonal Intrazonal Intrazonal
Freeway 331 36.6 333 36.6 0.90
Arterial 26.8 245 24.0 . 24.5 1.09
Overall 28.6 27.1 24.1 27.2 1.08

planning assignment 29 percent of the vehicle hours
are on freeways, whereas in the adjusted regional
assignment only 22 percent of the vehicle hours are
on freeways.

The data in Table 5 give the average network
speeds computed as the ratio of vehicle miles to
vehicle hours. Arterial links have higher average
speeds in the sketch-planning assignment than in the
regional assignment. Freeway average speeds in the
sketch-planning assignment are slower than freeway
speeds in the regional assignment because of the
added freeway travel.

Travel at the Zone Level

Vehicle miles and average speeds from the two as-
signments were summarized and compared at the level
of sketch-planning zones. Standard statistics were
calculated for the distribution of these quantities
among zones as well as the correlation between re-
gional and sketch-planning values. All regional
quantities used in this phase of the evaluation are

actually adjusted quantities without the intrazonal
trips added in the sketch-planning assignment.
Pigures 5 and 6 are scattergram plots of the
vehicle miles per sketch-planning zone and average
sketch-planning zone speeds produced by the two as-
signments. Means and standard deviations for the ve-
hicle mile and speed variables, and the square of the
correlation coefficient between sketch-planning and
regional variables, are also shown in each figure,

IMPLICATIONS POR PLANNING AGENCIES

The question arises whether the work described in
this paper is relevant for other transportation
planning agencies. To a large extent, the sketch-
planning zones and the geometry of the sketch-plan-
ning network used for this project are the result of
the geography and township survey of the northeast-
ern Illinois region. Because other metropolitan
areas are spatially organized quite differently, it
would be inappropriate to use the gridlike pattern
of zones and arterial street links described here.
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Figure 5. Scattargram of vehicle miles per zone.
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Sketch-Planning Capabilities

In spite of the parochial nature of the zone pattern
and network geometry of the example, some general
conclusions can be drawn concerning the characteris~
tics of equilibrium traffic assignment by using
larger zones and simpler network coding. The most
surprising result was that the different intrazonal
tripa in the two assignments 4did not significantly
affect assignment results. Por example, even though
zones were 4 to 9 times larger in the sketch-plan-
ning assignment, the error introduced in the re-
gional vehicle miles was less than 3 percent. It is
apparent that even larger szones could be used with-
out seriously biasing the traffic estimates.

The assignment of traffic is wmore seriously af-
fected by the coding of the underlying arterial
street network. In this case study the grid network
of arterial streets increased arterial travel dis-
tances; as a result, the loadings on sketch-plan
freeway links exceed the regional assignment values.
The method used to estimate capacity in the sketch-
plan arterial street network appears adequate, given
the vehicle miles and average speeds that resulted.

Overall results from the sketch-planning assign-
ment compared reasonably well with the regional
assignment, and zone level assignment quantities
were well correlated with regional assignment coun-
terparts. Results from the sketch~planning assign-
ment are, therefore, probably adequate for estimat-

L}
Transportation Research Record 944

ing most highway travel characteristics, including
operating costs, emissions, and gasoline consump-
tion, at regional and subregional levels.

Sketch Planning in Work Programs of
Planning Agencies

Given these sketch-planning attributes relative to
those of a conventional regional assignment, the
sketch-planning methodology appears most applicable
to long-range systems planning and strategic plan-
ning that deals with dramatic changes in transporta-
tion supply or demand characteristics. Project-level
and corridor planning will almost always require
more detailed network coding and smaller analysis
zones. Nevertheless, the zone system and network in
this sketch-planning example may be used to repre-
sent the balance of a region outside the corridor of
interest. :

Long-range systems planning concentrates on
projected traffic or patronage for evaluation of
alternative regional networks with different combi-
nations of new major highway and transit invest-
ments. OUnfortunately, the number of alternatives
investigated is often limited because of the re~
sources needed to support the conventional forecast-
ing procedures. Less expensive approaches, such as
the sketch-planning methods discussed here, will
allow more alternatives to be tested and still pro-
vide reasonable estimates of traffic on major high-
way facilities.

There is also a trend in long-range transporta-
tion planning away from the evaluation of alterna-
tive networks of major facilities. In many metro-
politan areas prospects for new major investments
are limited, and future planning will emphasize more
general transportation investment strategies for
different energy, demographic, social, and economic
resource scenarios. Sketch-planning approaches
appear more suited for strategic planning than con-
ventional techniques because more scenarios can be
investigated and enough detail remains to accurately
predict regional and subarea transportation impacts.
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Network Design Application of an Extraction
Algorithm for Network Aggregation

ALl E. HAGHANI AND MARK S. DASKIN

The performance of a network extraction algorithm is described, and the algo-
rithm is tested by using the network design problem. A network is chosen as
the original network and is aggregated at different levels. The resuits of the op-
timal decision making under a common set of alternative actions are then com-
pared against the original and the aggregated networks. The resuits suggest that
the network aggregation algorithm is a useful tool in simplifying networks to
reduce the computational burden associated with the network design problem,
and to allow a broader range of policy options to be tested in a fixed amount
of computer time than would be allowed by using the original disaggregated
network.

Network aggregation is the art and science of con-
densing a given network into another one that (a) is
small enough to be managed efficiently and effec-
tively, and (b) preserves some desired characteris-
tice or satisfies certain objectives or both (1).
The usefulness of network aggregation schemes is
particularly evident in instances when similar prob-
lems are to be solved on a network, or sensitivity
analyses of various types are to be performed.
Dealing with the detailed network in solving such
problems entails high costs in terms of computer
storage and time.

There are two main approaches to the network
aggregation problem: network element (link or node)
extraction and network element abstraction. Extrac-
tion of network elements means deletion of the ele-
ments of the network that are identified as being
ingsignificant based on a prespecified criterion,
Abstraction of the elements collapses the insignifi-
cant ones into pseudo or dummy elements. Network
element extraction has the disadvantage of causing
network disconnection (because of the removal of
links). As a result, the remaining links of the
network will be overloaded if the origin-destination
(0-D) trip matrix is not adjusted appropriately.
Network element abstraction is more difficult to
perform. It is hard to transform the original net-
work into an aggregate one, and moreover, it is even
harder to translate the actions taken on the aggre-
gate network into actions on the detailed network
because of drastic changes in the topology of the
network that occur during the aggregation process.

The primary objective in developing a network

aggregation scheme should be to find an aggregation
process that, when applied to a detailed network,
results in an aggregate network that retains the
physical appearance of the original one as much as
possible. Thus when solving a decision-making prob-
lem, such as the network design problem on the ag-
gregate network, the results should be easily trans-
ferable to the original one. With this in mind, and
because the abstraction process changes the topology
of the network and cannot effectively serve the
process, it is proposed that an aggregation algo-
rithm, which focuses primarily on 1link extraction,
be used. Node extraction is a process that follows
link extraction; when all links incident to a node
are extracted, the node will be extracted. The
algorithm is presented in the next section.

NETWORK EXTRACTION ALGORITHM

Let N{(V,A) be a network, where V is the set of ver-
tices or nodes and A is the set of arcs or. links.
Let T be the set of destinations and S be the set of
origing, 8§ and T C V. Let xf be the flow over
link i destined to t, x§ be the flow over link
i originated from s, and xi"— be the flow over
link i that originates from s and is destined to t,

ieA, 8¢S, and teT. Also, let x; denote the

flow over link i,

xi= Zxf=2Z xt=X I x{ ieA,seS,and teT m
seS teT s€S teT

Moreover, let D = (dg) be the O-D trip matrix.

Finally, 1let Cj(xy) represent the average cost

of travel on link i at flow x; that is continuous,
differentiable, Riemann {integrable, convex, and
strictly increasing.

It is assumed that the distribution of flow over
a transportation network is based on Wardrop's first
principle (2)--user equilibrium (3). There are some
links in the network that, after the distribution of
the flow has taken place, will not carry a signifi-
cant amount of traffic. These links are the ones
that will be focused on in the aggregation process
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to be described.
fication of
follows.

A link in a network is insignificant if the cor-
responding equilibrium flow is below a percent of
the maximum equilibrium 1link flow in the network.
The level of network aggregation changes, depending
on the value of a7 as o increases, the network
becomes more aggregated and vice versa.

The reason for choosing the level of flow in the
links as a criterion for identifying the insignifi-
cant links is that many transportation problems deal
with the equilibrium flow levels in the network
links. It has already been proved (1) that the
equilibrium flow level in the significant or nonex-
tracted links remains unchanged when the aggregatjion
scheme is used. By preserving the level of equilib-
rium flow in the nonextracted links, the aggregation
scheme should produce an aggregate network that is
more representative of the detailed network than is
an aggregation process that failed to preserve these
flow levels. This should be particularly important
in solving problems in which the objective function
is based on the 1level of equilibrium flow in the
links. The network design problem is one such
problem.

Thus the network extraction algorithms as it has
been coded, is presented. A more rigorous presenta-
tion is included elsewhere (l). The inputs to the
algorithm are the specifications of the original
network N(V,A), the average 1link cost functions
Ci(xy), ieA, and the O-D trip matrix D. Either
the maximum number of links to be extracted or the
maximum o percentile denoting the cutoff point
between the insignificant and significant link flows
should also be given. Through this process certain
prespecified links in the aggregate network can be
maintained; also, specific links can be extracted.
Furthermore, the algorithm extracts the links one by
one and provides the results after each iteration.
As a result, several different aggregate networks
are obtained. The principle is to extract insignifi-
cant links and to update the trip matrix such that
the flow level in the remaining links of the aggre-
gate network remains unchanged. The algorithm is as
follows.

The criterion used for the identi-
insignificant 1links is defined as

Step l: Specify a or the maximum number of
links that may be extracted (M). Solve the equilib-
rium flow problem. Let xi, icA be the equilibrium
flow on link i.

Step 2: Identify the unextracted link k with the
minimum flow. Let t(k) and h(k) denote the tail and
head nodes of link k. Compute

o = xy/Max (x]) v)]

If ax > a as specified in step 1, or if the number
of extracted links is greater than the maximum num-
ber of links that may be extracted (specified in
step 1), stop. Otherwise disaggregate the flow on
link k by specifying the origin and destination of
all flow on the link, which is done by solving the
equilibrium flow problem on the most aggregate net-
work generated. {An outline of how the O-D specific
link flow (xf%) may be obtained from the solution
procedure to the equilibrium flow problem, and the
problems associated with the nonuniqueness of this
quantity, are discussed elsewhere (l).] Go to step
3.

Step 3: Discard link k. Declare t(k) a destina-
tion (if it is not already such a node) and h(k) an
origin (if it is not already such a node).

Step 4: Update the trip matrix as follows: (a)
type I entry, where t(k) is a destination, i.e.,
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0= 4+ o

where dg(k) is the original O-D matrix element and
is taken to be zero if the t(k) is a new destination,

and dg(k) is the updated O-D trip matrix element:;
(b) type II entry, where h(k) is an origin, i.e.,

dhay = dhexy + xk O]

where dﬁ(k is the original O-D trip matrix element
and is taken to be zero if h(k) is a new origin, and

ak k{ is the updated O-D trip marix element; and
( ‘ yPe III entries, where all remaining entries of

the O-D trip matrix (d§) are substituted by daf -
xft (subtracting from df the part of the demand
from 8 to t that is now destined to a new destina-
tion and that will reoriginate from a new origin).

Certain properties of the algorithm are worth
mentioning. First, as previously noted, the algo-
rithm preserves the level of equilbrium flow in the
links of the network that are not extracted. Second,
in cases in which all of the nodes of the network
are not both origins and destinations, the algorithm
will increase the number of origins and destinations
in the aggregate network. This in turn might have
adverse effects on the computation time of the net-
work design problem by increasing the number of
origins and the associated time for computation of
the minimum paths in the network. This situation
has not been examined in this paper. However, this
increase in computation time should be offset
through other means.

Third, the result of the extraction process may
be a set of disconnected subnetworks. If this oc-

" curs, the analysis of the aggregate network, now a

set of subnetworks, will be much easier to under-
take. In fact, in cases in which link extraction
will increase the number of origins and destinations
(and thereby increase the computation time for the
network design problem), specification of the links
to be extracted can force the aggregate network to
be a set of disconnected subnetworks. In this way
the computational savings obtainable by having dis-
connected subnetworks may be used to offset the
increased time that results from additional origins
and destinations.

Finally, in the network design problem it is
shown that for a given budget level, the total cost
to the users of the network, as measured on the
detailed network, is overestimated by the solution
to the network design problem that uses ghe aggre-
gate network (1). ' ’

In the next section this algorithm is applied to
an original petwork, and the network design problem
is solved on the original detailed network and on a
geries of aggregate networks.

'APPLICATIONS OF NETWORK EXTRACTION ALGORITHM TO
NETWORK DESIGN PROBLEM

Problem Description

The network design problem is that of finding a set
of feasible actions or projects from among a collec-
tion of such actions that, when implemented, opti-
mize the objective function(s) being considered.
The feasibility of a set of actions is determined by
resource, physical, and environmental constraints
(4). Traditionally, the objective function in the
network design problem has been formulated as the
minimization of the total number of vehicle hours of
travel on the network, with flows and travel times
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computed based on user equilibrium.
sented as

This {8 repre-

Minimize £ x; C; (x;) )
peP {eA .

Subject to budget constraint on the cost of implemented projects p

where x{ is the user equilibrium flow on 1link {,
and P is a set of projects (p) under consideration
for implementation. 1In solving the network design
problem, a2 modified objective function, which was
suggested by Poorzahedy (4) in his algorithm I, has
been used. This form is as follows:

Minimize £ f" C; (vidv (6)
peP ieA

Subject to budget constraint on the cost of implemented projects p

where x; is the user equilibrium flow on link {.

The modified form of the problem was selected
because of the availability of a computer code to
solve this problem. Also, solving this form of the
problem has been found to be more efficient than
solving the traditional formulation and generally
results in similar actions being taken on the net-
work (5).

Thus the results of a set of experiments designed
to test the effectiveness of the proposed NA algo-

Figure 1. Original network (4).
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rithm in solving the modified network design problem
can be presented., For the detailed network, the
Sioux Palls, South Dakota, network is used in the
experiments because it is a well-documented network
and has been used by other researchers (4,6,7) in
analyzing network design problems.

The detailed network, which consists of 24 nodes
and 76 links (or 38 1link pairs, allowing two-way
traffic movements), is shown in Pigure 1 (4). The

link travel costs ([Cy(xy)] are given by func-
tions of the form
G () =2+ (x)* @)

The constants a; and b; for each of the existing
links in the network, as well as for the six candi-
date links, are given in Table 1 (4). Also provided
in the table is the cost of implementing each of the
candidate links. The first five projects represent
improvements on existing 1links, whereas the sixth
project is an entirely new link. Two different sets
of experiments were considered. 1In the first, only
the five improvement projects are usgsed; in the sec-
ond, all six candidate projects are used. The O-D
matrix for this network is given in Poorzahedy (4).
Five aggregate networks are developed, which
result from the extraction of 6, 12, 18, 24, and 30
links. The aggregate networks are shown in Pigures

# 7T, Link Pair 3,341

® Project Number

T $mr candidate Project on Existing Links

dh Candidate Project, New Link
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Table 1. Link parameters of tast network 11) (4).

Link L(xlo’z) b(x10 )| Link fa(x102)b(x10™) | Link | (x1072) b(x107¥)
1.2 | 5.96 | 0.00023 || 35,36 | 2.98 | 0.00011 | 69,70 | 2.17 |0.05208
3,4 |4.3¢4 |o0.00017 §37,38| 4.52 | o.10848 | 71,72 | 3.72 {0.08928
s,6 | 5.17 |o.12408 | 39,40 3.50 | 0.00104 } 73,74 | 2.s0 [0.01185
7,8 | 4.31 |o0.00069 | 41,42 3.50 | 0.00525 ] 75,76 | 4.50 |0.10800
9,10 | 4.14 |o0.00016 | 43,441 1.67 | 0.04008 } 77,78 | = -
11,12 2.16 | 0.0003s } 45,46 | 2.69 | 0.00025 New Data |
13,14 | 6.46 | 0.15504 § 47,48 | 2.31 | 0.05544 | 67,68 | 1.60 |0.00037
15,16 | 4.17 | 0.10008 | 49,50 | 4.46 | 0.00017 | cost $625.x10°
17,18 | 5.03 | 0.00755 ] 51,52 | 3.99 | 0.09576 | 69,70 | 1.30 {0.01562
19,20 2.18 | 0.00008 { 53,54 | 5.72 | 0.13728 | cost $650.x10°
21,22 9.61 |o0.23064 | 55,56 | 4.71 | 0.11304 | 71,72 | 2.20 |0.02678
23,24 | 4.82 |0.11568 | 57,58 | 1.67 | 0.04008 | cost $850.x10°
25,26 5.00 |0.00750 § 59,60 | 3.29 | 0.07896 | 73,74 | 1.50 |0.003s5
27,28 | 5.87 |o0.00265 f61,62 | 4.00 | 0.09600 | cost $1000.x10°
29,30 | 8.04 |0.19296 J63,64 | 4.25 | 0.10200 |75,76 | 2.70 [0.03240
31,32 | 6.46 |0.15504 65,66 | 1.88 | 0.04512 } cost $1200.x10°
33,34 | 4.42 |o0.10608 §67,68 | 2.75 | 0.00124 | 77,78| 3.00 |0.00321
cost |  $1500.x10°

Note: a parameters are given in hours, and b parameters are given in hours + (1,000 vehicles per d.y)‘.

2-6; the resulting O-D matrices are given in Haghani
(1).

Results for the Aggregation Model

The five aggregate networks shown in Figures 2-6 and
the detailed network shown in Pigure 1, along with
their corresponding O-D matrices, constitute the
basis for the experiments. On each of these six
networks, two network design problems were solved:
one with the first five candidate projects, and the
second with all six projects. The initial budget
was set at $2,000,000 in all cases, and a complete
sensitivity analysis (with respect to increases in
the budget) was performed for all six networks and
both design problems.

Regsults of the Five-Project Experiment
The results of the five-project experiment are sum-

marized in Table 2. More detailed results are given
in Haghani (l). The data in the table report (a)

the percentage error in the total number of vehicle
hours on the aggregate networks as compared with the
detailed network, and (b) the number of projects
that are selected differently when the network de-
sign problem is solved on the detailed and aggregate
networks., Note that there are 18 unique budget
levels that must be considered in performing the
sensitivity analyses, beginning with a budget of
$2,000,000 and ending with a budget of $4,325,000,
which allows the implementation of all five proj-
ects. Of the 18 budget levels, 5 result in differ-
ent solutions for the network design problem on the
original and aggregate networks in the worst case.
The data in Table 2 indicate that with six links
deleted from the original network, the solutions to
the network design problem on the original network
and the aggregate network are identical for all
budget levels. Por higher. levels of aggregation,
discrepancies occur between the solution using the
aggregate network and that found using the original
network. Also note that most of the errors occur
when the ratio of the budget level to the total cost
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Figure 2, Aggrogate network with 8 extracied links.

Figure 3. Aggregate network with 12 extrasted links.

Note: Logond is given in Figure 1.
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Figure 4. Aggregate network with 18 axtracted links.

Note: Legend is given in Figure 1.

Figure 5. Aggregate network with 24 extracted links.

Note: Legend is given in Figure 1.
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Figure 6. Aggregats network with 30 extracted links.
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Note: Legend is given in Figure 1.

Table 2. Percantage of vehicle hour errors and number of misssiected projects for five-project case.

No. of Extracted Links

6 12 18 24 30

Budget No. of Vehicle = No.of ~ Vehicle No.of Vehicle  No.of Vehicle  No.of Vehicle  No. of
Levels Budget Hour Misselected  Hour Misselected  Hour Misselected  Hour Misselected  Hour Misselected
(3000s) Levels Error (%) Projects Error (%) Projects Error (%) Projects Error (%) Projects Error (%) Projects
B =2,000 1 0 (] 3.11 1 3.11 1 4] 1] 3.11 1
B =2,050 1 0 0 6.73 1 6.73 1 6.73 1 6.73 1
2,125<B 3 0 0 0 0 0 0 0 0 0 0

< 2,475
2475< B 2 0 0 3.82 1 3.82 1 3.82 1 3.82 1

< 2,675
B=12,675 1 0 0 7.95 i 7.95 1 7.95 1 7.95 1
2,700< B 5 [ 0 0 0 0 0 0 0 0 0

< 3,325
3325< B 4 0 0 4] 0 0 0 0 0 0 0

< 4325
B=47325 1 0 0 0 0 0 0 [1] 1] 0 0

of all candidate links is low. In all cases in
which the solution on the aggregate network differed
from the solution on the detailed network, the num-
ber of misselected links was only one. By using
vehicle hours as the measure of effectiveness, the
maximum percentage error is 7.95 percent. The iden-
tity of the errors, the equality of their severity,
and the similarity of their frequency across the
various levels of aggregation suggest that the size
of the network may be reduced significantly without
increasing the magnitude of the errors. This phenom-
enon is also apparent in the case of six projects.
{Note that the maximum percentage error of 7.95
percent is computed as follows. At a given budget
level, let Y, and Y, be the optimal solutions to the

network design problem for the aggregate and original

networks, respectively, where ¥ = (y;) and y; = (0,1)
if project 1 (is not, is) chosen to be in the optimal
set. Also, let V(Y) represent the decrease in the to-
tal number of vehicle hours in the original network
that results from implementing project set ¥. The
percentage error is defined as (V(Y,) - V(Y,)/V(Yy]
* 100.}

Note also that the total travel time on the net-
work is overestimated by the solution to the design
problem on the aggregate networks as compared with
the total time found when using the detailed net-
work. This is also shown in the six-project experi-
ment and, as noted at the end of the section on
Network Extraction Algorithm, may be shown to be a
general property of the aggregation process.
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Results of the Six-Project Experiment

The results of the six-project experiment are given
in Table 3. Again, the data in the table report two
sets of statistics: (a) the percentage error in the
total number of vehicle hours on the aggregate net-
works as compared with the number on the detailed
network, and (b) the number of projects that are
gelected differently when the network design problem
is solved on the detailed and aggregate networks.
[More detailed results are given in Haghani (1).]
There are now 40 unique budget levels that must be
congidered in performing the budget sensitivity
analysis. Of the 40 budget levels, 9 result in
different solutions for the network design problem
on the detailed network and the aggregate networks
in the worst case.

Again, when only six links are extracted from the
network, the results on the detailed network and on
the aggregate network are identical. As the level
of network aggregation is increased, the number of
budget levels at which discrepancies occur between
the solutions on the two networks increases: when 12
or 18 links are extracted, errors occur at S5 of the
40 budget levels, or 12.5 percent of the time; with
24 1links extracted, errors occur 20 percent of the
time (in 8 cases); and with 30 links extracted,
errors occur 22.5 percent of the time (in 9 cases).
Again, the maximum number of misselected projects is
1, and the maximum difference in vehicle hours is
7.95 percent.

The relatively sharp increase in the number of
budget levels at which errors occur, as the level of
aggregation is increased from 18 extracted links to
24, suggests that a trade-off must be made between
the expected accuracy of the results and the level
.of detail preserved in the network. The desired
point on this trade-off curve depends on the use to
which the analysis will be put; this is a decision
best left to the analyst in each case.

Finally, there appear to be patterns to the mis-

selected links. In both sets of experiments the
aggregate network solution replaced project 2 or
project 5 with project 3; in the six-project experi-
ment, the aggregate solution also replaced project 6
with project 4. These replacements appear to be
related to the degree of network aggregation in the
neighborhood of the candidate projects. Also, be-
cause the errors occur at the same budget levels in
all three cases, there appears to be a relationship
between the errors and the specified budget levels.
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A more complete exploration of the relationship
between these errors and (a) the degree of network
aggregation in the neighborhood of the candidate
projects and (b) the specific budget levels would be
an interesting area for future research. The nature
of the errors found in this analysis are discussed
in greater detail later in the paper.

Computation Times

One of the major reasons for implementing a network
aggregation process is, as already noted, the sav-~
ings in computer time that should result from solv-
ing problems on smaller, less-detailed networks.
The central processing unit (CPU) times required for
the solution of the two network design problems,
with all the budget sensitivity analyses on each of
the six networks, are given in Table 4. All CPU
times are for the Univac 1100, unless otherwise
noted.

The network design problem for the five-project
case may be solved 6 times faster on the most aggre-
gate network considered in this analysis than on the
original detailed network. In the six-project case,
the ratio of CPU time on the detajiled network to
that on the most aggregate network is 4.4. However,
these savings must be offset by the CPU time re-
quired to perform the aggregation process before the
network design. problem is solved. In some cases
this may be of the same order of magnitude as the
saving that results from using the aggregate network
to solve the network design problem.

Nevertheless, several points are worth mention-
ing. PFirst, the aggregation algorithm provides the
analyst with one aggregate network for each 1link
extracted from the detailed network. Thus the aggre-
gate network that best suits the analysis purposes
can be selected. Second, it is not likely that only
a single network design problem will be solved;
rather, a series of problems will be solved, each of
which might be solved on a different aggregate net-
work., For example, the analyst might elect to screen
a large number of candidate projects by using a
highly aggregated network. The most promising proj-
ects, along with others that might be of interest
for nontechnical reasons, would be retained in more
detailed analyses conducted on more detailed net-
works.

Third, with a given aggregate network, a large
number of sensitivity analyses can be performed. As
already indicated, it is likely that budget sensi-

Table 3. Percentage of vehicle hour errors and number of misselected projects for six-project case.

No. of Extracted Links

6 12 18 24 30

Budget No. of Vehicle No. of Vehicle No. of Vehicle No. of Vehicle No. of Vehicle No. of
Levels Budget Hour Misselected  Hour Misselected  Hour Misselected  Hour Misselected  Hour Misselected
(3000s) Levels Error (%) Projects Error (%) Projects Error (%) Projects Error (%) Projects Error (%) Projects
B = 2,000 1 0 0 3.11 1 3.11 1 0 0 3.11 1
B = 2,050 1 0 0 6.73 1 6.73 1 6.73 1 6.73 1
2,125< B H 1] 0 0 0 0 0 0 0 0 0

< 2,475
2475< B 2 4] 0 3.82 1 3.82 1 3.82 1 3.82 1

< 2,675
B=2,675 1 0 0 7.95 1 7.95 1 7.95 1 7.95 1
2,700< B 9 0 0 0 0 0 0 0 0 0 0

< 3,325
3325< B 12 0 0 0 0 0 0 0 0 0 0

< 4,325
4325< B 4 0 0 0 1] 0 0 0 0 0 0

< 4,825
4825< B 4 0 0 0 0 0 0 6.18 1 6.18 1

< 5,825
B=5,825 1 0 0 0 0 0 0 0 0 0 0




>
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Table 4. CPU times for network design problems with complets budget
sensitivity analysis on the original network 11 and the corresponding
sggregate networks.

CPU Time* (sec)

No.of Five Six

Aggregation Extracted Candidate Candidate
Level Links Projects Projects

0 ob s0° 79¢

0 ob 314.384 514.598
0.2797 6 246.280 398.487
0.3352 12 249.677 409.988
0.3413 18 249.002 417.027
0.3564 24 207.315 378.481
0.3780 30 51.496 124.228

SAll figures, except those noted in footnote c, are from a UNIVAC
1100.

bOrUml network.
churu are from a CDC 6600, as reported by Poorzahedy (§).

tivity analyses will be performed. 1In addition, the
sensitivity of the solution to additional con-
straints that require selected projects to be in-
cluded in (or excluded from) the optimal solution
may need to be analyzed. 1In all of these cases the
network aggregation algorithm needs to be solved
only once. Thus the CPU time for the network aggre-
gation algorithm is best viewed as a fixed cost that
may be distributed over a large number of analyses.

Finally, note that the CPU time involved in solv-
ing the network design problem dJdecreases signifi-
cantly as a result of extracting six links from the
network in both the five- and six-project experi-
ments., The CPU times for the cases of 6, 12, and 18
extracted links are comparable. A slight decrease
in CPU time is experienced as a result of extracting
24 links, and a significant decrease is found when
30 links are extracted. This result, combined with
the results outlined in the section Results for the
Aggregation Model, which describes the accuracy of
the results at various levels of aggregation,
clearly suggests that there is an important trade-
off to be made between decreased computation costs
(and greater network aggregation) on one hand and
improved solution accuracy on the other hand,

In the sample problems previously discussed, it
appears that desirable aggregation 1levels would
correspond to either the extraction of 6 links (re-
sulting in a moderate decrease in computer time and
a high level of accuracy) or the extraction of 30
links (resulting in a large decrease in computer
time at the expense of decreased -solution accuracy).
Intermediate levels of aggregation appear to result
in relatively large solution errors without large
compensations in terms of solution times. An inter-
esting area of future research would be to determine
whether or not the network aggregation algorithm
results in such identifiable choices between aggre-
gation and solution accuracy in other network design
problems, and more generally, in other network prob-
lems.

SOURCES OF DISCREPANCY BETWEEN AGGREGATE NETWORK
AND DETAILED NETWORK RESULTS

The results presented in the previous sections on
the application of the proposed network aggregation
algorithm to the network design problem are gener-
ally promising. In no case is the difference in the
improvement in vehicle hours between the solutions
on the detailed and the aggregate networks greater
than 7.95 percent. Also, the two solutions differ
by at most one candidate link in all cases. Never-
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theless, there are several differences that warrant
further explanation. As indicated in the following
paragraphs, the test case selected is likely to
exaggerate the extent of the differences that are
likely to result in a more realistic planning con-
text.

Two characteristics of the test problem will tend
to result in an overestimation of the errors that
result from using the network aggregation scheme.
Pirst, the Sioux Palls network being used is already
a highly aggregate representation of the actual road
network. This is evident when the range in equilib-

" rium flows on the original network under the do-

nothing option is examined; i.e., the maximum 1link
flow is less than 4 times the minimum 1link flow.
The average link flow is 12,989 vehicles and the
maximum flow is 24,901 vehicles. The flow in the
30th link extracted from the network is 9,839 vehi-
Cles, or almost 40 percent of the maximum link flow.
A real network is likely to exhibit a much greater
range in equilibrium flows. If the extracted links
truly carry an insignificant level of flow compared
with the flow on the maximum flow link, the solu-
tions to design problems on the aggregate networks
are likely to be much better than they were in the
test problem in which the flow levels on the ex-
tracted links were actually quite large and sig-
nificant.

Second, the number of candidate 1links in the
design problem was large relative to the total num-
ber of links in the detailed network. There are 6
two-way candidate links on a network with only 38
links. In the aggregate networks the situation is
even more dramatic. When 30 (one-way) 1links are
extracted, 26 percent of the links are being con-
sidered as candidate links. Thus the changes under
congsideration for the network are quite radical when
compared with more realistic situations in which
only 1 or 2 percent of the links are likely to be
considered candidate links. Again, if the ratio of
the number of candidate links to the number of links
in the detailed network is small, the solution to
the design problem on an aggregate network is more
likely to replicate the solution on the ,detailed
network than was found in the test problem, in which
almost 16 percent of the links in the detailed net-
work were candidate links.

In summary, the test network chosen for study is
already a highly aggregate network that exhibits a
relatively small range in equilibrium 1link flows.
Also, the number of candidate links is extremely
large relative to the total number of links in the
network. It is expected that, if a more realistic
detajiled network is used, the solution to the net-
work design problem using an aggregate network will
more closely approximate the solution using the
detailed network than was found in the small test
network.

Finally, note that the aggregation process ex-
tracts links sequentially, thereby propagating com-
putational errors and accumulating them in the final
aggregate network. The resulting O-D trip matrix
carries these errors to the decision-making model--
in this case the network design model. Had a simul-
taneous extraction process been developed, this
source of error would have been eliminated. To
date, however, a simultaneous extraction process
that circumvents the multiple counting danger has
not been implemented.

CONCLUSIONS AND RECOMMENDATIONS FOR PUTURE WORK

A network extraction algorithm for the network ag-
gregation problem has been presented. The algorithm
is based on the extraction of those links in a de-
tailed network whose equilibrium link flows are less
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than a user-specified fraction of the maximum equi-
librium 1link flow. The algorithm is sufficiently
flexible to allow the analyst either to force cer-
tain links out of the detailed network or to retain
particular links in the resulting aggregate network.
Links are sequentially extracted from the network
and, after each extraction, a modified O-D matrix is
derived. The revision in the O-D trip matrix pre-
serves the level of equilibrium flow in the nonex-
tracted links. By extracting 1links sequentially,
the algorithm provides the analyst with multiple
aggregate networks--one after each link extraction.

The network aggregation algorithm was tested by
examining the performance of a network design algo-
rithm (4) on both a detailed network and five aggre-
gate networks derived from the detailed network.
The results are quite encouraging. The maximum
percentage error in the improvement in vehicle hours
of travel between a solution using the detailed
network and a solution using an aggregate network
was 7.95 percent. In most cases the same projects
were selected for implementation when using both the
detailed and the aggregate networks; when the solu-
tions differed, at most one link was misselected
when using the aggregate network. As suggested in
the previous section, it is anticipated that even
better results will occur when the algorithm is
applied to networks that are larger and more realis-
tic than is the 76-link, 24~node test network pre-
sented here,

Several promising areas for future research are
suggested by this study. First, links are extracted
from the network in increasing order of the ratio of
the equilibrium flow in the link to be extracted to
the maximum equilibrium 1link flow. Other criteria
should also be investigated. For example, in cer-
tain contexts it may be desirable to extract links
based on the ratio of the equilibrium flow in the
link to the capacity of the link. Alternatively,
hybrid criteria might be developed. For example, in
the traditional formulation of the network design
problem, the objective function is
Minimize Z= I  x{ Ci(x{) ®)

. all lin
1
which may be rewritten as

Minimize Z = z Gt T oxGy) ©)
links i in aggregate deleted
network links i

In solving a network design problem on an aggre-
‘'gate network, it is hoped that changes in the net-
work caused by the actions taken will not signifi-
cantly affect the second term of the objective
function and that it may, therefore, be treated as a
constant and omitted from the calculations. This
suggests that the rate of change in the objective
function from a change in the flow on link i can be
computed, and that links for which changes in the
flow will only marginally change the objective func-
tion can be deleted. Specifically, the rate of
change in the objective function because of a change
in the flow of link (which is denoted W;) is

AZjax, =W, = C; (x}) + % C; () (10)

wheretci(x;) is the derivative of C; (x) evaluated at
x = X{. A hybrid strategy would be to compute W; for

all 1links and to delete those links for which W; is
less than a Mix (Wy).

Second, the O-D trip matrix that is derived after
each link is extracted is not unique because it is
based on the O-D specific flows in the extracted
link, which are not unique. The effect of other O-D
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matrices on the aggregate networks and on the uses
to which those aggregate networks are put is worthy
of additional research.

Third, to avoid multiple counting problems, a
sequential link extraction procedure has been imple-
mented. Research should be devoted to the develop~
ment of a simultaneous 1link extraction procedure.
Such a procedure would probably be faster than the
sequential procedure that has been used and would be
less prone to accumulating and propagating round-off
errors from one aggregate network to the next,

Pourth, based on the network design experiments,
it it suspected that the quality of the network
design solution that uses an aggregate network is
related to the degree of network aggregation in the
neighborhood of the candidate links and to the ratio
of the available budget to the budget regquired to
implement all candidate links. Additional research
should explore these relationships.

Pinally, the algorithm should be tested on net-
works that have a limited number of origins and
destinations to determine whether or not the in-
crease in the size of the O-D matrix that results
from the extraction algorithm increases the computa-
tion time more than the time is reduced because of
the deletion of links. Recall that this did not
occur in the network used in the set of experiments
because all nodes were origins and destinations. 1If
this does occur, it might 1limit the usefulness of
the proposed approach to cases in which the increase
in the size of the O-D matrix can be predicted to be
small.
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Quick-Response Procedures to Forecast Rural Traffic

ALFRED J. NEVEU

The development of a quick-response method to forecast traffic volumes

at project sites located on the rural highway network is discussed. By using
travel dats from New York State’s continuous count stations in rursl loca-
tions and various state-, county-, and town-level demographic data, s set of
elasticity-based models is derived. Thess models can forecast future year
annual average daily traffic (AADT) as a function of base year AADT modi-
fied by various demographic factors. These models are estimated based on
the type of service the roadway carries: interurban, urban to rural, and
rural to rural. Nomographs and a user’s manuai that describes a simple
seven-step process to use the model were developed and distributed to re-
gional offices throughout New York State.

For highway improvements, the gap between available
funds and potential projects is becoming wider as
revenues from various sources (including gasoline
sales taxes, vehicle registration fees, and driver's
license fees) fall because of economic pressure or
government-enforced conservation (although the $0.05
gasoline tax increase will ease some of the pres-
sure). Costs of labor and materials are escalating
faster than the national rate of inflation. At the
same time, compounding the problem, increasing
travel demands are placing an even greater burden on
the U.S. highway system than in the past, thus wors-
ening an already difficult situation.

These trends mean that the need for construction,
rehabilitation, and regular maintenance of the high-
way network is greater than ever. Each year a large
number of such projects, ranging from simple inter-

section improvements to large-scale facility con-

struction, are identified as candidates for the lim-
ited financial resources available, Even in the
best of times, not all projects can be funded; now,
with reduced monies to fund projects, it is even
more i{mperative that programming decisions be made
in the most effective and efficient manner possible.

The selection of projects to be implemented is
generally based on some evaluation process in which
the costs and benefits of each project are com-
pared. The various evaluation processes consider
many factors in weighing each alternative, including
safety, noise, air pollution, and energy. Each of
these factors is, in turn, based on an estimate of
the traffic volume that will use the facility under
consideration. Thus the volume estimate determines,
to a significant degree, which of the many projects
will be implemented.

Travel forecasting methodology is highly advanced
at the urban area level. Most large metropolitan
areas have developed and implemented a fairly so-
phisticated set of computer-based travel simulation
models based on the traditional four-step process.
In a nonurban context, however, this process is not
nearly so advanced. With many of the projects com-
peting for the scarce funds coming from nonurban
areas, it is important to improve and streamline
forecasting procedures for rural travel needs. In
this way it would be possible to evaluate many rural
projects quickly and accurately, thus providing gov-
ernment officials with better information on which
to base their programming decisions.

To fulfill this need, research was initiated by
the Transportation Statistics and Analysis Section
of the New York State Department of Transportation
{NYSDOT) to develop a quick-response procedure to
forecast traffic volumes on rural roads. The pri-
mary focus of this effort was the design and testing
of a simple, fast method to forecast rural traffic
volumes. 1In this paper previous efforts aimed at

forecasting rural traffic are examined, the chosen
methodology is described, and the results of the
analysis are presented. Finally, some of the limi-
tations of the procedure are discussed, and some
possible solutions to the limitations are provided.

PAST EXPERIENCE

Little attention has been focused on the topic of
forecasting volumes on rural roads. Much of the re-
search that deals with the rural highway system has
been in the area of design and construction of low-
volume roads, travel to recreation facilities, or
rural public transportation. An extensive litera-
ture review uncovered only two studies specifically
concerned with forecasts of rural traffic volumes.

In 1958 Morf and Houska (1) examined the varia-
tion of traffic growth patterns on rural highways.
They hypothesized that four factors were responsible
for the variations in growth patterns observed on
the Illinois rural highway network: geographic lo-
cation, type and width of pavement, proximity to an
urban area, and type of service provided by the
roadway. This last factor was subdivided into four
categories: ‘interurban, interregional, urban to
rural, and rural to rural.

The authors noted that the growth trends in sites
close to urban areas were primarily a function of
the expansion of the city. Therefore, the remaining
analysis focused on rural highways outside the in-~
fluence of an urban area.

A comparison by geographic location indicated
minor differences {in growth patterns. Slightly
greater traffic increases were noted in northern
rather than southern Illinois. Roadways with wider
widths had correspondingly greater increases in
traffic, but the authors believed that the wider
roads were an effect of the volume increases, not a
cause of them.

The only factor that had an appreciable effect on
traffic growth rates was the characteristic of type
of service. Highways with the greatest percentage
of interurban or interregional service generally had
the largest increases in travel. Roads that served
largely urban-to-rural or rural-to-urban travel had
the smallest increases. Based on these results, the
authors projected volume trends on the rural highway
network in Illinois for the different road types
separately.

The study by Tennant (2) used the land use and
traffic generation principle to outline a procedure
to estimate rural road traffic in developing coun-
ties. By using various economic, social, land use,
and travel data from the Mount Kenya region in
Kenya, several trip-generation equations were esti-
mated for both urban and rural zones in the study
region. The results are almost identical; in both
cases employment is a better predictor of trip gen-
eration than is vehicle ownership. The correlation
coefficients that use either variable in the equa-
tion are all in the range of 0.5 to 0.9. Thus even
vehicle, ownership does a fair job of predicting
trips per person. Examining traffic generation from
different land uses revealed that 75 percent of the
trips were generated by one of three land use
types: retail and commercial, government adminis-
tration, and road transport. Agricultural and resi-
dential land use areas did not generate many trips
in this region. The author concluded that, obvi=-
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ously, more detailed research was needed, and, as a
firat-cut analysis, either vehicle ownership or em-

ployment could be used to forecast future rural trip
generation.

DEVELOPING THE METHODOLOGY

Current practice at NYSDOT to forecast travel on
rural highway links assumes that travel, represented
as vehicle miles of travel (VMT), is directly pro-
portional to population (note that these data are
from an internal memo from W.S. Caswell to J.
Shafer, "VMT Growth Pactors for Minor Civil Divi-
sions,® January 14, 1975). Travel forecasts for
urbanized areas are obtained from the network as-
signments for each area. In areas outside those
geographic boundaries, a different procedure was
developed. By using VMT per capita estimates by
area from the 1972 National Transportation Study and
population estimates for each town and county in the
state from the New York State Department of Com-
merce, annual VMT growth rates by town were derived
for the years 1972-1990. These rates were developed
by first estimating total VMT for each area by using
the VMT per capita data and the population esti-
mates, then calculating the annual growth rates for
each area.

Several problems surfaced as these VMT growth
rates were used by the Department., First, it was
recognized in the beginning that there is not neces-
sarily a correlation between VMT and population.
Inaccurate estimates of VMT may result from large
amounts of nonresident travel drawn into or through
the area. This is especially true in popular recre-
ation areas. Second, although the population in New
York state may decline (and did so between 1970 and
1980), the number of households may (and did) rise;
thus this procedure would forecast a decline in VMT
from 1970 to 1980 when, in actuality, travel was
still increasing. Finally, there was no sensitivity
to energy price or supply in this method.

Because of these shortcomings, the NYSDOT Trans-
portation Statistics and Analysis Section initiated
a research project to develop a procedure sensitive
to these factors to forecast rural traffic to be
used in the development and evaluation of highway-
related projects. This new methodology was designed
to meet several criteria. First, the procedure must
be simple enough to be used on simple desk-top or
hand-held calculators, which are generally available
in most planning organization offices. It was be-
lieved that a large, cumbersome computer model would
be inappropriate in this study. Second, the data
used in the procedure must be easily available to
the local or regional planner. This includes both
historical trends and future predictions. Pinally,
it was believed that to be of maximum use to the
project development staff, the procedure would fore-
cast annual average daily traffic (AADT) at the
project site, rather than VMT as was done previously.

An elasticity model formulation was selected as
the appropriate model. 1In this model future year
AADT is related to present year AADT and modified by
changes in any number of background factors. The
general form of the model is as follows:

AADT, = AADT, {10+ ¢, [(X) ¢ = X1 o)Xy p] + ...} )
where

AADT in the future year,

AADT in the present year,

value of variable X; in the future year,
xl,p value of variable X; in the present
year,

elasticity of AADT with respect to X;.

(4
™1
[}
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The elasticity model was selected for several
reasons. Because it was believed that the range of
volumes over which the model would be applied would
be much greater than that available in the calibra-
tion data set, a simple linear regression model that
relates AADT to the background factors directly was
deemed inappropriate. Second, the use of present
year AADT to estimate future year AADT (as a sort of
pivot point) would reduce the problem of nonresident
travel. Finally, the elasticity portion of the
model calculates a growth factor directly, so the
procedure can be easily transformed into a set of
nomographs, thus further simplifying the work re-
quired by the user.

The elasticities and the appropriate background
factors are derived from a linear equation that re-
lates AADT to a variety of local, county, and state-
wide factors. It can be shown mathematically that
given an equation of the form

Y=ata;x) tazxy+... )
elasticity measures can be estimated by
& = 3(Xi/Y) 3)

Thus the background factors that best estimate AADT
and their respective elasticities can be derived by
using multiple linear regression.

Data for the estimation of the background factors
and elasticities came from a variety of sources.
The AADT values were obtained from the continuous
count program at NYSDOT. Only those stations clas-
sified as rural in nature were selected for use in
the study. This yielded a total of 32 stations
throughout the state (Pigure 1). By using the town
and county in which the station is located, the var-
ious background factors were collected. Information
at the state, county, or town level was obtained
from a variety of demographic factors, including
population, households, automobile ownership, and
employment. Some of these data were collected at
more than one level of detail. A summary of the
background factors collected at each level is as
follows:

1. Town level--population, housing units, and
households;

2. County level--population, housing units,
households, automobile registrations, employment,
labor force, personal income, and income per capita;
and

3., State level--gasoline sales.

These data were collected for several years (1974-
1978) and yielded a total of 5 observations for each
station and 160 observations overall. These years
were chosen to avoid any complications introduced by
the energy emergency situations experienced during
the past decade. Although the first energy crisis
did encompass the early months of 1974, it was be-
lieved that the emergency had eased enough so that
yearly totals for the variables would not be signif-
icantly affected.

The equations developed to uncover the most im-
portant background factors and to estimate their
elasticities related each year's AADT for each sta-
tion to the corresponding year's data for the back-
ground variables for that station's location. By
using the results from the earlfier study in Illinois
(1), three different classes of roads were examined
separately. These road classes were based on the
type of service the road provides. By using func-
tional class as the determinant, the three service
types were Interstates (representing interurban and
interregional service), principal arterials (repre-
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Figure 1. Rural continuous count stations.
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A Oount Stations (Rural Only)

senting rural-to-urban service), and minor arterials
and major collectors (representing rural-to-rural
service). Thus three sets of elasticities and three
forecasting models were derived.

Several regression analyses were performed by
using a stepwise linear regression program. 1In the
initial runs, one of the income variables was en-
tered into the model. However, future values for
either of those income variables are difficult to
forecast, especially in an economy that is under-
going such rapid changes. Given the earlier crite-
rion for using variables that are easily available
and simple to forecast, all further analyses elimi-
nated any income variables from consideration.

In addition, throughout the remainder of the
analyses, town or county housing units appeared in
many of the equations. In this case, although the
relationship has statistical significance, the
causal relationship to travel must be questioned.
It was believed that households (sometimes defined
as occupied housing units) were a better determinant
of travel. Therefore, whenever housing units at any
level entered the equations, the correspondin
household value was substituted. This resulted in
extremely small reductions in explanatory power of
the models, but the models had a much better causal
foundation.

The final regression equations, along with the

R! values, t-statistics, and elasticities are as
follows. For Interstates,

AADT = -1097.870 + 0.051 county automobiles
+9.042 town households [C))

R*= 065 t=249 =686
F =25.13 ¢=0.228 ¢=0.832

For principal arterials,

AADT = -3013.145 + 0.125 county households
+0.866 town population *)

R'= 0.77 t=498 t=727
F =45.75 ¢=0.572 ¢ =0.760

For minor arterials and major collectors,

AADT = 2867.129 + 0.619 town households . 6)

R?= 020 t=495
F =2452 ¢=0314

Bach of the models are relatively simple, with only
one or two variables in each. The equations use
variables that are easily available to local plan-
ners from a variety of sources for both historical
and future trends. Bach of the variables is signif-




50

icant at the 95 percent confidence level, and all
function in the proper direction; i.e., as the vari-
ables increase, travel increases. Equations 4 and S
explain much more of the variance than EBquation 6,
but this is an expected result. The last type of
rural road {s much more abundant and serves many
more purposes than the other, more specialized,
types of roads. Therefore, it 1is expected that
there would be much wmore variability in the data and
much less explanatory power in a simple model. This
variability is probably caused by local factors be-
low the town level. Large traffic generators such
as malls, drive-in fast food restaurants, or schools
in the proximity of the counting station are ex-
amples of such a local effect.

There are several items of interest in Equations
4-6. Pirst, in only one equation does a population
variable enter, whereas a household variable is in
every equation. This supports the contention that
households, not population, are a better determinant
of travel. This is especially significant because
the previous procedure at NYSDOT relied exclusively
on population as the determinant of future traffic
volumes. Second, it is interesting to note that the
energy variable did not enter any of the equations.
In fact, its correlation with AADT was extremely
small. This variable was a statewide value, whereas
the rest of the data was of a finer detail. Unfor-
tunately, more detailed information on fuel supply
was not available. Perhaps with more detailed data
energy factors may become significant in these equa-
tions.

By using the elasticities derived from the re-

Figure 2. Interstats nomograph.
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gression equations, it is now possible to complete
the development of the forecasting model by substi-
tuting those elasticities into Equation 1. This
model is presented in EBquations 7-9. Por Inter-
states, .

AADT; = AADT,, [1 +0.228 (%A county automobiles)
+ 0.832 (%A town households)] (U]

For principal arterials,

AADT; = AADT,, {1 +0.572 (%A county households)
+ 0.670 (%A town population))] ®)

For minor arterials and major collectors,

AADT¢ = AADT,, {1 + 0.314 (%A town households) ®

To make the procedure even easier to use, nomo-
graphs were developed to provide faster estimates of
the growth factor (called 2), that portion of the
equation encompassing only the elasticities
(1 + e) 48X) + . . .). These nomographs are shown in
Pigures 2-4, along with example calculations demon-
strating their use.

To use these nomographs, the user needs to com~
pute the percentage change in the appropriate vari-
ables at the project site from the base year to the
horizon year. By using Pigure 2 (Interstates) as an
example, the variables would be county automobile
registrations and town households. The intersection

of those lines in the graph yields the growth fac-
tor. In the example, a 35 percent change in county

INTERSTATES

Civen: AADT (1980) = 25,600
County Autos, 1980 = 52,000
County Autos, 1996 = 69,160
Towm HH, 1980 - 2,200

Town HH, 1990 - 2,620

69,160 - 52,000

X4 County Autos = 52,000

= 332

. 2,620 - 2,200

X4 Town HH 2,200

= 192

From the nomograph = Z < 1.23

AADT (1990) = Z x AADT(1980)

= 1.23 x 25,600

= 31,488
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Figurs 3. Principel arterial nomograph.

1.2 1.3 L4 L5 100
. \ 2.3
PRINCIPAL ARTE 90
Given: AADT (1980) - 7,800
Town POP, 1980 = 5,700 2.2
Town POP, 1990 =~ 8,720
County HH, 1980 = 15,500 21
County HH, 1990 = 24,500
%A Town Pop = 8,720 - 5,700
+700 2.0
- 53X
XA County HH = &"‘sgg—-ﬁ?'_mi 1.9
»
= 58%
From the nowograph, Z = 1.73 1.8
AADT (1990) = Z x AADT(1980)
1
= 1.73 x 7,800 tad
= 13,494 1.7
{ 1.6
1.8

Figure 4. Minor arterial or mejor collector nomograph.

MINOR ARTERIALS & 1.5
HAJOR COLLECTORS -
Given: AADT (1980) = 1,500 1.4}
Town HH, 1980 =« 1,750
1.3
Town HH, 1990 = 2,485 T
o 2,485 - 1,750
XA Town HH —lj,TSE‘_
- 423

From the nomograph, Z = 1.13
AADT (1990) = Z x AADT(1980)

= 1.13 x 1,300

= 1,695

0.74

0.6




52

automobile registrations and a 20 percent change in
town households give a growth factor of approxi-
mately 1.23, which implies a 23 percent growth in
traffic from the present to the future year.

These models satisfy all of the criteria speci-
fied earlier. The procedure is easily used by any-
one with a hand-held calculator; no large computer
system is necessary. With the nomographs, the fore-
casting procedure becomes even easier to use. The
data needed to predict rural traffic volumes with
these models are readily available at the local and
regional levels. Historical trends for population
and households are found in census publications, and
automobile registration data are generally available
from either the state transportation or motor vehi-
cle departments. In addition, recent work at NYSDOT
has been directed toward compiling a reference di-
rectory for gathering transportation and energy data
at all levels of detail (3). This directory pro-
vides guidelines and suggestions for collecting this
type of information at the local, regional, and
state levels.

To use the forecasting procedure, a simple seven-
step outline was developed:

1. Determine functional class of roadway,

2, Determine town and county of roadway,

3. Collect base year AADT,

4. Collect base and horizon year data for re-
quired variables,

5. Calculate percentage change for each variable,

6. Calculate (or use nomograph to estimate) 2
factor, and

7. Calculate horizon year AADT.

The user's manual that describes this procedure was
developed and distributed to the regional offices of
NYSDOT (4). This manual included step-by-step in-
structions for using the procedure, the nomographs,
an example calculation, and the necessary data to
use the methodology.

TESTING THE METHODOLOGY

A sample of 100 sections from the state highway sys-
tem were selected to test this procedure. These
sections were selected because they were propor-
tional to the total number of sections for each of
the three service types, and each section had a
traffic count performed in 1975 and 1980. By using
the appropriate town and county values for the back-
ground varisbles, forecasts of AADT for 1980, based
on 1975 AADTs, were computed and compared with the
actual 1980 AADTs for each section.

The results indicated that the models performed
satisfactorily.

Avg

Forecast Avg
Roadway Error (% AADT
Interstates -4.54 12,180
Principal arterials 14.49 5,415
Minor arterials and 6.93 3,865

major collectors

The larger errors (for principal arterials, and
minor arterials and major collectors) are associated
with the smaller values of AADT. Errors of these
sizes will not have a large impact on any design de-
cisions,

The models overestimate future AADT on most of
these sections, but it must be remembered that in
the 1975-1980 time period an energy shortage caused
a drop in travel of S5 percent or more. Therefore,
the estimate of future AADT should be high. By ad-
justing the forecasts to account for the 1979 fuel
shortage, the models would perform even better.
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APPLICATIONS

There are many potential uses for the rural travel
forecasting model, Several possible applications
are presented in this section, and these deal pri-
marily with the project development process, which
is the main task for many state highway agencies,

The most obvious end direct use of this procedure
is for the estimation of the benefits for specific
highway system improvements. These projects can
range from relatively simple road widenings to
large-scale reconstruction of highway sections. The
procedure estimates future traffic volumes reason-
ably quickly and accurately, and thus allows the
analyst to examine many alternative projects with
minimal expenditures of time and money.

A second, related application would be as an aid
in the selection of the appropriate design for a
project. Answers to questions such as the number of
lanes and type of traffic control required are also
determined by the volumes on that highway segment.
The engineer can gain some insight into the future
needs of the area in order to scale the project to
meet those criteria.

The final application for the rural traffic fore-
casting model is the use of the procedure as a guide
in the identification of potential problem segments
of the state highway system (at least the rural por-
tion). Because the model is based on town- and
county-level variables, it is possible to identify
the towns and counties where traffic growth will be
the greatest and to focus on these areas for more
detailed examination. This will be of great assis-
tance in helping the planner estimate where the fu-
ture problems will be. As a corollary to this use,
it is possible to key the traffic counting program
to this information by concentrating on the areas
that show rapid@ growth (or decline) and by eliminat-
ing frequent counts in the areas that show a stable
situation. As the available funds for all phases of
highway work decline, this could be one of several
ways to reduce the cost of the traffic count program
without sacrificing much of its information.

PROBLEMS AND LIMITATIONS

Perhaps the most serious problem with the procedure
is one that is common to all forecasting tools: the
accuracy of the model is determined to a large de-
gree by the accuracy of the inputs, especially for
future values of the background variables. The
state provides a set of forecasts for county popula-
tion and households for S-year intervals, but there
is little information available for the other vari-
ables required in the procedure. Thus the question
is how to estimate future values for county automo-
bile registrations and town populations and house-
holds.

There are several ways to obtain future year es-
timates of the number of automobiles registered in
the county. The first and most obvious way is to
check with the state departments of transportation
or motor vehicles to see if they have some forecasts
of that sort. If that fails, or the local planner
wishes to check those forecasts, there are other
ways to forecast future automobile registrations.
The easiest is to calculate the average annual
growth rate from the historical data (in this case,
1973-1980 data), and assume an increasing, decreas-
ing, or constant rate for the future. This method
doea not incorporate any concern about reaching a
saturation point, but it may be reflected by alter-
ing the projected growth rate. Another way, which
accounts for the saturation problem, is to examine
the trend of historical automobiles per person in
the county, and then carry that trend out to the fu-
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ture until this value reaches a predefined satura-
tion point. Then, by multiplying this trend by the
county population, estimates of future year county
automobile registrations are developed.

The various ways to obtain future values for both
town population and households are virtually identi-
cal, and will be considered together. These methods
also parallel the ones used to estimate county auto-
mobile registrations in the future: The first and
simplest way is to calculate an average annual
growth rate for the town and carry it over into the
future. Of course, the analyst can adjust this rate
to more closely reflect the local situation. This
method, however, does not guarantee that the sum of
the town values will equal the county total (pro-
vided already) for a given year. This is not a real
problem for localized projects, but it could prove
to be a significant error in larger undertakings.
Therefore, a somewhat more complex way may be con-
sidered. 1In this method, the town's proportion of
the county total is calculated for two points in
time. Depending on the difference between them, it
may be assumed that the town's proportion increases,
decreases, or remains constant out to the horizon
year. Although these procedures are not elegant,
they do provide several options for the local ana-
lyst to use to meet the data requirements of the
rural travel forecasting models.

One other major problem encountered while using
this new forecasting tool deals with the applicabil-
ity of the model in various areas. How does the
analyst decide that the project area is rural enough
for the model? Obviously, the model should not be
used to estimate future traffic volumes in the cen-
tral city, but what about the rest of the areas? It
is difficult to develop guidelines to assist in this
decision. Perhaps the best advice to give here is
to use this model in conjunction with. any other
travel forecasts (e.g., from the assignment network
in the fringe of the urbanized area) that deal with
the same area, If no other forecast exists, then
the area may be assumed to be adequately represented
by this model. As experience is gained in the use
of this procedure, better guidelines may be de-
veloped. )

Finally, the model formulation assumes that the
elasticities are constant over time, but the regres-
sion derivations do not ensure this. Historically,
travel has been growing at a fairly constant rate
for many years. After the interruptions caused by
the two fuel shortages, travel growth resumed that
rate in a short time. Therefore, it was believed
that assuming constant elasticities would not intro-
duce any substantial errors.

In addition, a log-linear form to estimate the
elasticities, which ensures constant elasticities,
was tested. The form of the equation is

Y=ag+a, InX; +2,In X, +... (10)

where a;, aj, . . . are the elasticities. The
results were not significantly different from the
original models (as shown in the following table),
and this provides further evidence to support the
assumption of constant elasticities from the linear
regression formulation.
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Elasticities
Roadway Linear Log-Linear
Interstates -4.54 9.98
Principal arterials 14.49 13,19
Minor arterials and 6.94 6.50

major collectors

Overall, few problems have been identified during
the initial uses of these models. The problems pre-
viously identified were the only significant ones
experienced to date. As local planners begin to use
this procedure more often, some of the subtler
shortcomings may surface, but they are not expected
to be major concerns. It must be kept in mind that
the end use for the forecasted volumes is the design
of rural highway projects. These volumes are gen-
erally low enough so that large errors (on the order
of 20 to 50 percent) will not cause a significant
change in the design criteria.

Finally, it is important to note here that this
model is not intended to be the perfect forecasting
tool, if such a thing could ever exist. Rather, it
is to be used by the analyst as one way, among many,
to estimate future travel on the rural highway sys-
tem. The user is expected to weigh the results in
terms of the local situation, and adjust them ac-~
cording to his judgment of the specific area and ap-
plication.
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Respondent Trip Frequency Bias in On-Board Surveys

LAWRENCE B. DOXSEY

In this paper it is shown that on-board surveys are burdened with an in-
herent and serious sampling biss. The source and implications of this bias
are presented, and a simple statistical correction procedure is developed.
An example is used in which the bias leads to a 50 percent overestimate
of average tripmaking by users and a 33 percent underestimate of the
number of transit users in the population.

On-board surveys are the most commonly used mecha-
nism for the collection of disaggregate data about
public transit patrons. For many operators, on-
board surveys are conducted on an annual basis and
provide them with their only source of information
on the users of their systems. The attractions of
this survey technique are both strong and obvious.
Compared with other survey procedures, on-board sur-
veys are inexpensive to both develop and administer
and they guarantee that all respondents will be
transit users. Thus fairly modest resource expendi-
ture can generate a substantial volume of user in-
formation.

Unfortunately, on-board surveys are also burdened
with a number of disadvantages. Frequently acknowl-
edged among these is the general low response rate,
often 25 to 50 percent, with the possibility of se-
vere nonresponse bias. Also widely recognized is
the inherent need for brevity and hence the relative
paucity of information on each respondent. Other
difficulties relating both to the method of adminis-
tration and to limitations on the information re-
. ceived have been identified and could be mentioned
here. However, one fundamental and potentially se-
rious drawback to on-board surveys has been quite
generally overlooked. This is the problem of selec-
tion bias, which results from using transit passen-
ger trips as the sampling frame for interviewing
transit users. This particular form of selection
bias is referred to in this paper as respondent trip
frequency bias., It is the purpose of this paper to
isolate the source and implications of respondent
trip frequency bias in on-board surveys and to offer
a simple statistical weighting procedure that can
correct it.

SELECTION BIAS

Selection bias results when the probabilities with
which sample units are actually drawn differ from
the probabilities with which they are believed or
perceived to have been drawn. The relationship of
the sample to the population consequently differs
from what it is thought to be and, in turn, esti-
mates based on the sample are biased, Selection
bias commonly occurs either if the pattern of nonre-
sponse is such that the actual probability of an in-
dividual unit appearing in the sample is unknowingly
correlated with variables under study, or if the ac-
tual sampling procedure differs from the sampling
design. Selection bias constitutes a broad class of
problems in survey sampling (l). The on-board sur-
vey respondent trip frequency bias addressed here
belongs to the latter category. In other applica-
tions, identification of and correction for selec-
tion bias are routine steps in the analysis of sur-
vey data. However, with the exception of a few
specific and sophisticated applications (2), the
presence and implications of selection bias in on-
board surveys has been commonly overlooked.

In an on-~board survey the sampling frame is the
set of passenger trips taken during the sample pe-

riod. However, much of the subsequent analysis, and
much of the motivation for conducting a survey at
all, involves identifying the characteristics of the
users of the system. It is significant that in con-
ducting the analysis, the observations are treated
as if the sampling frame had been system users
rather than system trips, and each respondent is
treated as if he had an equal probability of appear-
ing in the sample. This is in error because the
probability of an individual user appearing in the
sample is directly proportional to the number of
transit trips that user makes during the sample
period.

Individuals who take many trips are far more
likely to appear in the sample than are individuals
who take few trips. Potentially severe selection
bias occurs because the assumed design probabilities
(i.e., those implicit in the analysis) differ mark-
edly and systematically from the actual probabili-
ties. From a sampling viewpoint, the relationship
between trips and users can be regarded as an im-
plicit stratification of users on the basis of their
respective individual trip rates. This interpreta-
tion allows viewing respondent trip frequency bias
in the endogencus variable stratification context of
Hausman and Wise (3), although their work is couched
in terms of explicit rather than implicit stratifi-
cation.

WHAT RESPONDENT TRIP FREQUENCY BIAS MEANS FOR

- ON-BOARD SURVEY RESULTS

Because differences in individual travel frequencies
give rise to the bias, it may be intuitively clear
that its most critical impact is on estimates of
patrons' mean transit use. Relative to the popula-
tion, the sample has an overrepresentation of fre-
quent users and an underrepresentation of infrequent
users. A linear average of responses to the ques-
tion of frequency of use will provide an estimate of
the population mean that is biased sharply upward.
An estimate of mean frequency of travel based on an
on=-board survey is often used with total boarding
counts to estimate the total number of patrons and
hence the market penetration of the transit systenm.
An upward bias to the mean frequency estimate will
imply a downward bias to the estimated total number
of users and the degree of market penetration.

Although the consequences are greatest for esti-
mates of mean travel frequency, bias also results
for any characteristic that {8 correlated with
travel frequency. For example, if an analyst wants
to determine the income distribution of transit
users, and if low-income people generally take fewer
transit trips than do middle-income people, then the
estimated income distribution of wusers will be
biased from those with low incomes and toward those
with middle incomes. Overall, the distortions can
be large enough that the on-board survey provides a
misleading picture of the user population.

CORRECT WEIGHTING PROCEDURE

Although the problem of respondent trip frequency
bias in on-board surveys is serious, application of
a relatively simple statistical correction can elim-
inate the bias. The correction involves the use of
individual travel frequencies to develop weights for
each observation, whereby observations are weighted
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by the ratio of their relative frequency in the pop-
ulation to their relative frequency in the sample.
The individual weights are as follows:

w; =n/64 ;i uf,) m

where

w; = weight assigned to the ith observation,

f; = transit travel frequency of the ith respon-
dent, and

n = total sample size,

The weights calculated from Equation 1 take
larger values for observations on infrequent travel-
ers and smaller values for observations on frequent
travelers. In calculating the relative frequency of
the occurrence of various characteristics in ' the
user population, an observation contributes a share
equal to the value of its weight rather than con-
tributing a unit amount, Thus an unbiased estimate
of the share of the user population in a given in-
come bracket is equal to the sum of the weights for
all respondents in that income bracket divided by
the sum of the weights for all respondents. It may
be worth noting that the weighting procedure is
self-normalizing in that

w; = n.

_{fM:

That is, the sum of the weights taken over all re-
spondents equals the number of respondents.

For variables that are not categorical, estimates
of population values are made by using the weights
multiplicatively with the variables., For example,
if the on-board survey had continuous data on income
rather than categorical variables, an unbiased esti-
mate of the mean {ncome level of users would be made
by summing all observations of the product of the
individual weight values and income level and then
dividing this summation by the total number of us-
ers. This is also the procedure by which the mean
transit trip frequency is calculated. Thus the fol-
lowing equation provides an unbiased estimate of av-
erage number of trips taken by users:

us ( z f.w‘)/n @
i=1

where u is the mean fregquency. This compares with
an estimate of the mean calculated as

in instances where the effect of respondent trip
frequency bjias is ignored. As a direct estimate of
the mean trip frequency, Equation 2 can be simpli-
fied to

u= "/(|£. 1 /f.) 3)

It should be evident that with nearly any analy-
sis, software package calculation and application of
weights to correct for respondent trip frequency
pias can be easily accomplished. 1In the next sec-
tion an example that should underscore the impor-
tance of this correction is given.
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ILLUSTRATIVE EXAMPLE

In this example data are used from an on-board sur-
vey conducted in Atlanta during May 1979 as part of
a project sponsored under the Service and Methods
Demonstration program of UMTA. The demonstration
project was designed to study the impacts of fare
integration of a monthly transit pass that had been
introduced to the Metropolitan Atlanta Rapid Transit
Authority (MARTA) system in March 1979. Interviews
were conducted with 4,672 people during the on-board
survey.

The survey results provide clear evidence of the
importance of correcting for respondent trip fre-
quency bilas. When the observations are properly
weighted, the average user 1is estimated to take
eight trips per week on MARTA., If the weighting is
ignored, the estimate is 12 trips per week. Thus in
this example the influence of respondent trip fre-
quency bias is to overstate the mean trip frequency
by 50 percent. Bias of 30 to 60 percent could well
be found in most on-board surveys.

Bias in estimating mean user trip frequency is
reflected in estimates of the total number of us-
ers. Por May 1979, MARTA counts indicated a total
of 5.4 million boardings. If the unbiased estimate
of mean trip frequency is used, a total of 161,000
persons are estimated to use the system. The uncor-
rected estimate of the mean implies an estimate of
107,000 system users. The indicated market penetra-
tion of the MARTA system differs substantially be-
tween the two estimates. The former suggests that
8.7 percent of the area's population are system us-
ers, whereas the latter indicates that only 5.8 per-
cent are users (note that these data are based on
U.8. Census estimates of 1.852 million people in the
Atlanta standard metropolitan statistical area as of
July 1, 1978).

The data in Table 1 give a further illustration
of the effect of respondent trip frequency bias. In
the table the household income distributions of us-
ers are presented based on unweighted, and hence in-
correct, data and on the same data properly
weighted. Also in the table are the respective
within-group mean weekly transit trip frequencies.
Although the share of riders in any one income group
is not more than a few percentage points wrong, the
income distribution calculated without correcting
for respondent trip frequency bias is biased toward
lower-income people. When corrected, people with
household incomes of §$15,000 and greater appear to
compose 28 percent of the users as compared with the
22 percent they appear to compose with the un-
weighted data. This bias in the income distribution
is the direct consequence of a lower average transit
trip frequency at higher incomes.

It is also worth observing that the impact of re-
spondent trip frequency bias is not constant across
income groups. The overstatement effect of the bias
on the within-group trip frequencies ranges from 39

Table 1. Income distribution of MARTA system users.

Without Weights to With Weights to Cor-
Correct for Respon- rect for Respondent
dent Trip Frequency Trip Frequency
Bias Bias
Household
Income Users  Mean Weekly Users Mean Weekly
Range ($) (%) Trips (%) Trips
< 5,000 23 12.3 23 8.0
5,000-9,999 32 12,8 - 28 9.0
10,000-14,999 23 12.5 23 8.8
15,000-24,999 15 10.8 18 6.7
> 25,000 7 10.0 10 5.7
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percent for the §5,000 to §9,999 group to 75 percent
for the $25,000 and greater group. The difference
results from differences among the groups in the
underlying trip frequency distributions. In gen-
eral, the greater the dispersion of trip frequencies
across group members, the greater will be the rela-~
tive bias.

SOME GUIDELINES FOR USE

Although no great difficulty is presented in calcu-
lating weights to correct for respondent trip fre-
quency bias, the survey instrument must be written
to provide information on individuval trip fre-
quency. A precise count of transit trips taken dur-
ing the survey period is the ideal situation. Com-
plete accuracy is, however, too much to expect, and
an adequate alternative is the number of transit
trips taken within the previous 7 days or the number
typically taken in a week. It can be an aid to the
thought process of the respondent to ask for total
use through questions about its components. Thus a
survey form could ask for the number of transit
trips to work during the previous 7 days, the number
of transit trips from work during the previous 7
days, and the number of transit trips to or from
places other than work during the same time period.
Note that although measurement error creeps in with
any form of question, the need is not so much to
distinguish the person who takes 8 trips from the
one who takes 10 trips as it is to distinguish the
person who takes 2 or 3 trips from the one who takes
10, 12, or more trips. Purthermore, even if ques-
tions are written precisely, the accuracy of re-
sponses to on-board surveys is sufficiently unsatis-
factory, especially with the common practice of
self-administration, so that It is unrealistic to
expect the instrument to distinguish fine grada-
tions. Thus substantial improvement can be made
even when working with four or five categorical re-
sponses.

Lest the case appear to have been made too
strongly, there are instances when unweighted data
are appropriate. When the analyst's interest lies
not with the users of the system but with the trips,
then the unweighted data provide an unbiased pic-
ture. Nevertheless, care should be taken to dis-
tinguish between reporting that some 55 percent of
all syster trips are taken by people with household

- 2. 8. Lerman and S. Gonsalez.
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incomes less than $10,000 (which is the case in
Table 1) and reporting that 55 percent of users have
household incomes less than $10,000 (which exceeds
the unbiased estimate by 4 percentage points). To
the extent that the role of a transit system is the
provision of service to a region's population, un-
derstanding the user population and measuring market
penetration are crucial. Neither can be accom-
plished with unweighted on-board data.

FPINAL COMMENTS

The focus of this paper has been exclusively on one
fundamental and dramatic source of bias in on-board
surveys. This is not to suggest that on-board sur-
veys are otherwise above reproach. Among the ave-
nues for improvements to on-board surveys are
optimal use of the clustering implicit in drawing
observations through bus runs, development of tech-
niques to increase response rates, and application
of procedures for efficient stratification so as to
minimize the variance of estimates. Nevertheless,
incorporation of the weighting procedure presented
in this paper can do much to increase the validity
of on-board surveys conducted, even without benefit
of sophisticated sampling techniques.
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Bus, Taxi, and Walk Frequency Models That Account for
Sample Selectivity and Simultaneous Equation Bias

JESSE JACOBSON

A 2-year user-side subsidy experiment that provided the handicapped and the
slderly with discounted coupons to be used on buses and taxis was conducted
in a small northeastern metropolitan city. The effect of the user-side subsidy
sxpsriment on bus and taxi travel by the siderly population is described. As
expected, the subsidy experiment incressed the number of trips taken by bus
and by taxi. Furthermors, able-bodied siderly persons who do not own auto-
mobiles and handicapped siderly persons who ars sither smployed or students
are more likely to purchase discounted bus coupons than the population of
elderly persons és a whole. Also, the number of walk trips was not affected by
the number of bus and taxi trips taken. Therefore, people who have partici-
pated in the subsidy program have enjoyed a net increase in mobility (in the
form of additional bus and taxi trips) because bus and taxi trips have not
simply replaced walk trips.

Starting in July 1978 and for 24 consecutive months
thereafter, the U.S. Department of Transportation
(DOT) conducted an experiment of user~side subsidies
for public transportation in Lawrence, Massachu-
setts, a small metropolitan city north of Boston. A
select group of individuals--the elderly (65 years
and older) and the handicapped of all ages--was eli-
gible to receive financial assistance in the form of
a reduced bus fare (the regular bus fare for elderly
and handicapped persons was $0.15, but only $0.01 if
project coupons were used) and a 50 percent discount

on taxi rides (the discount was limited to $1.25 per.

ride and $20 per month). To establish eligibility
individuals were to register at a downtown office,
which was also the only location where discount cou-
pons for bus and taxi rides could be purchased.

In conjunction with the experiment, a sample of
individuals who were eligible to receive the assis-
tance was contacted and asked to report sociodemo-
graphic information and to record a diary of travel
for May 1978 and May 1979 (before the experiment and
during the tenth month of the experiment). Although
the total sample included both elderly and transpor-
tation-handicapped persons, only the aubsample of
the elderly (handicapped and able-bodied persons)
was selected for this study. PFrom this group, 130
completed returns were available; 48 percent of
these returns were from transportation-handicapped
persons, and 40 percent of the returns were from in-
dividuals who chose to become project users.

The purposes of this paper are to measure the
travel impact of the experiment on the elderly popu-
lation and to understand the reasons that attracted
some of the eligible population to purchase dis-
counted coupons and to use bus and taxi for their
travel.

There is a problem in measuring the impact of the
project because the purchase of the discounted cou-
pons is prompted by expected benefits and other ex-~
ogenous factors that are not fully measurable. If
the incidence of these factors was known, the vari-
ables that identify them could be used in the analy-
sis. Unfortunately, these variables are often not
known or measured; thus in this paper a method to
represent their effect is presented.

In the following sections two models that measure
bus and taxi trip frequency, and a model that mea-
sures the number of walk trips, are presented. The
latter model is used to determine whether walk trips
are being replaced by bus or taxi trips.

PROBLEM OF SELF-SELECTION TO TREATMENT

Although the goal of this research is to measure the
effectiveness of the project in increasing travel
mobility, it is recognized that the inevitable limi-
tations of the data generate issues that the model
has to deal with explicitly. This is so, in partic-
ular, because the choice of becoming a project user
(i.e., registering in the project and purchasing the
discount coupons) rests entirely on the individuals
who participate in the survey. Therefore, a defini-
tion has to be found for the following dichotomous
variable for individual ¢, )

1 if individual purchases discounted coupons
d, = 1
0 otherwise

and for the following model of travel demand,

Yo =B + 8 + € @
where
Y. = number of trips taken by individual t;
g8 = column vector of coefficients;
X = column vector of independent variables;
§ = a scalar, which is the coefficient of the

dichotomous variable d.; and
€y = stochastic component og the model.

At first glance it would appear that § would rep-
resent the effect of the project. However, those
who became project users did so because, as a gen-
eral rule, they expected their travel demand to be
higher than otherwise, and those who chose not to
become users did so because they did not expect
their travel to increase by becoming users, In
other words, the benefits that users derive from
purchasing the discounted coupons are larger than
the benefits foregone by nonusers. This implies
that 4y and ¢, are correlated; thus the modél
of trip generation that was proposed could not be
estimated either. by ordinary regression or by con-
ventional cross-classification, a method that as-
sumes, much like ordinary regression, independently
distributed stochastic components.

As mentioned previously, if it was possible to
measure all the variables that determine project
participation, the variables could be incorporated
in the analysis explicitly. However, because some
of these variables are unmeasured, it is necessary
to consider 4, as being an endogenous variable.
Thus the estimation of a model that recognizes this
endogenicity, which is also called selectivity bias,
is presented. The theoretical ijustification for
such a model is straightforward, and the reader is
referred to the extensive literature on the subject
(1,2) for more detail.

BUS FPREQUENCY MODEL

Purchase of discounted coupons for bus travel is
clearly a major factor in the frequency with which
individuals take bus trips. However, as discussed
earlier, the use of the variable that represents the
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observed purchase decision in the model could yield
inconsistent estimates of the project effect because
of the likely presence of sample selectivity. Ac-
cordingly, the bus frequency model ig estimated by a
two-stage procedure first proposed by Maddala and
Lee (3). The procedure requires estimation of a
probit model of the decision to purchase discounted
bus coupons, and estimation of a model (which incor~
porates as an independent variable the expected
value of the dependent variable of the probit) of
bus trip frequency.

The probit model of purchase of discounted bus
fares is estimated from data on the actual purchase
of these fares in May 1979. The observed dependent
variable of the model is equal to one if bus coupons
were purchased (in May 1979) and zero otherwise.
The probability of purchasing discounted bus coupons
(i.e., the expected value of the dependent variable)
is equal to #(y'Zy), where 2, is a column
vector of independent variables, y is a column
vector of coefficients, and ¢(.) is the cumulative
of the standard normal distribution. The estimated
coefficients (y), together with some goodness-of-
fit measures, are given in Table 1. Although the
probit was formulated as a single-equation model,
different coefficients were estimated for able-
bodied and transportation-handicapped persons.

Table 1. Probit estimates of use of bus coupons.

Asymptotic

User Coefficient  t-Statistic
Able-bodied person

Constant -0.945 3.2

Zero automobiles in household 0.711 1.7

Bus trips in May 1978 0.0678 2.5
Transportation-handicapped person

Constant -0.856 3.1

Employed or student 2.09 2.9

Bus trips in May 1978 0.281 36

Note: Log-likelihood with estimated coefficients = —50.16, log-likelihood with
constants alone = -74.86, log-likelihood ratio statistic (4 df) = 49.4, number of
observations = £30, 85.4 p of ple was ly classified, 10.8 pecrcent
of sample was erroneously classified as snd 3.8 p of ple wss
erroneously classified as user.

For able-bodied elderly persons, automobile own-
ership (a zero-one variable) was found to affect the
purchase of bus coupons significantly, whereas for
transportation-handicapped persons, the most impor-
tant variable was that of employment and student
status, again a zero-one variable. The log-likeli-
hood ratio statistic is equal to 49.4, a value that
allows rejection, with a large level of confidence,
of the hypothesis of no effect of the independent
variables,

The second-stage model--a limited dependent vari-
able model of the number of bus trips--is estimated
from bus trips reported in the May 1979 diary sur-
vey. As discussed earlier, instead of including a
zero-one variable for actual coupon purchase (or
nonpurchase), the probability of being a project
user is included in this model, i.e., the expected
value of the dependent variable from the probit
model. This ensures that the coefficient for the
bus coupon purchase variable is consistent because
sakple selectivity is accounted for. A single-equa-
tion specification is again used for the groups of
able-bodied and transportation-handicapped persons.
The estimated coefficients are given in Table 2.

To test the effectiveness of the program, further
statistical tests are performed on the subsample of
actual project users. Specifically, the expected
number of bus trips of project users, had they been
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Table 2. Estimates of May 1979 bus trips (limited dependent variable
model),

Asymptotic
User Coefficient  t-Statistic
Able-bodied person
Constant -6.07 2.5
Probability of being a user for 28.7 2.2
individuals who are neither students
nor employed
No. of bus trips in May 1978 0.791 1.9
Transportation-handicapped person
Constant -10.1 3.9
Probability of being a user 23.4 43
No. of bus trips in May 1978 0.630 4.2
[ 104 10.6

Note: y*=XB8+e¢

v ={o ity® <0.s
y* otherwise

and log-likelihood with estimated coefficients = -270.36, log-likelihood with
constants slone = -318.01, log-liketihood ratio statistic (4 4f) = 95.3, and num-
ber of observations = 130.

nonusers, is compared with the actual number of bus
trips taken. Because the distribution of the number
of trips is truncated normal, the probability that
the expected number of bus trips (conditional on
nonpurchase of the project coupons is lower than the
actual number of bus trips) is written as (X'Ss - u)/
o, where g is a column vector of coefficients, X
is a vector of independent variables, ; is the ac-
tual number of bus trips taken in May 1979, and ¢
is the standard deviation of the underlying non-
truncated distribution of the stochastic component
of the model. For the subsample of program users,
this probability averages 80 percent, and the Pear-
son's Py is 252.90 with 70 4f, a value that
clearly permits rejection of the null hypothesis of
no-project effect on bus travel. Note also that the
mean number of bus trips for the individuals who
purchased discounted bus coupons in May 1979 |is
16.51, whereas the mean expected number of bus trips
for the same individuals, had they been nonusers, is
4.70, a difference of approximately 12 monthly trips.

TAXI FREQUENCY MODEL

The estimation of a probit model of taxi coupon pur-
chases did not yield acceptable results., Specifi-
cally, standard statistical tests pointed to the low
explanatory power of the model. Several different
specifications of the probit model were tested, but
those also met with little success.. Although it

. would have been possible to investigate the .failure

of the probit formulation to yield a satisfactory
model, doing so would have been beyond the scope of
this research. As a consequence, the two-stage pro-
cedure adopted for the bus frequency model was re-
placed by a simpler model. This model, which mea-
sures the monthly taxi trips taken, includes as an
independent variable the actual purchase (or nonpur-
chase) of taxi coupons in May 1979 (a zero-one vari-
able) and not the expected value from a probit model.

It i8 recognized that the coefficient estimate of
the coupon purchase variable will be biased because
of its endogenicity. However, it should be men-
tioned that this endogenicity is expected to be much
less severe in the taxi model than in the bus model,
particularly because the subsidy is only 50 percent
(versus 93 percent for bus trips) and it is more
limited in availability (the maximum taxi subsidy is
$1.25 per trip and $20.00 per month per person).
Accordingly, although the model presented in the
following paragraphs has some evident limitations,
it was decided to include it {n this paper for com-
pleteness.
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The taxi frequency model, like the model for bus
travel, is a limited dependent variable model. Aas
for the previous model, the taxi trip rate cannot be
negative, and 79 of the 130 persons in the sample
(61 percent) did not take any taxi trips in May
1979. 1In addition to the zero-one variable for in-
dividuals who purchased taxi coupons, the number of
household automobiles has, as expected, a signifi-
cant effect on taxi trip frequency (see Table 3).

Table 3. Estimates of May 1979 taxi trips (limited dependent varisble
model).

Asymptotic
Item Coefficient  t-Statistic
Constant ~7.54 4.6
No. of household automobiles 3.48 2.1
No. of taxi trips in May 1978 0.812 8.5
Purchased taxi coupons (1 if yes, 9.10 5.3
0 otherwise)
o 6.91 9.6

Note: y*=s X8 +e
ye 0 ify*<o0.s
y*® otherwise
and log-likelihood with estimated coefficients = -199.56, log-likelihood with

constant alone = -247.35, log-likelihood ratio statistic (3 df) = 95.6, and num-
ber of observations = 130.

To test the effectiveness of the program in in-
creasing taxi travel, statistical tests identical to
the ones used for the bus travel model are applied
here. Specifically, Pearson's P (which has a
value of 167.92 for the subsample of the 30 individ-
vals who are taxi coupon purchasers) asllows rejec-
tion of the null hypothesis of no increase in taxi
travel because of project participation. The analy-
sis also indicates that the mean number of taxi
trips taken in May 1979 by taxi coupon purchasers is
8.6, whereas the expected value conditional on non-
purchase is 3.45 taxi trips for the same group of
individuals, a difference of approximately § trips
per month,

WALK TRIPS FREQUENCY MODEL

Although vehicular trips in general, and bus and
taxi trips in particular, increased as a result of
the user~side subsidy, it was hypothesized that some
of the new vehicular trips might have replaced what
were formerly walk trips. To test this hypothesis a
walk frequency model that includes bus and taxi trip
frequency as explanatory variables is estimated.

Because bus and taxi trips are endogencus to the
walk trips model (i.e., the models for each travel
mode are part of a system of structural equations),
it was decided to use the expected trip rates from
the models presented in the previous two sections as
instruments instead of using the observed trip rate
for bus and taxi trips.

The specification chosen for the estimation is
again a limited dependent variable model. As for
the previous models, the walk trip rate cannot be
negative, and 17 of the 130 persons in the sawple
(13 percent) Aid not take any walk trips in May
1979. The coefficient estimates for the model are
given in Table 4. If bus and taxi trips were actu-
ally replacing potential walk trips, the coeffi-~
cients of the frequency of bus and taxi trips would
be negative (and statistically significant). The
results, however, reveal these coefficients to be
positive and not statistically different from sero,
which indicates that the hypothesis of modal substi-
tution is unlikely to be valid,
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Table )4 Estimates of May 1979 walk trips (limited dependent variable

Asymptotic
Item Cocfficient  t-Statistic
Constant 0.40 0.13
Expected no. of bus trips in May 1979 0.15 0.85
Expected no. of taxi trips in May 1979 0.43 1.3
No. of walk trips in May 1978 0.79 18.0
[ 20.7 15.0

Note: y* = XS+ ¢
y= { 0 ify*<o0.s
y*® otherwise
end log-likelihood with estimated coefficients = -515.862, log-likelihood with

constant slone = —602.458, log-likelihood ratio statistic (3 4f) = 173.19, and num-
ber of observations = 130.

CONRCLUSIONS

The models presented in this paper have confirmed
quite strongly the a priori hypothesis regarding
travel by bus, taxi, and walk. The large increases
in bus and taxi travel observed in May 1979 by those
individuals who purchased discounted coupons can be
directly attributed to the project. Also, it was
shown that the increase in bua and taxi trips was
not achieved at the expense of walk trips. Rather,
the .additional bus and taxi trips were trips that
would have not been taken in the absence of the sub-
sidy project.

The data in Table 5 further confirm the findings
of the models. Note in particular the increase (be-
tween 1978 and 1979) in bus trips for bus subsidy
users (i.e., for those individuals who purchased bus
coupons), and the increase in taxi trips for taxi
subsidy users. These increases are much larger than
the increases for the sample as a whole and for the
subgsample of nonusers of the program.

Table 6. Trip rates by mode and project participatior. status.

Project Participation Status
Project
Users, Taxi Project Project
Month All Sample and Bus Bus Users  Taxi Users
Mode and Year (n=130) (n=49) (n=35) (n=30)
Bus May 1978 3.52 7.18 9.97 8.27
May 1979 6.22 12.82 16.51 11.77
Taxi May 1978 2.43 3.69 3.83 5.33
May 1979 3.22 5.57 437 8.6
Walk May 1978 40.27 49.27 54.54 42.9
May 1979 37.12 44,98 49.69 39.93
All May 1978 109.05 100.00 103.63 100.67
modes May 1979 106.69 99.61 104.14 99.37

Walk trips are mostly unaffected by program use,
which confirms the findings of the model of walk
trips. Note that only bus subsidy users take a
larger number of walk trips than other groups.
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Effect of Sample Size on Disaggregate Choice Model

Estimation and Prediction
FRANK S. KOPPELMAN AND CHAUSHIE CHU

Sampling error is one of several types of error in econometric modeling. The
relationship betwsen sampling error and sample size is weil known for both es-
timation and prediction. The objective of this paper is to provide an empirical
foundation for using these relationships to guide researchers and planners in the
determination of sample size for model development. Analytic relationships
are formulated for sample size, precision of parameter estimatas, replication of
perent population, and replication of an alternative (transfer) population. Ap-
plication of these relationships to an empirical case indicates that the sample
sizes required to obtain reasonably precise parameter estimates are substantially
larger than the sample sizes generally considered to be needed for disaggregate
model estimation. Nevertheless, these sample sizes appear to be adequate for
obtsining reasonably accurate replication of observed choice behavior in the
parent population. The corresponding results for prediction to a different pop-
ulation are complicated by the issue of intrapopulation transferability. Al-
though the results reported in this paper should be validated in other contexts,

. it appears that accurate estimation requires the use of samples that are sub-
stantially larger than formerly believed. Samples on the order of 1,000 to

- 2,000 observations may be needed for estimation of relatively simple disaggre-
gate choice models. Although some reduction in this requirement may be ob-
tained by improved sample design, it is unlikely that the final sample require-
ments can be reduced to less than 1,000 observations.

Econometric model development {s subject to errors
in sampling, model specification, and measurement
(1,2). In this paper the effect of sampling error
is examined for model parameter estimates, predic-
tion to. the parent. population, and transfer predic-
tion to alternative populations. Sampling error can
be avoided only by observation and analysis of the
entire population. In practice, the resources
needed to collect data for an entire population and
to analyze such extensive data are not available,
Thus there is concern with the magnitude of the er-
rors that are introduced by use of samples of the
population.

EXPECTED EFFECTS OF SAMPLE SIZE

The precision of parameter estimates for a given
model structure depends on the estimation method
used, the multidimensional distribution of the ex-
planatory variables of the model, the range of ob~
served behavior, the quality of model specification,
and the sample size of the estimation data set.
Maximum likelihood estimation obtains consistent
estimators of the parameters of disaggregate choice
models and provides estimates of the precision with
which model parameters are estimated (3-5).

The relationship between parameter precision and
sample size is well known. The variance-covariance
matrix of estimated parameters in linear models is
inversely proportional to sample size (3,6). The
variance-covariance matrix of maximum 1likelihood
estimated parameters for quantal choice models is
asymptotically equal to the negative inverse of the
Hessian of the log-likelihood function (3,7). The

- asymptotic expectation of this matrix is {nversely

proportional to sample size. Thus the error var-
iance-covariance matrix for maximum likelihood esti-
mations for quantal choice models is also inversely
proportional to sample size.

Prediction accuracy describes how well the choice
model replicates observed population behavior. Pre-
diction performance of discrete choice models is a
function of the validity of model theory, the valid-
ity of the derived model structure, the quality of
model specification, the quality of variable mea-
surement and prediction, and the accuracy of esti-
mated parameters (8). As noted earlier, precision
of wmodel parameter estimates i{s proportional to
sample size. It follows that the portion of predic- .
tion error attributable to errors in parameter esti-
mation is inversely proportional to sample size.
Specifically, the expected squared prediction error
caused by errors in parameter estimates is inversely
proportional to sample size (5, p. 189). Models
estimated from large samples are more likely to ac-
curately describe the behavioral process in the gen-
eral population, and consequently such models will
have satisfactory prediction performance. Thus it
is expected that increased sample size in model es-
timation will yield improved prediction precision.
When excessively small samples are used, both param-
eter estimates and parent population predictions
will be highly variable.

Transferability of disaggregate discrete choice
models is based on the argument that choice models
describe the underlying behavioral response wmecha-
nisms or decision rules of decision makers in the
selection among available alternatives (9,10). 1If
the behavioral response or decision rules of deci-
sion makers is constant across. contexts, models that
describe this behavior will be transferable. Kop-
pelman and Wilmot (1ll) define transferability of
choice models as "the degree of success with which
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the predictions obtained by model transfer describe
behavior in the prediction context.® Transferability
is a function of the quality of the model being
transferred and similarity of behavior between the
estimation and application contexts.

If choice behavior in the estimation and applica-
tion contexts is based on the same behavioral pro-
cess, the transfer predictive accuracy will be in-
creased with increasing estimation sample size. In
this case a model that is able to provide an accu-
rate description of choice behavior in the estima-
tion context will be able to provide an accurate
description in the transfer qr prediction context.
However, if the behaviors are different between con~-
texts, increasing sample size will not overcome
these differences.

The objective of this paper is to examine the ef-
fect of sample size on parameter stability, parent
population replication, and transferability of dis-
aggregate discrete choice models of multinomial
logit structure. 1In each case the expected rela-
tionship is formulated, an empirical analysis to
scale the relationship is executed, the implications
of the results obtained are identified, and the con-
clusions are stated. Also described in the paper
are the data used and the structure of the empirical
analysis undertaken.

DATA DESCRIPTION AND EXPERIMENTAL DESIGN
Data

The data used in this study are drawn from the Wash-
ington Council of Governments travel to work modal-
choice data collected in Washington, D.C., in 1968.
The data used describe the central business district
(CBD) work trips of 2,236 persons.
persons have drive-alone, shared-ride, and transit
alternatives available, and 468 persons have only
the shared-ride and transit alternatives because of
a lack of driver's license or cars available in the
household.

The data set is partitioned into three geographic
gsectors of the region according to worker residen-
tial location. Each sector includes approximately

Figure 1. Flowchart for experimental design.

A total of 1,768 .
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one-third of the sample observations. The partition
allows for the examination of the first two rela-
tionships (parameter precision and parent population
replication) within each sector and the investiga-
tion of the transferability prediction relationship
for six possible transfers between sectors.

Experimental Design

The experiment is constructed by defining the €full
sample in each sector as the population of interest,
and then subsamples of varying size are selected.
These subsamples are used to estimate multinomial
logit model parameters, predict choice behavior for
the population from which each sample is drawn, and
predict choice behavior in each of the other popula-
tions (different sectors). The flowchart of this
experimental design is shown in Pigure 1, which de-
scribes the sampling and estimation process and also
the data used in each step.

The first task of the experiment is to obtain
subsamples of each data set with varying sample
sizes, PForty-five sets of random subsamples are
independently generated within each of the three
sectors. Within each sector the number of individ-
uals in samples varies from approximately 50 to ap-
proximately 700.

The second task is to estimate travel modal-
choice models for each data sample. A nine-variable
model previously used in a related study of model
transferability (11) is used in this study. These
variables are described in Table 1. By using a
single-model specification, it is possible to ex-
amine the effect of sample size without any con-
founding effects caused by differences in model
specification. The estimation results for these
models that use the full set of cases (the popula-
tion) in each sector, as well as additional data,
are reported in Tables 2 and 3. These estimation
results serve as a reference point for the models
estimated with each data subsample. The subsample
estimation results are discussed later in this paper.

The third step in this study is to use the 45
models estimated in each sector to predict travel
choices for the full population in each of the three

NATURE OF DATA
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sectors. Thus each estimated model is used for
three predictions (one local and two transfer pre~
dictions). Population replication performance and
transferability measures are developed for each of
these predictions and used to interpret the model
accuracy relationships.

EFFECT OF SAMPLE SIZE ON PARAMETER PRECISION

Parameter precision is the inverse of the variance
of parameter estimates obtained in repeated sam-
ples. 1In this section the effect of sample size on
parameter precision is evaluated by comparing esti-
mated parameter values for each sample with the pop-
ulation parameters reported in Tables 2 and 3.

Relation Between Parameter Precision and Sample Size

The total available data sample is treated as the
population of interest, and the difference between
models estimated on subsamples and models obtained
from the population (full sample) is examined. As
all the data included in each subsample are also in-
cluded in the full sample, the parameter estimates
obtained from samples are not independent of param-
eter estimates obtained from the full data. The

Table 1. Model specifications.

Variable Name Variable Description

DAD, SRD Dummy variable specific to drive-alone and shared-ride
alternative; measures average bias between pairs of al-
ternatives other than that represented by the included
variables )

Cars per driver included separately as alternative specific
variables from the drive-alone and shared-ride modes;
measures the change in bias among modes caused by
changes in automobile availability within the househoid

CPDDA, CPDSR
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variance-covariance matrix of estimates of the dif-
ference between sets of parameter estimates ig

Z,=Z+Zp- 28y 1)y
where

I, = error variance-covariance matrix for dif-
ference between subsample and full sample
parameters (i.e., z = 84 = B8p)7

Igs tp = error variance for subsample and full
sample parameter estimates, respectively;
and

Zsp = covariance matrix of error between sub-
sample and full sample parameter esti-
mates.

When the subsample is a subset of the full sample
Igp = Ig (see Appendix),

T,=%,- %, e

which is a positive semidefinite covariance matrix
of the differences between parameter estimates ob-
tained from the full and partial samples. The ex-
pected relationship between the full and partial
sample error variances is

Ep =Z (Ns/Np) 3)

Thus, from Equations 2 and 3,

Z,= [(Np - Nl)/Np] Z, (42)
and
. = [(Np - N,)/N,] 2p (4b)

A standardized variable of differences is formulated
in parameter estimates (Q) by dividing observed dif-
ferences (z) by the standard error in population

OPTCINC Round trip out-of-pocket travel cost divided by income
(cents/$1,000 per year); measures the effect of travel estimates (sP) + i.e., square root of diagonal
cost on mode utility with cost effect modified by elements in Ipe
household income level
TVTT Round trip total travel time in minutes; measures the Q= z/sp 5)
linear effect of combined in- and out-of-vehicle travel
time in mode utility
OVTTD Round trip out-of-vehicle travel time divided by trip where Q is the difference between sample parameter
gifs;"t“ f(':‘e:‘l‘;{:st/ :ﬂel)t’m“l’:”;l::‘; ‘.ddé:;‘i)t?:; iget‘;l‘e and population parameter values in units of standard
ut-of- vel time in u in a
effect represented in TVTT; this added effect is struc- error of estimate for population parameters. Then
tured to decline with increasing trip distance the variance and 95 percent confidence interval of Q
GWSR Dummy variable that indicates if the breadwinner is a are
government worker specific to the shared-ride alterna-
tive; measures the effect on shared-ride utility of shared-
ride incentives for government workers V(Q) = (Np - Ng)/Ng (6a)
NWORKSR Number of workers in the household specific to the
shared-ride alternative; measures the change in utility of and
shared ride when there is an opportunity to share ride
with 8 household member -1.96 [(Np - N/N, % < Q° < 1.96 [(N, - NN, % (6b)
Table 2. Parameter estimates and standard errors.
Sector 1 Sector 2 Sector 3 Region
Estimated Standard Estimated Standard Estimated Standard Estimated Standard
Variable Parameter Error Parameter Error Parameter Error Parameter Error
DAD -3.30 0.425 -1.44 0.388 -2.73 0.402 ~2.67 0.226
SRD ~2.62 0.321 -1.92 0.277 -2.52 0.345 -2.35 0.175
CPDDA 4.06 0.426 2.70 0.382 3.58 0.396 3.41 0.227
CPDSR 2.06 0.319 1.67 0.235 1.59 0.315 1.717 Q0.159
OPTCINC -0.0138 0.0155 -0.0282 0.0139 -0.0280 0.0163 -0.0297 0.0084
TVTT -0.0459 0.0070 -0.0110 0.0050 -0.0223 0.0049 -0.0233 0.0031
OVTTD ~-0.0019 0.0668 -0.1068 0.0666 -0.0421 0.0781 -0.0588 0.0393
GWSR 0.775 0.179 0.481 0.166 0.680 0.163 0.648 0.096
NWORKSR 0.133 0.128 0.275 0.110 0.502 0.123 0.308 0.067




Transportation Research Record 944

Table 3. Estimation statistics for sectors.

Item Sector 1 Sector 2 Sector 3 Region
No. of cases 744 746 746 2,236
No. of observations 2,078 1,997 2,156 6,240
Log-likelihood at zero =755 ~722 -790 -2,266
Log-likelihood at convergence -580 -636 -688 -1,928
Likelihood ratio statistic 350 171 203 678
Likelihood ratio index 0.232 0.118 0.129 0.150

Thus the variance of this standardized measure,
given a particular model and population, is a func-~
tion of sample size only,

Scattergrams of estimates for the standardized
measure of the seven slope parameters defined in
Table 1 have been plotted against estimation sample
size for three different sectors, and they were
found to be similar. The scattergram for one param-
eter in all three sectors is shown in Fiqure 2,
along with the 95 percent confidence limits. As ex-
pected, the estimated parameters are distributed
around the true parameters, with the range .of the
distribution decreasing as the number of cases in
the estimation sample increases. It appears that
the mean of Q is approximately zero (as expected),
and its variance is described by Equation 6a. Fur-
ther, approximately 95 percent of the reported devi-
ations are within the expected range. Finally, as
expected, the distribution appears to be independent
of the estimation sector.

Parameter Precision and Required Sample Size

The deviations of sample parameter estimates from
population parameters for each sector and variable
are related to the standardized deviation (Q) by the
population parameter standard deviation (sp), as

Figure 2. Scattergram of parameter precision with 10
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shown in Equation 5. Thus the variance of observed
parameter deviations (zg) is

V(z) = 53 x V(Q)
= Sg x [(Np - Ns)/Ns] 7

which is a function of the estimation precision of
the parameter in the population and the sample
size. Thus it is possible to determine a priori the
sample size necessary to obtain a predetermined
level of precision in parameter estimates if the
population estimation precision and the population
size are known.

The interpretability of this relationship can be
improved by formulating an index of estimation pre-
cision that is independent of both population size
and sample size. Thus,

2= o (shx N) 8

This index, which can be estimated by

s3 =52 xNp (9a)
or
s2=52 x N {(9b)

characterizes the underlying precision of a param-
eter independent of population or sample size. This
index is used in Equation 7 to obtain

V(2) =53 [(Np - Ng)/(Np x No)J (10)

By using this formulation, the sample size required
to obtain a desired level of precision in parameter
estimation can be obtained as a function of popula-
tion size and as the precision index for the param-

eter of interest. Specifically, an Ng is sought
that satisfies

tas2 S [(Np - Ns)/(Np XNs)]% =z (1

estimation sample size.

Ratio of Parameter Deviations to Expected Standard Errors
o
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where t ,, 18 the t value associated with the
desired (a) confidence interval for z, and z* {s
the desired level of precision for parameter devia-

tions., Thus the required sample sgize is

Ng = [Ny + Ny (27/50 tas2) /11 + Ny (2% /54 14/2)?] a1z
which, when Np is large, simplifies to

N; = (s, tayy/2")? (13)

This relationship (Equation 12) is plotted in
Figure 3 for the case where the parameter deviation
(z) is to be within a prespecified fraction of the
parameter precision index (8s) with 95 percent
confidence.

Equation 12 (or Equation 13 for 1large popula-
tions) can be used to predetermine the sample size
regquired to obtain a desired level of parameter es-~
timation precision. This determination is based
only on prior knowledge of population parameter pre-

cision (ss) and population size. Estimates of
population parameter precision may be obtained by
reviewing estimation results of similarly specified
models in other contexts or by using a small data
sample. The use of small data samples to obtain in-

Figure 3. Required sample size with 95 percent confidence.
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formation to optimally design the sample collection
procedure for a given sample size has been treated
extensively by Daganzo (12).

The use of Equation 12 is demonstrated by calcu-
lating the sample size required to have 80 percent
confidence so that the absolute value of z ig less
than 25 percent of the true parameter value, (More
generally, this analysis can be undertaken by set-
ting limits to the deviations of each parameter
based on required or desired precisions in model
sensitivity and the differences in the corresponding
variable across plan alternatives. However, use of
an arbitrary proportional range provides useful in-
sight in an abstract context.) The calculation pro-
cess and results are given in Table 4. These re-
sults illustrate again that as population increases,
the number of sample observations needed to obtain

parameter estimates in a prespecified range in-
creases at a decreasing rate. When the population
is large (i.e., more than 100,000), the required

estimation sample size
finite population.
More important, the

approximates that for an in-

sample sizes required to ob-
tain what would appear to be a modest level of pa-
rameter precision are substantially greater than
those commonly used in the estimation of disaggre-
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Table 4. Confpumtiop of required umpl.e size to .c-b?ain Required Estimation of
parameter estimate with 80 percent confidence within Sample Size for Different
25 percent of true values. g s, Population Sizes
(see (see S.
Tables 2 z Tables 2 (From Nj = Np =
Variable and 3) (£0.25 8%) and 3) Equation 8b) 105.000 1,000,000
DAD -2.366 +0.5915 0.2261 10.69 533 536
SRD -2.349 +0.5873 0.1747 8.26 324 328
CPDDA 3.047 +0.8518 0.2268 10.72 . 260 261
CPDSR 1.767 +0.4418 0.1593 7.53 475 477
GWSR 0.6477 +0.1619 0.0962 458 1,276 1,291
NWORKSR 0.3084 +0.0771 0.0674 3.19 2,721 2,789
OPTCINC -0.0297 +0.0074 0.0084 0.39s§ 4,422 4,605
TVTT -0.0233 +0.0058 0.0031 0.147 1,032 1,042
OVTTD -0.0588 *0.0147 0.0393 1,086.0 20,756 25,523
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gate choice models. The sample size required is
substantially greater than the 300 to 500 observa-
tions that are commonly believed to be adequate for
estimation of disaggregate choice models (13,14) for
more than half of the model parameters. Use of the
smaller samples can be expected to produce parameter
estimates that have a high probability of being dif-
ferent from the true parameters. This problem is
most serious for level-of-service parameters in this
data set.

Conclusions

Two important observations are drawn from these re-
sults. Pirst, as expected from sampling theory, the
variability of parameter estimates is inversely
related to sample size in a nonlinear fashion. This
relationship is described in Bquation 6a and is
shown in Figure 3, Second, the sample size needed
to obtain a reasonable degree of precision for mana-
gerial policy analysis may be substantially larger
than is commonly suggested for the estimation of
disaggregate choice models., The commonly held be-
lief that 300 to 500 observations are satisfactory
seriously underestimates the sample size suggested
in this analysis to be needed to obtain estimators
with a reasonable level of precision, especially for
service variables. The importance of these results,
if verified in other studies, is heightened by not-
ing that many studies use samples of 1,000 or less
observations (15-20), whereas this study suggests a
need for at least 1,000 observations to estimate the
influence of travel time--a most important vari-
able~-within an error of 25 percent with 80 percent
confidence.

~ EFFECT OF SAMPLE SIZE ON REPLICATION OF PARENT
POPULATION BEHAVIOR

In this study an examination was made of the ac-

curacy with which a model, based on a data sample,
will replicate the choice behavior in the parent
population.

Relation Between Replication Precision
and Sample Size

A prediction test statistic was formulated to test
the hypothesis that the subsample model B84 is
equivalent to the population model Bpr

PTS, (B,) = -2[LLy (f) - LLp (Bp)] (142)

This statistic, which is approximately chi-squared,

can be expressed as a quadratic function of the aif-
ference in parameter vectors (5):

PTS, (B) > Bp - B)' Ty’ Bp - ) (14b)

Entering the relationships of z = 84 -~ a; and g =
[(Np - Ng)/Ngl] Ip into Bquation 14b: :

PTS, (8) > [(Np - N/N;] 2/ Z3' 2 (15)

where the quadratic term has a chi-square distribu-
tion. Thus the mean, variance, and 1 - o« confi-
dence limit of PTS are

E(PTS) = [(Np - Ny)/N;] x DF (16)
V(PTS) = 2 {(N, - N,)/N,]? x DF an
and

PTS, < [(Np - NJ/Ny] xhe (18)
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Thus both the average and the variance of PTS de-
crease at decreasing rates as estimation sample size
increases and are asymptotic to zero as sample size
approaches population size.

Empirical Population Replication Analysis

To empirically demonstrate the results derived in
the previous subsection, the predicted population
log-likelihood by subsample models was compared with
the maximum population log-likelihood by the full
sample model in each sector by using Bguation 1l4a.
To examine the distribution and the 95 percent con-
fidence 1limit of the prediction test statistic,
scattergrams were plotted of the prediction test
statistic against the size of estimation subsamples
in Pigure 4, and different symbols were used to rep~-
resent observations in three different sectors. The
results were as follows. PFirst, as expected, PTS is
subject to large variance when estimation sample
size is small. The variance decreases quickly as
estimation sample size increases for observations in
all three sectors. Second, the curve that repre-
sents the expected value of PTS appears to fit the
data well in all three sectors. Third, it appears
that approximately 95 percent of the observations
are within the 95 percent confidence limit shown in
the figure. Thus these observations are consistent
with the analytic results in the previous subsection.

Next, a prediction index was formulated that de-
fines the degree to which the model estimated from
the sample describes the population choice behavior
relative to a model based on the full population.

Pirat, the common sample~based rho-square measure
was considerad:

P& = [LL, (&) - LLy (NM)]/{LL; - LL, (NM)]
=1- [LL (B)/LL, (NM)] (19)

and then the corresponding population-based rho-

square measure based on sample estimates was con-
sidered:

0k = [LLy (B)- LL, (NM)]/[LL; - LL, (NM))
=1- [LL, (B)/LL, (NM)] 20)

Based on population estimates,

pip= [LLy (8) - LL, (NM)]/[LLy - LL, (NM))
=1~ [LLy (Bp)/LL, (NM)] @1

Next, the prediction index as the ratio of Equations
20 and 21 were formulated to obtain

PI= [LLy (8,) - LL, (NM)]/[LL;, (Bp) - LL, (NM))] @

The degree to which the sample-based model provides
information about population behavior relative to
that provided by the population-based model (when
both referred to a common base or null model) is de-
scribed by this ratio. To interpret this index, it
was reformulated in terms of the population test
statistic defined in Equation 14,

PI=1- {PTS, (&)/2[LL, (8)- LL, (NM)}} @3

Note that the denominator in the second term is
fixed for any population and model specification.
Purther, this term is the population model likeli-
hood ratio statistic reported in Table 3 for each of
the population models. These results can be used to
obtain the expected value of the prediction index
for fixed population size as

E(P) = 1 - { [N, - N,)/N,] - DF/LRS} o)
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Figure 4, Scattergram of prediction test statistics with 300
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estimation sample size.
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Finally, these results are modified for populations
of varying size but otherwise identical characteris-
tics by defining the likelihood ratio statistic per
individual in the population (obviously, population
data from which to compute the population model
likelihood ratio statistic are not generally avail-
able; however, LRSx can be estimated by dividing
sample likelihood ratio statistics by sample size):

LRS, = LRS/N, 25)
to obtain
E(PD) = 1 - {[(N, - N,)/N;} - DF/(N, x LRS.)} (26)

which, when population size is much greater than
sample size, is

E(PD=1- (1/N,) (DF/LRS,) @7

The expected values of the prediction index for the
three Washington sectors for different sample sizes
are given in Table 5. The proportion of information
provided by models estimated on samples of different
sizes depends on the ability of the model to provide
information about the behavior under study, as rep-

Table 5. Expected value of prediction index (iarge population cases).

Expected Value of Prediction Index

Sample Size Sector 1 Sector 2 Sector 3
50 0.62 0.21 0.34
100 0.81 0.61 0.67
200 0.90 0.80 0.83
300 0.94 0.87 0.89
500 0.96 0.92 0.93
1,000 0.98 0.96 0.97

resented by the value of the likelihood ratio sta-
tistic per person. Sectors in which estimated mod-
els provide a higher level of information require
smaller samples to achieve a specified level of rel-
ative accuracy. The results reported in Table 5 in-
dicate that samples of 500 observations will provide
90 percent of the potential model information in
each of the three Washington sectors.

Conclusions

The theoretical relationship between sample size and
population description accuracy in the form of the
prediction test statistic is developed in Equations
14-18. The empirical results reported in Table 4
are consistent with those relationships. The pre-
diction index provides a somewhat more intuitive.
description of the relationship between sample size
and descriptive accuracy. This relationship sug-
gests that, in terms of descriptive accuracy alone,
disaggregate samples of approximately 500 observa-
tions may be adequate. It is important to recognize
the distinction between the ability to describe
parent population choice behavior and prediction of
behavior under different travel service conditions,
which is most closely related to the precision of
estimated parameters discussed previously.

EFFECT OF SAMPLE SIZE ON TRANSFERABILITY

Statistical Measure and General Expectation

Model transferability at the disaggregate level can
be measured by indices formulated as a function of
the difference in log-likelihood for the application
sample of a transferred model [LLj (84)] and the cor-
responding log-likelihood of a modél estimated on
that sample [(LLj (8§)). The transfer test statistic
formulated by Koppelman and Wilmot (l1l) is used to
evaluate the transferability of disaggregate models.
The transfer test statistic



*

Transportation Research Record 944

TTS; {6;) =-2 [LL, (B;) - LL; (By) (28)

is chi-squared distributed with degrees of freedom
equal to the number of model parameters under the
assumption of fixed values of parameters for the
transferred model. The smaller this statistic is,
the more applicable is the transferred model to the
application population.

This transfer test statistic is used to evaluate
each of the sample-based models for transfer predic-
tion of the population in each of the other sec-
tors., Based on the results given previously, it is
expected that the sample size of estimation subsam-
ples will affect both the prediction accuracy and
variability of a transferred model in the applica-
tion context, according to a function that has a
term of ( - Ng)/Ng to reflect the sampling
effect in the estimation context. It is also ex-
pected that there is a constant term in the transfer
test statistic that reflects the real difference be-
tween the population of estimation and the popula-
tion of prediction. These relationships are devel-
oped in the following subsection.

Pelation Between Transfer Test Statistics and
Estimation Sample Size

The transfer
model ( s),

test statistic of a
predicted on an

subsample-based
alternative popula~-

tion, is defined as

TTS; = -2 [LL; (8)) - LL; (8] (292)
which is approximately (5),

TTSy = (8" - 8)) Zp; (67 - ) (29b)

Let TTSZ represent the transfer test statistic

of the population-based model,

TTS; = - B) Zoy (& - 6) (30)
which is nonstochastic, and assume that Npi x zPi =
Np x zp (i.e., the underlying model parameter co-

variance matrices are equivalent) for the two popu-
lations; thus (21),

TTS; = TIS§ + (Ngy/Np) - [(Np; - Ng)/Ng] 12 (B - B) 23 2
+2) 3! 7)) @1

That is, the transfer test statistic for a model
egstimated on a sample from population j and used to
predict population i is composed of a deterministic
term that describes the difference between the two
populations and a random variate composed of two
terms. The first term, which is random because of
the inclusion of z4, is normally distributed with
mean zero and variance-covariance matrix I,.. The

second term, which is random because of the inclusion
of z; t;;zj, is a chi-square variate with DF de-

grees of freedom. Thus TTS; is the sum of a
fixed term, a normal variate and a chi-square vari-
ate. (Note that this breakdown of TTsij ignores
the interaction between terms and the constraint
required to ensure that 'r'rsié is nonnegative.) The

expected value and variance o TTSlj are
E(TTS) = TTSj + (Np,/Np) x [(Np; - Ny)/Ny] - DF (32a)
and
V (TTS) = 4 (Np,/Np;) x {[(Np; - Ny)/Ng] TTS;}
+2 (N,,i/N,,j) X [(N,,j - N,i)/N,J.] x DF (32b)
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Thus both the mean and variance of the transfer test
statistic increase with the difference between the
two populations involved in the transfer process and
decrease with the sample size of the estimation data
set so that increased estimation sample size im-
proves model transferability.

Empirical Analysis

The relationship between the transfer test statistic
and sample size is examined empirically. The values
of the population transfer test statistic (TTS*) are
given in the following table:

Transfer Test Statistics

Estimation by Prediction Sectors
Sector 1 2 3

1 - 67.2 72,2
2 48.6 - 29.0
3 52.6 27,2 -

A scattergram of the transfer test statistic is
plotted with varying estimation sample size for
transfers from sectors 1 and 3 to sector 2. This
scattergram (Pigure 5) can be used to examine the
expected values and variances that were derived. 1In
this figure, the expected value of the transfer test
statistic, as defined by Equation 32a, is included.
As expected, these lines fit the data in the respec-
tive transfer conditions satisfactorily. It was
also observed that the variance of the transfer test
statistic decreases as the estimation sample size
increases, as suggested by Equation 32b, Further,
it was noted that the sample values of TTS for
transfers from sector 3 with the smaller value of
TTS* have both lower mean and variance than the
transfer from sector 1.

Conclusions

The expected relationship between sample size and
transfer prediction accuracy 1is confirmed by the
analytic decomposition of the transfer test statis-
tic into a deterministic component that is indepen-
dent of sample size and a stochastic component, the
distribution of which is related to sample size for
any given pair of populations. Empirical transfer-
ability tests are consistent with these analytically
formulated relationships. ’

Increases in sample size cannot be used to offset
real differences in the behavior of two populations
reflected in TTS*. However, they can reduce the
stochastic component. Additional analysis may be
useful to clarify these relationships, but the em-
pirical results suggest that samples in excess of
500 observations may be necessary to obtain transfer
predictive accuracy that is close to that which
might be obtained by a population-based model.

SUMMARY OF CONCLUSIONS

The conclusions reported in the preceding sections
are summarized as follows.

1. Increased size of estimation samples leads to
(a) parameter estimates that are likely to be closer
to the true population parameters, (b) smaller stan-
dard errors of such parameter estimates, and (c)
more accurate prediction ‘of . population choice be-
havior.

2. The sample size required to obtain choice
model parameter estimates that are reasonably close
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Figure 5. Scattergram of transfer test statistics 400
predicted on sector 2.
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to the true population parameters appears to be sub-
stantially larger than the sample sizes commonly
prescribed for the estimation of disaggregate choice
models. ’

3. The sample size required to obtain a wmodel
that accurately replicates parent population choice
behavior appears to be somewhat smaller than that
required to obtain accurate parameter estimates and
accurate prediction under changed transportation
service coordination.

4. Model transferability is a function of both
the estimation sample size and the difference be-
tween the populations involved in the model trans-
fer. Increasing estimation sample size has a posi-
tive effect on transferability at a decreasing
rate. When the difference between two populations
is large, it is expected that there will be large
and highly variable transfer ecrors.

5. The required sample size needed to obtain a
desired level of parameter estimation or prediction

accuracy can be determined from pilot sample model
estimation.

Overall, these results suggest the need to use
data samples on the order of 1,000 to 2,000 observa-
tions rather than 500 observations as formerly be~
lieved. Although some reduction in sample size may
be feasible when optimal sample stratifications are
used (12, and paper by Sheffi and Tarem elsewhere in
this Record), it is unlikely that samples as small
as 500 observations can be adequate for model esti-
mations.

Obviously, the importance of this issue suggests
that additional research be undertaken to obtain
further analysis of sample size requirements for
models of different travel choices in different con-
texts. Purther, transportation planners must formu-
late judgments about the desired precision of esti-
mated model parameters and model prediction.

Appendix: Derivation of Sample Population
Covariance Matrix

The population (full sample) estimation covariance
matrix is the negative inverse of the Hessian (4) or

Vo[, T (e R)'Pull- R O -R] @An
Cp i
where
V = covariance matrix,
I = gsummation,
x4y = variable vector of alternative i for indi-
- vidual ¢,
X, = probability weighted average of xj..,
P = choice probability of alternative i for in-
dividual ¢,
p = population,
t = individual, and
i = alternative.

Similarly, the sample estimation covariance matrix is

V,=|'E z (&-fg)’l’n(l-l’n)m-?.)]" (A2)
tCs |
where 8 is the sample indicator.

Finally, the covarjiance matrix between the popu-

lation and sample estimates is given by

2p§(x,-i,)'l'u (I'Pn)(xn'x.n)]-'

$Cs,

Ve = a3

where sp indicates the covariance matrix between
population and sample estimations, and t C 8,p im-
plies summation over obsetvations included in both
the sample and the full population.

In this case, where the population includes all
sample elements, the summation over s,p is equiva-
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lent to the summation over s and Vg, = V5 or, by
using the notation in the body of the paper, rsp =
Ige
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Mobility Enterprise:
MICHAEL J. DOHERTY AND F.T. SPARROW

A mobility enterprise is a new transportation concept aimed at increasing the
productivity of the automobile through use of mini or micro automobiles in
conjunction with a shared fleet of intermediate and full-sized vehicles. The
main objective of the enterprise is to provide a better matching of vehicie at-
tributes to trip requirements and still maintain the personal freedom that
appears to be so highly valued by the American driver. Although this concept
was presented in detail in an earlier TRB Record (TRR 882), a view of the
progress that has been made in taking the mobility enterprise from an innova-
tive concept to an actual experiment is presented in this paper. The majority of
the information deals with methods for observing consumer attitudes, design-
ing the actual mobility enterprise, and measuring mini and micro automobile
performance.

In January 1982 the Automotive Transportation Center
at Purdue University unveiled an innovative trans-
portation concept called the mobility enterprise
(1). Briefly stated, the research examined the ef-
fects of mini and micro class automobiles and
shared-vehicle fleets on the overall productivity of
the personal automobile. This paper is designed to
provide an update of the progress made during the
last year and to discuss the experimental design and
preliminary findings.

After years of promoting public transit and car-
pooling to conserve energy, it appears that the av-
erage consumer still prefers the convenience of the
personal automobile. At the same time, although
automobile efficiency (fuel economy) has undergone
significant improvement, automobile productivity has
remained disturbingly low (2,3). The concept pre-
sented here for improving productivity is based on a
better matching of the trip requirements of an indi-
vidual to the characteristics of the vehicle. Three
interrelated features of a mobility enterprise--
retained autonomy, easy access to an expanded fleet,
and reduced expenditures--are the inferred keys to
its success. An enterprise member's minimum attri-
bute vehicle (a mini or micro automobile in these
experiments) provides him, by definition, with the
most economical means of accomplishing his most fre-
quent trips. When a member's mini or micro automo-
bile is inappropriate for a desired trip, he must
seek access to an appropriate vehicle from the

" shared fleet. This process may involve delays, some
advanced planning, paperwork, and out-of-pocket
costs, depending on the procedures of the enter-
prise. A general description of the mobility enter-
prise that has been set up at Purdue University is
as follows. :

1. The following items are included in a set
monthly fee: (a) an individually garaged mini or
micro class vehicle that will satisfy most commuting
and around-town driving, (b) access to a shared
fleet of intermediate and full-sized vehicles for
trips that the mini or micro vehicle would be un-
suitable, (c) all insurance costs, (d) all mainte-
nance costs, (e) all registration and licensing
costs, and (f) taxes.

2. Gasoline costs are not covered in the monthly
fee.,

3. Cost per participating household for experi-
ments is $165 per month.

The concept of a mobility enterprise requires
careful examination of several behavioral parameters
of the American as a driver. Judging from the
underutilization of public transit systems and ride-
sharing programs, it appears that personal freedom
and independence are highly valued attributes. If
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One Year Later

it 1is imperative that this independence be pre-
served, a key step in the design of proposed experi-
ments must be an inventory of the current patterns
of the U,.8. driver and the use of his personal vehi-
cle. The shape of the enterprise must come as close
as possible to- satisfying travel demands, with as
little inconvenience as possible. However, because
there may be some inconvenience (changes in travel
behavior), it is important to gauge the value driv-
ers place on the quality of travel provided by the
shared fleet available through the enterprise. 1In
other words, what would be the trade-offs between
the current condition of automobile ownership and
participation in a mobility enterprise?

Two key tools that have been used to acquire data
pertaining to consumer acceptance and current travel
behavior are the focus-group interview and a survey
instrument (questionnaire). In addition to consumer
and travel~-behavior studies, a microprocessor-based
data acquisition system, under development at Purdue
University, will measure the stress on these small
automotive engines when subjected to real-world mis-
sions. Such a system is necessary to determine the
feasibility of using mini or micro automobiles for
personal transportation in the United States,

POCUS-GROUP INTERVIEWS

Focus=group interviews are predicated on the assump~-
tion that the mobility enterprise will be better un-
derstood and more efficiently designed when there
are more data on how potential users, supporters,
and detractors define its advantages and disadvan-
tages and its significant and modifiable attributes
(4). The content of each interview was analyzed for
recurring themes. The attributes that account for
decisions to join or not join the enterprise were
schematized, and questions measuring the character
and quality of these attributes were developed for
the larger general survey instrument.

Pocus-group interviews began in West Lafayette,
Indiana, in March 1982. The length of the focus-
group interviews varied from 1 to 1.5 hr. There
were seven focus groups: one group of Purdue Univer-~
sity faculty and staff, one group of Purdue Univer-
sity faculty and staff couples, one group of Purdue
University faculty and staff as new car intenders
(intention to buy a new car within 2 months), two
groups of college students, and two groups of teen-
agers (one consisting of all male and one consisting
of all female). A total of 62 individuals partici-
pated.

Data from the focus-—group interviews were ana-
lyzed for issues raised, opinions expressed, and ex-
periences reported and were then examined for recur-
rent significant themes. The focus-group interviews
and subsequent analyses were based on the assumption
that the study of consumer attitudes and interaction
and the emphasis on analysis of themes should pro-
vide insight into the consumer decision-making pro-
cess of automobile ownership, mini and micro vehi-
cles, and the mobility enterprise (5,6). This in
turn should improve the capability for planning and
developing the mobility enterprise. The focus group
interviews were divided into four content areas: (a)
vehicle ownership and use, (b) the expense of owning
and operating cars, (c) the mini or micro automo-
bile, and (d) the mobility enterprise. The major
findings in each of these content areas were as fol-
lows.
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1. vehicle ownership: Increasing costs are cre-
ating compromises concerning style; i.e., when pur-
chasing a vehicle, people are settling for less car
than they originally had planned to buy. Also,
there was an overwhelming attitude that automobiles
are synonomous with personal mobility and freedom,

2. Vehicle expenses associated with vehicle own-
ership: All groups knew that owning a car was ex-
pensive, but when probed they were relatively un-
aware of the actual cost. There was a strong belief
that ownership costs would not get too high. vVvirtu-
ally all groups believed that some technological
breakthrough would occur to keep automobiles afford-
able.

3. Mini and micro automobiles: Price (quoted as
between $3,000 and 84,000) makes these cars attrac-
tive as a second car. Also, safety was dismissed as
a realistic issue because the participants generally
perceived drivers to be more important than automo-
biles with respect to safety.

4, Mobility enterprise: Generally, the shared-
fleet concept was not well received, as most groups
believed it was an infringement on their freedom of
mobility; thus they tended to dwell on the negative
aspects of sharing. But, continuous maintenance was
almost universally viewed as the major point in
favor of the mobility enterprise, Finally, the
ability of membership for a trial period of time was
seen as crucial.

Because this study uses a small population and is
not truly representative, and because the findings
are qualitative and subject to biases, the study
should be viewed as exploratory in nature, thus mak-
ing generalizations difficult. Nevertheless, it is
anticipated that the validity of issues raised will
be considerably strengthened as the hypotheses de-

rived from the focus-group interviews are further-

explored by forthcoming surveys. Such has already
been the case in two other papers (7,8).

SURVEY INSTRUMENT

' The local survey was intended to help gather data
pertaining to the acceptability of the mobility en-
terprise concept to a representative sample of
households in the area where the first experiments
were to be run. It also acted as a tool to compile
an inventory of current vehicle use patterns in the
sample area.

The Social Research Institute of Purdue Univer-
sity conducted the local survey. The sample size
was 300 households. Tippecanoe County is a desig~
nated standard metropolitan statistical area (SMsa),
and 80 percent of the sample was drawn from the
urbanized area and 20 percent from the nonurbanized
area, Within the urbanized area, four strata were
selected based on socioeconomic status (SBS): high,
medium, low, plus a fourth category containing small
blocks (four dwelling units or fewer). Three strata
were selected from the nonurbanized area based on
SES (high, medium, and low). The survey instrument
was administered by personal interviews of 30 to 45
min each. Two additional subgroups of 30 households
each were interviewed, which represented retirement
communities and condominiums, General demographic
information that characterize the sample population
is given in Table 1. The attitudes of the respon-
dents toward the mobility enterprise as a transpor-
tation mode are given in Table 2.

When the sample is broken down into two sub-
groups, one consisting of those interested in join-
ing and the other consisting of those not interested
(only two respondents were undecided), several in-
triguing differences with respect to age, automobile
purchasing intentions, and the acceptability of
small cars for everyday use are noted (see Table
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3). In general, those interested in joining a mo-
bility enterprise are younger, closer to making car
purchase decisions, and find small cars more accept-
able than those not interested in joining. Two
other significant observations are that (a) no re-
tirees were interested in joining, and (b) those who
were interested in joining believed they would need
to use a shared vehicle, on average, approximately
45 percent more often than those who were not inter-
ested (67 days per year versus 46 days per year).

The results presented here are merely preliminary
findings. A more detailed report analyzing the
local survey will be forthcoming. In addition, a
national survey about the mobility enterprise con-

Table 1. General demographics of transportation survey.

No. of

Item Respondents
Total 360
Male 173
Female 187
Age (years)
18-25 79
26-40 124
41-60 73
>61 83
Highest level of education
Less than 12th grade 46
High school education 123
Some postsecondary 86
Four or more years postsecondary 102
Household income
<$5,000 38
$5,000-814,999 80
$15,000-524,999 93
$25,000-334,999 74
»3$35,000 . 62

Table 2. Preliminary survey results from questionnaire.

Positive
Response
Question (%)
Do you think the mobility enterprise is practical? 65.3
Do you think the mobility enterprise is complicated? 20.3
Would the mobility enterprise work for your household? 239

Would it be important to see others join the mobility enterprise 50.3
before you would?

Would you be interested in joining the mobility enterprise? 14.3
Would you be willing to join the mobility enterprise for a trial 244
period?

For your household, would owning your own car be better than 88.3
being a member of the mobility enterprise?

Note: 360 respondents were asked these questions.

Table 3. Preliminary survey results.

Willing to Join a
Mobility Enterprise?
Yes No
Item (n=51) (n=309)
Mean age of respondent 31.6 44.6
Planning to purchase a vehicle within the next year 372 11.0

(%)
Planning to purchase a used car within the next year 62.8 30.7
(%)

A mini or micro automobile is acceptable as a vehicle  76.5 63.1
for everyday use (%)

A subcompact is acceptable as a vehicle for.everyday 96.1 72.5
use (%)

It would be acceptable sharing a car with several 88.2 63.6
other people (%)
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cept will be conducted by J.D. Power & Assocliates of
West Lake Village, California.

TRIP DIARIES

Although focus-group interviews and transportation
surveys are helpful in identifying the inclination
toward acceptance of a mobility enterprise concept
and some of its critical attributes, another more
direct measure of acceptance based on actual be-
havior was also needed. Por this reason, the col-
lection of trip diaries from potential experimental
subjects began in August 1982. Thus nearly 6 months
of actual travel behavior was collected before the
initial experiments.

Because participation in the mobility enterprise
involves changes in vehicle use, it is important to
know whether the enterprise fits into the current
travel behavior of the participants. Because the
travel patterns of the participants both as a group
and as a household are known up to this point, this
data should prove to be extremely valuable. Signif-
icant changes in travel patterns caused by the ac-
commodation of the operating system and restrictions
of the mobility enterprise are detected with these
data. A meaningful control group of trip diary par-
ticipants who will not be enterprise members is be-~
ing maintained for the duration of the experiments.

Trip diary results to date have revealed a re-
markable degree of consistency for the test popula-
tion from week to week. A summary of trip types and
mileage for the first 12 weeks of the study is given
in Table 4. The trip occupancy pattern for the pop-
ulation for the first 12 weeks is given in Table S.

Table 4. Pretest trip diary results of trip type and mileage.

Trips  Mean Mileage
per per Trip

Trip Type Week  (one way)
Shopping (grocery and nongrocery) 2.66 4.97
Commuting (work or school) 5.19 7.64
Social-recreation 3.49 14.65
Personal business (errands, passenger ferry, and soon) 5.75 5.14
Return home 9.05 9.24

Note: 65.36 percent were multipurpose trips. Results cover s 12-week period.

Table 5. Pretest trip diary resuits of trip occupancy.

Occupancy per Trip

(%) by No. of

Occupants
Trip Type <2 >3
Shopping (grocery and nongrocery) 89.7 10.3
Commuting (work or school) 99.0 1.0
Social-recreation 791 20.9
Personal business (errands, passenger ferry, and so on) 91.2 8.8
All trips 91.1 8.9

Note: Results cover s 12-week period.

A final purpose for which the. trip diary data may
be useful is in the design of the shared fleet. One
of the most critical design characteristics of a mo-
bility enterprise is the size of the shared fleet
for a given size of enterprise. How many cars would
be too many? How many would be too few? For the
purposes of the experiments currently being con-
ducted, assume that a shared vehicle is required for
a trip greater than 30 miles (one way) or transport-
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ing four or more occupants. By using these cri-
teria, the expected use of shared vehicles for the
first 12 weeks of the study is shown in Pigure 1.
Extrapolation of these data for a 20-member enter~
prise, run under the restrictions assumed here, ap-
pears to indicate that the enterprise is most effi-
cient if it owns two vehicles in its shared fleet
and uses an outside vendor for those times when ad-
ditional vehicles would be needed. However, these
questions must be more thoroughly examined during
the actual experiment.

Figure 1. Hypothstical shared-fleet use.
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Note: Data give expaected need for shared vehicle for first 12 weeks of
trip diary studies. These dsta are based on trip diary results from that
time period for s hypothetical prise of 24 h hold

_TECHNICAL DATA ACQUISITION SYSTEM

All mini and micro vehicles in the experiment are to
be equipped with a data acquisition system (DAS) to
collect information on the performance characteris-
tics of these vehicles. The DAS has a standard con-
figuration, with sensors mounted on the power plant
that pass signals to the computer. The processor
passes the data or processes it and sends the infor-
mation to a digital recording device. Design speci-
fications were developed to accommodate the harsh
automotive environment. This work is not new; it is
an extension of the basic work on i{nternal combus-
tion vehicles already performed for instrumentation
of electric vehicles at Purdue University (9).

A mission use pattern will be developed through a
series of plots, such as vehicle speed histograns
(percentage of time spent in various velocity
ranges), trip length histograms, number of trips per
day versus day of the week, and so forth.

A mission severity index will be used to calcu-
late the energy required for acceleration, constant
speed, and idle periods. Data from engine fuel-con-
sumption maps will also be used to characterize fuel
consumption during a mission. A general schematic
of this system is shown in Pigure 2.

INITIAL EXPERIMENTS

The first mobility enterprise experiment became a
reality on January 22, 1983. The enterprise ini-
tially consisted of seven participating households.
The basic service included an individually ga-
raged mini or micro automobile and access to a
shared fleet of one vehicle. Because of insurance
restrictions resulting from "the lack of safety data
on the mini and micro automobiles, all such vehi-
cles are prohibited from use on Interstate high-
ways. All operating costs (excluding gasoline) are
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Figure 2. Flowchart of DAS.
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included in the monthly fee. In addition, each mem-
ber receives approximately 10 coupons for use of the
shared fleet. The coupons have a cash value of ap-
proximately $7.00. The basic rate for shared-fleet
use varies according to peak or off-peak periods.
The coupon exchange rate for shared vehicles is two
coupons per weekday and three coupons per weekend
day. Coupons may be accumulated for use at a later
time, traded among members, or turned in at the end
of the month for a credit toward their next month's
bill. Maintenance of all vehicles and shared-fleet
operations is administered through the Purdue Uni-
versity Transportation Services Department.

Trip diaries are being maintained for all vehi-
cles in the mobility enterprise as well as in a con-
trol group of nonenterprise members. In April 1983
the mini and micro vehicles were equipped with the
on-board DAS that measures various factors in engine
- performance. All test subjects are being closely
monitored throughout the experiments.

The purpose of this paper is to describe the prog-
ress that has been made in the past year in bringing
the mobility enterprise from a hypothetical concept
to a set of actual experiments designed to test its
viability as a transportation mode. Many of the re-
sults presented here deal with research activities
that must precede the actual experiments. The re-
search emphasis to date has been in the area of con-
sumer acceptance of the mobility enterprise concept,
recruitment of experimental subjects, operational
design of the Purdue University experiments, and
methods for measuring mini and micro vehicle per-
formance under U.8. driving conditions.

Thus far the data are encouraging because more
than 20 percent of the random sample would be will-
ing to try a mobility enterprise for a trial period
and more than 10 percent said they would be willing
to join such an organization. The data from the
trip diaries appear to indicate that a mobility en-
terprise operation could satisfy a significant por-
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tion of the travel demands of the potential partici-
pants, This is particularly noteworthy because the
data from the trip diary include August (a high va-
cation month) and September (Labor Day weekend).
The focus-group interviews imply that there is no
aversion to mini or micro automobiles (also indi-
cated in the survey) and that continuous maintenance
is a significant factor in favor of the mobility en-
terprise concept. The survey and focus groups have
also indicated that the mobility enterprise, to be
successful, must come close to the current state of
automobile ownership. Other work currently under
way deals with determining optimal shared-fleet size
(10) , which is crucial to the ultimate economic suc-
cess of such a venture.

- In addition to the data presented here, a great
deal of the first year's effort has dealt with lo-
gistical considerations, such as obtaining waivers
for importing the mini and micro automobiles, ar-
ranging insurance coverage and maintenance delivery
systems, procuring vehicles for the shared fleet,
and calculating costs to the participants. Although
such efforts yield no experimental data, they are
both time consuming and crucial to the performance
of the actual experiments. Thus, because of the
work described in this paper, the Purdue University
mobility enterprise experiments were able to begin
in January 1983,
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Person-Category Trip-Generation Model

JANUSZ SUPERNAK, ANTTI TALVITIE, AND ANTHONY DeJOHN

A person-category model of trip generation is presented as an alternative to
household-based trip-generation models. In this modei a homog group
of persons is used as an analysis unit. The final description of the person cate-
gories is not arbitragy but resuits from the multistage, multivariate analysis of
many potentially significant variables. The variables age, smployment status,
and sutomobile availability were found to be the most significant descriptors
of a person’s mobility. The final version of the model is based on eight person
categories. ‘Both theoretical discussion and empirical findings favor the pro-
posed version of the person. gory del over h hold-based models be-
cause it is more practical at the forecast stage, requires significantly less data,
has better behavioral background, and is more compastible with the entire sys-
tem of individually oriented travel-demand models.

The development and evaluation of a person-category
trip-generation model as an alternative to house-
hold-based models are discussed in this paper. The
individual-level approach was chosen for the follow-
ing reasons. Pirst, a person-level trip-generation
model is compatible with other components of the
four-step travel-demand model system that is based
on tripmakers rather than on households. Second, it
is extremely difficult to devise a household-based
cross-classification scheme that uses all important
variables and has a manageable number of classes
{e.g., a British household cross-classification
model (1) has 108 categories]. Predicting represen-
tations in so many classes is difficult.

Third, the sample size for the person-category
model can be much smaller (10 to 40 times) than for
the household-category model. Fourth, demographic
changes can be more easily accounted for in the
person- rather than household-category model, and
some demographic variables (such as age) are virtu-
ally nondefinable for households. Finally, person
categories are easier to forecast to the future than
the household categories, which require forecasts
about household formation and family size. With the
person categories these tasks are altogether
avoided. More importantly, because the bulk of the
trips will be made by people older than 18 years of
age, the task of predicting the tripmaking popula-
tion 15 to 20 years ahead is much easier.

There are of course some limitations that a per-
son-category model may have. Foremost among these
is the difficulty of introducing household-interac-
tion effects and household money costs and money
budgets into the model. On the other hand, it is
not clear how vital these considerations are and how
they can effectively be introduced even in a house-
hold-category model. The methodology of the develop-

ment and testing of the person-category model was
based on previous work from Europe (2-6), where the
person level of data aggregation was found to be
successful for travel-demand analysis.

DATA AND DEFINITIONS
Data

The data used in preparing this paper were from the
Baltimore home interview survey conducted in 1977 by
the FHWA and from Minneapolis-S8t. Paul home inter-
view data collected in 1970. Before the analyses,
data were superfically cleaned.  Workday records
were separated from weekend-day records, and some
persons were excluded from the original sample. For
example, if in the original file a significant in-
consistency was found (e.g., number of cars in the
family = 7 and number of drivers = 0), the person
was excluded. Outliers were also excluded, 1If the
number of trips done by a person was greater than 10
and if total time spent on traveling during the day
exceeded 150 min, then this person was suspected to
be a professional driver (or similar category) and
was excluded from the sample.

Definitions
The following definitions are used in the analyses:

Ny = trip rate, that is, the daily number of
one-way trips made by (average) person in
category i) and Ngy = trip rate to pur-
pose g in category i;

T; = daily travel time; that is, the time (in
minutes) spent by (average) person in cate-
gory i on traveling during the day;

Yy = total number of trips made anywhere by the
inhabitants of zone j (all categories to-
gether);

Ly = number of zone j inhabitants; and

a4y percentage of inhabitants of zone ] be-
longing to category i.

Thus the following basic :eiattonuhip is given:

YJ"'LH?“HNI o



Transportation Research Record 944

The method of calculating zonal productions (Py)
and attractions (A;) 1is not presented in this
paper. This method ls briefly presented in Supernak
(3).

In analyzing and calculating trip rates, trips
are divided into

1. Home~based (HB) trips if origin (HBO) or
destination (HBD) of the trip is the place of resi-
dence of the traveler, and

2., Non-home-based (NHB) trips if neither origin
nor destination of the trip is at home.

Trips are further divided@ by trip purpose (q) as
follows: work (W), education (E), shopping (S),
personal business (Pb), and social-recreational and
other purposes (Sr). This trip-purpose classifica-
tion applies to both HB and NHB trips. Work and
education trips are called obligatory trips, and all
other trips are called discretionary trips. The
traditional description of the trip links (instead
of sojourns of trips) was chosen because it clearly
relates the number of outside-the-home activities to
the number of trips made (6,7).

An example of trip rates for category i is given
in Table 1. Pifteen-element vectors of partial trip
rates { (i.e., separated by purpose, direction,
and base) may be derived from the data, as shown in
Table 1; they served as the trip characteristic of
category i.

Table 1. Example of trip rate characteristic N for category i.

Obligatory Discretionary
Trip v E S Pb Sr Total®
HBO 0.86 0.02 0.10 0.21 0.05 1.33
HBD 0.86 0.05 0.21 0.19 0.02 1.33
NHB 0.02 0.05 0.14 0.14 0.07 0.43
Total® Nobt = 1.86 Ngise = | 24 N, =3.10

"Note that some columns will not total because of rounding.

ANALYSIS PROCEDURE
The model development was done in four stages:

Stage l--(a) arbitrary choice of many variables,
which are expected to be important for explaining
differences in a person's mobility, and definition
of plausible person categories by using these vari-
ables; and (b) preliminary analysis of trip rates
(Ngy) and trip times (Ty) to find which variables have
the least explanatory power and can be excluded from
the model;

Stage 2--(a) detailed analysis of trip character-
istics to find variables that define similar cate-
gories for stage 3; variables that do not give
substantial explanation of the data variance or
variables that duplicate an explanation of other
better variables are excluded; (b) proposal for the
final trip-generation categories, the number of
which should not exceed a certain practical maximum
(for example, 10); and (c¢) analysis of dependency of
trip rates between trip purposes {[not reported in
this paper, see Supernak et al. (8)):

Stage 3--(a) final trip-generation characteris-
tics of each category, as determined in stage 2, are
analyzed in detail; and (b) transferability of the
results within different sections of Baltimore and
to other cities is examined; and

Stage 4--comparison with household-based trip-
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generation model, as presented in detail in DeJohn
9.

The statistical methods used in the analyses are
simple and straightforward. At all times these
statistical methods are supplemented by visual anal-
ysis of data that try to find patterns in the data
that a blind application of statistical methods may
not find.

In stage 1 of the model development only a pair-
wise comparison of total trips rates is performed.
The Z-statistic for the trip rates of two categories
i and j, which are differentiated by the analyzed
variable only, is computed and compared with the
critical Z-value at the 0.0l level of significance.

In the remaining stages three additional measures
supported by histograms and analyses of variance are
used. These three measures are the correlation
coefficient, slope (m), and intercept (b) of the
regression Ngj = biy + mj4Ngy.

The categories i and may be treated as similar
if (a) the correlation coefficient between vectors
of the partial trip rates (i.e., trip rates by pur-
pose and base) { and , and (b) the parameters
of the regression coefficients (mgy4 - slope, bij -
intercept), satisfy the following conditions:

1y > 0.900 @)
0.75 < my; < 1.25 ?3)
byl < 0.10 @

These conditions are arbitrarily chosen and are
quite demanding.

These three measures can be used to analyze the
appropriate categories for both persons and trip
purposes, as shown in FPigure 1. The Q-type regres-
sion and correlation analysis is used for analyzing
the best grouping of persons, and the R-type analy-
sis is used for grouping trip purposes. These anal-
yses are useful for both travel-demand analysis
(3,4) as well as for nontransportation applications
(10).

Figure 1. Q-type and R-type analysis of trip rates Ng;.

Person Ca ey
q oot n=40 4 Ny
4
2
Trip Rates X Main Groups
N Dato Matrix of rip
Characteristics
m=45 -
12... ' n40 —_'R v
Correlotion matrix |4 - Techniqm
between
persons
Q .
Technique ' ns40
1q
2

Main Groups of Persons
(Finol Split into Categories}

STAGE 1: CHOICE OF VARIABLES AND DEVELOPMENT OF
CATEGORIES

For stage 1, the following variables (and strata)
were used to form the categories.

1. Sex: The obvious choice of strata here is
male and female.

2. Age: Age was used to describe the main activ-
ity at a given age (primary school pupils, high
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school pupils, college students, employees, re-
tired). Accordingly, the age groups used were 0 to
12, 12 to 18, 18 to 65, and older than 65. Age 40
is also used to divide the employable work force
into two categories.

3. Car availabilivy: In all known trip-genera-
tion models the variable car ownership was used and
treated as a basic variable. Here a variable defined
as car availability is used. The reason for this
change comes directly from the general concept of
the model. When using a traveler or a person as the
analysis unit, car ownership of the family is not
directly related to the car availability of differ-
ent family members. Thus the following distinction
was made (where N, = number of cars in the household
and Ny = number of drivers in the household). For a
given person, car availability-is (a) never available
if N, = 0 or Ng = 0 (person has no driving 1license)
or (b) sometimes available if No > 0 and (Nc/Nd) <1
(Ng > 0) or (c) always available if (N/Ng) > 1.

4. Employment status: Status is divided by em-
ployed and not employed.

S. Income: Income is defined at the individual
level rather than at the family level. Household
income was converted to per capita income simply by
dividing it with family size.

6. Race: The race variable (white versus non-
white) was analyzed because of the significant per-
centage of nonwhite respondents in the Baltimore
data set.

7. Employment types: Three strata are used--
white collar, blue collar, and other.

8, Family type: FPive family types were analyzed
to understand how the family duties affected a per-
son's tripmaking behavior. The strata of this vari-
able were as follows: single person, childless
couple, family with children younger than 5 years of
age, family with children 5 to 12 years of age, and
family with children older than 12 years of age.

These variables and strata resulted in the 100
categories shown in Figure 2. (Note that PFigure 2
is read in the following way: each dot indicates
which variable applies. For example, persons in
category 24 are white, single, employed blue-collar
males who have a car always or sometimes available
and whose per capita income is between $1,500 and
$4,000 per year; there are 11 such persons in the
sample.) Note that in defining these categories
many potentially important variables were included
initially, and yet there was a desire to keep the
number of categories reasonable (i.e., not to exceed
100). The eight variables could have produced 5,400
categories, whereas the sample size was only about
2,000. The categories were also defined in such a
way so as to avoid impossible or improbable combina-
tions of variables and to avoid extremely unequal
representation in each category. Therefore, no
computerized procedure to generate categories auto-
matically, which would be otherwise useful, was ap-
plied. The initial arbitrary split into categories
is presented in Pigure 2.

The aim of the analysis at this stage was to
discover which variables have the least effect on
trip-generation rates and can be removed from con-
sideration. A convenient method used was a series
of pairwise comparisons performed for categories i
and j, which differ with respect to one variable
only. An example of such an analysis is given in
Table 2.

The results of the stage 1 analyses are summa-
rized in Table 3. Some variables always give a
significant and regqular explanation of patterns in
tripmaking. These variables are car availability,
employment status, age, and sex. Income might be
significant if only two levels (higher, lower) were
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introduced and, therefore, deserved further investi-
gation.

Other variables such as family status, race, and
employment type gave unsatisfactory explanations and
were excluded from the second stage of the model.
The proposal for further analysis of the category
definition is shown in Figure 3 and is analyzed in
the next section.

It is worth dwelling on the significant result
that household type does not appear to be an impor-
tant descriptor of a person's tripmaking behavior.
One of the major arguments made in favor of the
household level of data aggregation is that family
structure (e.g., number of children of different
ages) affects travel behavior of adults in the
household. It was claimed, therefore, that the
family's needs (and consequently trips) should be
analyzed together with special reference to interac-
tions within the family.

The result here suggests that adults will fulfill
their transportation needs (measured by trip rates)
independently of their family situation; the sources
of variation in data are outside the family-struc-
ture variable. This result supports the person
level of data aggregation applied here. It is also
worth noting that, with the exception of single-mem-
ber households, the sample size is rather large
(>250), and the result obtained should not be a
statistical artifact.

STAGE 2: ANALYSIS OF TRIP RATES AND DEVELOPMENT OF
FINAL PERSON CATEGORIES

Pairwise Analysis of Remaining Variables

The total trip rates (trips per person) and travel

_times (total daily travel time per person) by age

groups, sex, automobile availability, enmployment
status, and income, as well as the results of pair-
wise comparisons of trip rates for each strata, are
given in Table 4. The accompanying figures (Pigures
4-7) provide a graphic analysis of two or more fac-
tors that the pairwise comparison is unable to do.
These graphs are useful in underatanding basic rela-
tionships between variables.

The results given in Table 4 and shown in the
accompanying figures suggest that the most important
variables are age, employment status, and car avail-
ability. Sex and income appear to be weak variables.
Their independent effect when analyzed together with
car availability or employment status tend to disap-
pear altogether (for example, see Figure 4, which is
an analysis of employment and sex).

Traveling activity, measured by trip rates N and
by daily travel times T, declines with age (Pigure
5). Most dramatically this is true for the obliga-
tory trip, which declines substantially after re-
tirement.

Employment (i.e., the existence of obligatory
activity) is a basic factor for explaining the dif-
ferences in trip rates and daily travel, as shown in
Pigure 6. Car availability is also of great signifi-
cance; this is especially true for distinguishing
the tripmaking patterns of those who do not have
cars available from those who do have cars available
(see Figure 7).

The obvious reasonableness of these conclusions
supports the modeling approach by which they were
derived, A more thorough analysis of data will be
described next to define the final categories.

Q-Type Correlation Analysis of 40 Person Categories

Based on previous results, four versions of the
final categories shown in Pigure 8 might be con-
sidered. In . these groupings age is divided into
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three strata: younger than 18, 18 to 65, and older
than 65. The pairwise analysis suggested that the
age groups younger than 40, 40 to 65, and older than

Transportation Research Record 944

Figure 3. Stage 2 description of person categories.
_CAT AGE SEX AUTO EMP INC

65 may be most appropriate. However, plots in Pig- ) 1
ures 4-7, which consider more than one variable, as 1 2 1
well as practical considerations, favor the first- , 2 2 2
mentioned age strata. The first stratum consists of | z g i ; i i
(mostly) unemployable students, the second stratum 15 3 1 3 1 1
includes the labor pool, and the third stratum in- 6 3 1 1 1 2
cludes retired people. ; g i 2 1 2
Four versions of cateqgory descriptions were ana- 9 3 1 3 ; 2
lyzed (Figure B8). Version D is preferred because it 10 3 2 1 1 1
is a parsimonious grouping of people into only eight 1 3 2 2 i 1
categories; however, it must be based on a more }ﬁ § § i i ;
14 3 2 2 1 2
15 3 2 3 1 2
Table 2. Analysis of variable age: trip rates for younger versus older 16 3 2 1 2
housewives. 17 3 2 2 2
18 3 2 3 2
19 4 1 1 1 1
Trip Rates N; 20 4 1 2 1 1
Category No. 21 4 1 3 1 1
Age < 40 Age > 40 22 4 1 1 1 2 .
Age < 40 Age > 40 (n =215) (n = 190) 23 4 1 2 1 2 Varisble Levels:
24 4 1 3 1 2 <
71 72 336 2.81 25 4 1 2 AE ;: 1;318
73 74 3.00 2.33 26 4 2 1 1 1 3, 19-40
75 76 142 0.85 27 4 2 2 1 1 4. 41-65
77 78 2.18 1.50 28 4 2 3 1 1 S. >65
79 80 1.89 1.13 29 4 2 1 1 2
81 82 1.12 0.70 [ 4 2 2 12 SEX 1. Male
83 84 3.86 3.65 i f 4 203 12 2. Female
85 86 2.72 2.27 gg 2 § ; g
87 88 1.50 1.52 34 4 2 3 2 AUTO 1. Never
2.11%:P 1.73%¢ 35 5 1 1 AVAILABILITY 2., Sometimes
36 5 1 2 3. Alwvays
BMean of total trip rate. 37 5 1 3 EMPLOYMENT 1. Ecployed
zl 2 =4.00. 38 5 2 1 2. Non-employed
Zo 01 = 2.30. 39 5 2 2
40 s 2 3 INCOME 1, <« $3000/clp
2. > $3000/cap
Table 3. Pairwise comparison of trip rates by variable categories (stage 1).
Total Trip Rate®
Z-Values® (Zg.0, =
1 2 3 2.57, Zo‘os =].96)
Variable Category Mean No. Mean No., Mean No. Mean No. 1,2 13 2,3 Comments
Sex Male, fe- 2.65 811 2.20 1,093 7.89 - - Significant difference in trip occur-
male red only for persons >65; this
group alone may not warrant
stratification by sex
Age 12-18, 18- 2.92 482 2.56 1,661 1.23 243 4.82 - 26.3 Younger persons travel more
65,>65
Age, house- <40, 540 2.11 215 1.73 190 4.00 - - Younger persons travel more
wives only
Car avail- Never, 1.38 309 2.78 289 3.23 341 154 - 38 Differences between car never, some-
ability sometimes, times, and always available are
always significant; greater car availability
' means more trips
Employment Employed, 2.85 1,183 1.85 478 17.0 - - Whether a person isemployed or not
status not em- is an extremely significant variable
ployed
Income Low, mid- 1.89 187 1.85 163 2.83 206 0.40 - 8.00 Tnp rates between high and other
dle, high income groups are different
Race White, non-  2.25 398 1.98 176 2.88 - - This is an extremely erratic variable;
white visual examination of data did not
suggest stratification by race; dif-
ference caused by four categories
(46, 59, 94, 98)
Employment White col- 3.05 133 2,67 171 2.92 27 2.28 042 0.83 Not a significant variable
type lar, blue
collar,
other
Household Single, 2.90 70 2.78 246 282 276 2.80 591 0.62 0.21 0.32 Family type is not significant
type couple, (Z3,4=0.10)
couple with
children
<§, couple
with chil-
dren >§
“The columns in this section are resd as follows. The strata for each variable are defined under the Variable and C ¢.g., car svailability —never, sometimes, slwsys, and the

trip rates in columns 1, 2, and 3 pertain to these strata in the codes shown (i.c., 1 for never, 2 for sometimes, and 3 for dwnyl)

t’Z -values are calculated by comparing the mean trip rates for the columns shown.



Table 4. Pairwise comparison of trip attributes by category (stage 2).

Characteristics of Attributes

Z-Value of Pairwise Comparison

1 2 3 4 of Means of Attributes
Attri-
Variable Category bute Mean SD No. Mean SD No. Mean SD No Mean  SD No. Z,, Z,3 Z,4 2,3 Comments
Age <18,1840,41- N 2.88 2.05 347 2.77 2.01 698 2.40 1.76 586 1.25 1.67 195 0.82 365 3.50 3.50 2;,4=10.72,Z3 4 =823
65,>65 T 51.8 37.2 347 528 38.0 698 47.9 35.2 586 220 3t.2 195 0.40 1.17 994 2.40
Sex Male, female N 2.69 2.05 816 2.37 1.98 1,010 3.37 - - - Sex alone is a significant variable,
T 538 38.9 816 42.7 36.5 1,010 6.57 - - - but when plotted together with
: employment status its signifi-
cance disappears
Automobile Never, sometimes N 1.55 1.58 501 2.86 2.05 349 3.23 195 483 10.05 14.80 - 4.23 Important variable
availability  always T 32,6 36.1 501 54.8 35.8 349 60.6 38.2 483 8.86 11.80 - 2.23
Employment Employed, not N 3.05 0.19 1,086 1.7 1.43 740 21.18 - - - Important variable
status employed T 61.4 394 1,086 27.8 34.7 740 19.22 - - -
Income Low, high N 2.78 2.05 217 3.27 2.23 522 2.88 Income is not a strong variable; for
. T 62.8 39.1 217 672 42.3 522 1.42 T it is not a significant stratifier

even when considered alone

Note: This table is read in the same manner as Table 3. N = trip rate and T = total travel time.

Figure 4. Values of N and T as dependent on
employment, sex, and age of persons.
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Figure 5. Values of N and T for obligatory
and discretionary trip purposes as dependent
on age of persons.
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Figure 8. Four versions of person-category definition.
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detailed examination of the data using the 15-ele-
ment trip rate vector (Ngj) shown in Table 1 and
calculated for each category.

For all four versions of the final category defi-
nition, respective triangle matrices of rj4, mj4, and
bij were found (the Q-type analysis). From the analy-
sis point of view, the interesting parts of these
matrices are those near the hypothenuse, where the
values of ”2' miye and bij are expected to satisfy
conditions of similarity ‘given earlier (Equations
2-4) for those old categorfies i, j,..., m, which
will be combined in one new category C (Figure 9).

Figure 9. General idea of creating and svsiuating
new final person categories.

Old Categories
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The shadowed triangles in Figure 9 that were near
hypothenuses of the matrices Lijr ®miqs and bij were
examined carefully. As one of the possible measures
of appropriateness for each four versions of the
final category description, the average regression
for pairs of categories in the shadowed areas was
calculated.

The results of the regressions ([see Supernak et
al. (8) for details] indicated that a ld4-category
‘version is only slightly better than the 8-category
version. This conclusion is also supported by visual
inspection of the triangular matrices for Lige blj'
and mizh(g) .

Purther detajiled examination of the matrices for

‘three variables: age, employment status,
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Ti4e biz, and mg4 led to three specific comments.
First, there are three main groups of travelers that
have clearly different trip-generation characteris-
tics: people under the age of 18 (mostly students),
employed adults (age 18 to 65), and not employed
adults and retired people. Second, the conditions
taken as a measure of similarity (rgy4 > 0.900, 0.75 <
uq < 1.25, bj4 < 10,10t) are utiltted for most
pairs of old categories, which are consolidated into
the final new categories. These criteria are better
met by the student and employed adult categories
than by the not employed and retired categories. 1t
means that the existence of an obligatory activity
(work, school) makes travelers' behavior more regu-~
lar. Third, unsatisfactory values of Tiyr Big and
bij observed in some cases were regulariy accompa-~-
nied by small size in the categories.

The correlation analyses and the pairwise com-
parisons strongly suggest that the final categories
should be based on age (younger than 18, 18 to 65,
older than 65) and employment status (employed, not
employed). Of the remaining variables, either car
availability or sex and income could be used. For
practical reasons, to keep the numbers of categories
low and variables compatible with other models, car
availability was chosen to complete the 1list of
variables for defining trip-generation categories.
A two-dimensional analysis of variance was done to
provide quantitative support for this choice; the
results indicated that sex and income do not have
much explanatory power when analyzed together with
car availability.

STAGE 3: PURTHER ANALYSIS OF FINAL TRIP-GENERATION
CATEGORIES

The final eight person categories were based on
and car
availability. These eight categories are analyzed
in more detail.

Car availability data may be replaced in the
model by car ownership, the latter in some cases
being mwore readily available. The results of a
version A (using car availability) and those of a
version B (using car ownership) are compared in
Figure 10. .For practical model applications, both
versions require estimation of category representa-

Figure 10. Two versions of final person-category description and their

repressntation in the Baltimors data.
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tions at the zonal level. This can be achieved by
applying the person~category car-availability and
ownership model, which is presented in detail in
Supernak et al. (1l). This model uses land use and
level-of-gervice variables and thus takes into con-
sideration the influence of these variables on both
the category representations and final trip rates in
the given area.

Figure 10 compares these two versions of the
final trip~generation categories in the available
sample. The weekday trip-generation rates for the
two versions are given in Table 5 for all trips and

Table 5. Trip-generation rates (trips per person) for eight person categories,
weekdays only (stage 2).

Home Based
Non-Home
Obligatory Discretionary  Based Total
Category
No. A B A B A B A B
1 1.47 147 1.13 1.13 0.38 0.38 2.98 2.98
2 1.40 1.27 0.59 0.70 0.51 0.57 2.50 2.54
3 1.717 1.69 0.85 0.85 0.55 0.59 317 3.23
4 1.67 1.72 1.05 0.90 0.76 0.68 3.48 3.30
S 0.13 0.15 0.89 0.93 0.31 0.35 1.33 1.43
6 0.34 0.23 1.74 1.39 047 0.43 2.55 2.05
7 0.30 0.27 2.10 1.66 0.59 0.43 2.99 2.36
8 0.12 0.12 0.93 0.93 0.43 043 1.48 1.48
Weighted 1.01 1.07 0.50 2.59
avg of
population

Note: Categories in versions A and B are defined in Figure 10.

in Table 6 for vehicular trips only. The data indi-
cate that there is 1little difference whether car
availability or car ownership is used. The biggest
difference is in discretionary trips by car-owning
persons. Generally, version A of the model formula-
tion is recommended because it clearly refers to the
person (a real or potential traveler) and his access
to transportation models and his individual travel
choices. The person-category car-availability model
(11) is a direct input to the person-category trip-
generation model. Both models require only routinely
available data and are easy in practical application.

A comparison of the data in Tables 5 and 6 indi-
cates the importance of walk and other nonvehicular

Table 6. Trip-generation rates (vehicle trips per person) for eight person
categories, weekdays only.

Home Based
Non-Home
Obligatory Discretionary Based Total
Category
No. A B A B A B A B
1 0.63 0.63 048 0.48 0.15 0.15 1.26 1.26
2 1.15 098 0.28 0.28 0.28 0.27 1.71 1.53
3 1.64 1.87 0.76 0.83 0.49 0.52 2.89 2.91
4 1.61 1.61 0.96 0.82 0.71 0.63 3.28 3.09
5 0.06 0.06 0.40 0.31 0.14 0.11 0.60 048
6 0.28 0.16 1.39 1.04 0.38 0.32 2.05 1.52
7 0.24 0.21 2,03 1.50 0.57 0.39 2.84 2.10
8 0.12 0.12 0.60 0.60 0.28 0.28 1.00 1.00
Weighted 0.80 0.75 0.36 1.91
avg of
pepulation

Note: Categories in versions A and B are defined in Figure 10.
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trips (e.g9., bike, horse, boat). FPor example, for
persons not owning cars these trips account for 40
to 60 percent of all trips. PFor young people this
percentage 1is greater. This {is important because
there clearly exist substitution possibilities be-~
tween walk and bike and vehicular modes, and these
should be accounted for in the models. It also
appears that there is a distinct difference between
employed and not employed persons' trip rates; the
same is true for the car~ownership and car-avail-
ability groups.

For example, non-home-based vehicle trips (during
weekdays) are more numerous for employed persons and
increagse with higher automobile availability level,
which is an expected finding.

Also, modal choice is8 strongly related to the
person category for both obligatory and discretion-
ary trips. Employed persons are more likely to
drive than not employed persons; public transit is
rarely used by those with car always available, and
the same applies to discretionary trips by persons
with any access to a car; also the percentage of
walk trips increases with decreasing car availabil-
ity and 18 larger for discretionary trips. Again,
the walk trips are of no small significance; they
are more common than the transit trips (7, Figure 3).

TRANSFERABILITY OF MODEL WITHIN THE BALTIMORE AREA

To examine the performance of the person-category
trip-generation model, it was applied to three d4if-
ferent areas of the Baltimore region. Area 1 is the
central urban area (628 persons), area 2 is the
remainder of the urban area (617 persons), and area
3 is the suburban area (622 persons) (see Figure 11).

Figure 11. Baftimore region divided into three areas.

A transferability error analysis of areawide trip
rates, nonwork vehicle trip rates, and the automo-
bile drive portion of modal split for subareas 1 and
3 is given in Table 7. The data indicate that the
categorization of persons reduces the percentage
error in the average trip rate, and thus in travel-
demand prediction, often by more than 50 percent,
which leaves the remaining error rather low. The re-
maining errors for total trip rates (N, NoPl, ndisc)
are smaller for the recommended version A of the
model formulation than for version B. The data also
indicate that person categories provide a satisfac-
tory explanation of automobile driver modal-split
percentages (it can even be argued that these are
better results than the results obtained with a
sophisticated modal-split model).
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Table 7. Comparison of transferability errors for subareas 1-3 in Baltimore with and without category division.

Zone 1: Central Urban

Zone 3: Suburban

Percentage Percentage Percentage Percentage
Category Error with- Error with Error with- Error with
Split out Category Cate%ory out Category Category
No. Value Version Split* Split Split* Split
1 N A +10.5 6.6
, oo i +23.3 1238 -14.2 86
2 + -
B +29.1 +§'f -11.2 _g %
3 Ndise A +11.9 -1.7
B +194 +194 -16.4 _15.8
4 Nronwalk A 57 +26.5 -14.3
. , B 0 +187 -26.4 154
ercentage of discretionary A +31.2 -133
nonwalk trips B +51.9 +29.9 -18.2 -16.0
6 Percentage of drive-alone A +7.4 -15.3
trips B +86.8 +16.9 376 114

*Calculated as (ﬁ.ve - ﬁj)/ﬁ], where j = area.

Calculated n(; aijNyj - Nj)/Ni, where ajy = percentage of sample in category i who reside in area
i

The numbers in Table 7 also call for caution in
treating walk trips. The data indicate that there
is an overprediction of nonwalk trips in the urban
area by about 30 percent, and an underprediction of
nonwalk trips in the suburban area by about 15 per-
cent, even when person categories are used; thus
walking is an important mode.

Overall, this analysis demonstrates the useful-
ness of categorization of the population into eight
segments. The conclusion from the data - in Table 7,
however, should not be that trip-generation fore-
casts based on person categories provide a substan-
tial improvement over trip-generation forecasts
based on average (one category) trip rates. This
would be a trivial finding. Rather, the conclusion
is that the remaining transferability errors are
low, keeping in mind that sample size in Baltimore
subareas {s only about 600.

Another transferability test was performed be-
tween Baltimore and the Twin Cities of St. Paul-
Minneapolis (12). Unfortunately, this comparison
could be made for travelers only and their vehicular
trips because the data records in the Twin Cities
were not complete. The trip rates of eight cate-
gories appeared to be similar for those two cities,
and the transferability errors were low. However,
because the analysis unit traveler is not recom-
mended for trip-generation analyses, this part of
the research is not presented in this paper. More
details about transferability of the person-category
trip-generation model are given in Supernak (13).

COMPARISON WITH HOUSEHOLD CATEGORY MODEL AND
CONCLUDING REMARKS

For comparison purposes, a household-category model
was developed in the same way as the person-category
model (9). Because there were only 609 households
(but 1,825 individuals) in the Baltimore data (week-
days), the analyses lacked the richness of the per-
son-category model.

Based on previous research (1,14,15), three vari-
ables were chosen for the analyses: household size
(one, two, three, four, five or more), car ownership
(zero, one, two or more), and number of employed
household members (one, two, three or more). Unfor-
tunately, other variables such as income and race
could not be included because the chosen variables
already yielded 51 categories, and the sample size
was only 609.

Some results of the pairwise comparison of trip

i

rates are given in Table 8. One unexpected result
is noticed. The household-size variable is the only
one that gives expected, consistent results. House-
hold size appears to overshadow all other differ-
ences; this of course is a trivial finding (i.e.,
more people, therefore more trips). This result is
substantial because it indicates the inefficiency
and simplicity of the household-category model. The
person-category model totally avoids these types of
trivialities and the difficulty of predicting house-
hold size ({for substantial errors in predicting
household size, see Talvitie et al. (16)].

Table 8. Results of pairwise comparison of trip rates for different variable
strata.

Variable

Examined Stratum i Stratum j Z;

Car ownership 0 1 2.24
1 2+ 4.24

Household workers 0 1 1.48
1 2 1.76
2 3+ 4.17

Household size 1 2 4.80
2 3 2.70
3 4 3.39
4 S5+ 3.89

Note: Zg,0; = 2.57.

The two models discussed next are two-dimensional
combinations of the three variables. The first
model, model A, has 15 categories of household size
(one, two, three, four, five or more) and car owner-
ship (zero, one, two or more). Model B has nine
categories of workers (zero, one, two or more) and
car ownership (zero, one, two or more). Trip rates
for these models are shown in Figure 12. Model A
shows consistency; that is, trip rates increase with
car ownership and family size. Model B does not
show consistency; that is, the trip rate for one-car
families is less than the zero-car households when
there are zero or two or more workers in the house-
hold. This outcome is difficult to explain and
suggests that model A is the better model because
introduction of one more variable (e.g., household
size) would increase the number of categories to
make the model impractical. It may be recalled that
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Figure 12. Household model trip rates.
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employment status was the key variable in the per-
son-category model.

Examination of the performance of model A was
difficult. Because of reasons of data incompatibil-
ity, a transferability check with Minneapolis-St.
Paul data was impossible. The scarcity of data
required that the Baltimore region be divided only
into two areas, instead of the three used with the
person-category model, to examine the transferabil-~
ity properties of the model. The remaining trans-
ferability error between the two zones was approxi-
mately 15 percent, or slightly more than for the
person-category model (6 to 12 percent for the rec-
ommended version). Nevertheless, the findings are
not comparable because the Baltimore subareas were
"defined differently.

Principally, then, the person-category model is
favored for the following reasons. First, it clas-

sifies people in a manner that is logical and elimi--

nates the necessity of predicting household forma-
tion and, especially, household size with their
attendant difficulties. The research also indicated
that household type was an unimportant variable in
explaining person trip generation. Second, data are
ugsed much more efficiently in the person-category
model than in household-category model, or, alterna-
tively, less data are needed for developing the
person-category model. Third, fewer categories may
be used in the person~category model. Because house-
hold size is the key variable in household-category
model, it precludes the introduction of real behav-
ioral variables (such as age, employment status, and
others) if the number of categories is to be kept
within practical 1limits., This renders the house-
hold-category model trivial.

Finally, the person-category model has a better
behavioral background because the analysis unit is
identical with the traveling unit. This makes the
person-category trip-generation model compatible
with other models in the entire travel-demand model
system. The person-category car-availability model,
which is fully compatible with the person trip-gen-
eration model, makes references to the land use and
level-of-service variables that where found to be
significant in previous aggregate models, but were
not present in most household-category trip-genera-
tion models. Therefore, the person-category trip-
generation model reported in this paper is con-
sidered to be useful and practical and superior to a
household-category model.
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Trip Generation by Cross-Classification:

An Alternative Methodology

PETER R. STOPHER AND KATHIE G. McDONALD

An alternative methodology for calibrating cross-classification models, namely
multiple classification analysis (MCA), is described. This technique, which has
been available in the social sciences for some time, does not appear to have
been used in transportation planning before, although it appears to be able to
overcome most of the disadvantages normally associated with standard cross-
classification calibration techniques. The MCA procedure is described briefly,
and its merits—in terms of statistical assessment, ability to permit comparisons
among alternative models, and lack of susceptibility to small samples in in-
dividual celis—-are discussed in detail. In addition, the method is based on
analysis of variance (ANOVA), which provides a structured procedure for
choosing among alternative independent variables and alternative groupings of
the values of each independent variable. These procedures are contrasted with
standard procedures for cross-classification that estimate cell values by obtain-
ing the average value of the dependent variable (e.g., a trip rate) for those sam-
ples that fall in the cell and are unable to use any information from any other
cell. The process of selecting independent variables and selecting groupings of
the chosen variables by ANOVA is illustrated with a case study. In this study
the way in which this process works, and the degree to which there is statistical
information provided to guide the analyst's judgment, is shown. In the case
study the confirmation of intuitive selections of variables is noted, and also a
more surprising result is produced that shows that the best household grouping
is one that combines two- and three-p h holds. A d case study
illustrates the use of MCA to calculate trip rates. A comparison of the conven-
tional procedure of cell-by-cell averaging, a MCA design that does not account
for inter g the independent variables, and a MCA design that cor-
rects for interactions is given. it is shown that the MCA aliows trip rates to be
computed for some cells that are empty of data, and that MCA removes some
possibly spurious rates that arise in the conventional method from smalil sample
problems in some cells. It is concluded that MCA provides a strong meth-
odology for cross-classification modeling and that the procedure is effective in
surmounting mostof the drawbacks of conventional estimation of such models.

In the 19508 and 1960s most of the transportation
planning studies developed trip-generation equations
that used linear regression, particularly for person
trip-production models. Linear regression was so
strongly favored that it was the central method in
the FHWA guide to. trip-generation analysis (1).
Initially, most of the trip-production models were
formulated to provide an estimate of zonal trips as
a function of zonal variables that describe house-
holds. These models were increasingly the subject
of criticism, particularly because of the loss of
variance from the extremely aggregate nature of
these models (2,3). As a result, household models
of trip production were developed, in which the de-
pendent variable became average daily trips per
household, possibly by purpose, as a function of at-
tributes of the household, These models remained,
however, predominantly linear-regression models.

In a few instances an alternative method of
modeling trip generation appeared., This method was
known in the United States as cross-classification
and in the United Kingdom as category analysis
(1,4). This method went through the same develop-
ment as the linear-regression models, with the ear-
liest procedures being zonal trip estimators and
subsequent models being based on household rates.
For the most part, however, the household-based
cross-classification models were still aggregate in
that the classes were defined by average zonal val-
ues for household characteristics, and the ¢trip
rates were applied simply to the total number of
households in the zone. Thus a cross-classification
model based on household size and car ownership
might have the first variable classified into
ranges, such as less than 1.5 persons per household,
1.5 to 2.5 persons per household, 2.5 to 3.5 persons

per household, and more than 3.5 persons per house-
hold; car ownership was defined similarly in
ranges. Then the average zonal values of each vari-~
able would be determined and a look-up table would
be used to select one cell rate for the zone based
on these average values.,

Although the cross-classification method was
widely used in Europe, it was used in relatively few
instances in North America. However, with the grow-
ing interest in and use of disaggregate modal-choice
models, there has been a resurgence of interest in
the cross-classification model, formulated now in a
substantially more disaggregate fornm. Currently,
the model uses categorized variables, such as house-
hold size, vehicle ownership, and so on, as integer
values to describe individual households. The rates
in the cells of the table are then average rates for
households of that type. The correct application of
the model is to estimate the number of households in
each category within a zone and to multiply the trip
rates by those numbers of households., In general,
this procedure leads to greater disaggregation than
any other method of modeling trip generation, and
has the potential to provide more policy responsive-
ness than alternative methods.

It is important to note that the standard method
for computing cell rates is to group households in

- the calibration data to the individual cell group-

ings and total, cell by cell, the observed trips by
purpose groups. The rate is then the total trips in
a cell by purpose divided by the number of house-
holds in the cell, 1In mathematical form it is as

follows:
thin = Tha/Hma O]
where

tp = trip rate for the pth purpose for households

mn
of type mn,
'r::‘ = observed trips made by households of type

mn for purpose p, and
Ayn = Observed number of households of type mn.

The advantages that can be claimed for the disag-
gregate cross-classification methods are as follows:

1. Cross-classification methods are independent
of the zone system of a region,

2. They do not require prior assumption about
the shape of the relationships . (wvhich do not even
need to be monotonic, let alone linear),

3. Relationships can differ in form from class
to class of any one variable (e.g., the effect of
household size changes for szero car-owning house-
holds can be different from that of one car-owning
households), and

4, The cross-classification model does not per-
mit extrapolation beyond its calibration classes,
although the highest or lowest class of a variable
may be open-ended.

The models also have several disadvantages, which
are common to all traditional cross-classification
methodss
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1. There is no statistical goodness-of-fit mea-
sure for the model, so that closeness to the cali-
bration data cannot be ascertained;

2, Cell values vary in reliability because of
different numbers of households being available in
each cell for calibration;

3., Por the same reason as the preceding problenm,
the least-reliable cells are likely to be those at
the extremes of the matrix, which may also be the
most critical cells for forecasting;

4, There is no effeoctive way to choose among
variables for classification or to choose best
groupings of a given variable, except to use an ex-
tensive trial-and-error procedure not usually con-
sidered feasible in practical studies; and

5. The procedure suppresses information on vari-
ances within a cell (S).

An alternative computational method is put for-
ward and illustrated in the balance of this paper.
This method--multiple classification analysis
(MCA) —is well known to quantitative social scien-
tists, but appears not to have been used by trans-
portation analysts. As will be shown, MCA overcomes
most of the disadvantages of cross-classification
models without compromising their advantages.

MULTIPLE CLASSIFICATION ANALYSIS

MCA is based on a simple extension of analysis of
variance (ANOVA), and ANOVA (6) also provides a sta-
tistically powerful procedure for selecting the var-
jables and their categories for the cross-classifi-
cation models. MCA is a rather simple development
out of ANOVA, with application primarily for two-way
and greater ANOVA problems.

Although a number of alternative methods have

been suggested for analyzing cross~classification
models and for determining cell values (7), there
remains little change in the practice of estimating
cross-classification cell values. Generalized lin-
ear models and regressions with dummy variables have
been suggested as alternative methods, but they have
not found wide acceptance in practice. The method
suggested here is more readily accessible than most
others because it is contained in some statistical
packages that are available to transportation plan-
ners. Nevertheleas, like many of the other methods
that have been suggested recently, there is no
treatment of this method in the statistical texts
most frequently used by engineers and by courses
taken by transportation planners. Indeed, no refer-
ence to the method could be found in any of the sta-
tistical texts most likely to be found on the book-
shelf of a transportation planner or an engineer.
Therefore, a brief description of the method is pro-
vided here.

Consider a two-way ANOVA design in which the de-
pendent variable is a continuous variable, such as a
trip rate, and the two independent variables are two
integer variables that describe households, such as
household size and vehicle ownership. First, a
grand mean can be estimated for the dependent vari-
able, where this grand mean is estimated over the
entire sample of households. Second, group means
can be estimated for each group of each independent
variable, without regard for the other; in other
words, means are computed from the row and column
sums of the cross-classification matrix. Each of
the group means can be expressed as a deviation from
the grand mean., Observing the signs of the devia-
tions, a cell value can now be estimated by adding
the row and column deviations of the cell to the
grand mean.
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An example may help to clarify this. Suppose the
dependent variable is home-based work trips, and the
independent variables are cars owned and household
size. The grand mean is 1.49 trips per household.
Deviations for cars owned are -0.97 for zero cars,
-0.26 for one car, and +0.88 for two or more cars.
Deviations for household size are -1.06 for one per-
son, -0.33 for two persons, +0.49 for three persons,
+0.55 for four persons, and +0.70 for five or more
persons. Por a household with one car and three
peoprle, the trip rate would be estimated as 1.72
(= 1.49 - 0.26 + 0.49)., That is, it is the grand
mean plus the deviation for one car plus the devia-
tion for three persons. Note that, in contrast to
standard transportation cross-classification models,
the deviations are computed not only for households
in the cell three persons with one car, but rather
the car deviations are computed over all household
sizes, and the household deviations are computed
over all car ownerships.

If interactions are present, then these devia-
tions need to be adjusted to account for the inter-
active effects. This is done by taking a weighted
mean for each of the group means of one independent
variable over the groupings of the other independent
variables, rather than a simple mean, which assumes
that variation is random over the data in a group.
These weighted means will decrease the sizes of the
adjustments to the grand mean when interactions are
present. The cell means of a multiway classifica-
tion are still based on means estimated from all the
available data, rather than being based on only
those data points that fall in the multiway cell.
Purthermore, there is no over-compensation resulting
from a false assumption of total lack of correlation
between the independent variables.

Because it is based on ANOVA, MCA also has sta-
tistical goodness-of-fit measures associated with
it. Primarily, these consist of an F statistic to
assess the entire cross-classification scheme, an
eta-square statistic (8) for assessing the contribu-
tion of each classification variable, and an
R-square for the entire cross-classification model.
These measures provide a means to compare among al-
ternative cross-classification schemes and to assess
the fit to the calibration data.

Without pursuing some further advantages offered
by the statistical context within which MCA is ap-
plied, it is apparent that MCA overcomes effectively
several of the disadvantages cited for other types
of cross-classification models. Pirst, there are
statistical goodness-of-fit measures available for
the MCA models that permit selection from among al-
ternative classification schemes and that permit
overall assessment of fit to the calibration data.
Second, the cell values are no longer based only on
the size of the data sample within a given cell;
rather the cell values are based on a grand mean
derived from the entire data set, and two or more
class means are derived from all data in each class
of the classification variables, where the intersec-
tion of those classes defines the cell of interest.
This also tends to reduce the uncertainty of fore-
casting outlying households. For example, if a
critical cell is the five or more person household
with two or more cars available, for which the orig-
inal data might have provided less than 2 percent of
the sample, MCA will provide a cell rate that is
based on the grand mean (from all the data) adjusted
by deviations for all five or more person households
and all two or more car households, where the first
of these might comprise 10 percent or more of the
data and the second more than 20 percent. Clearly,
there is far greater reliability in this cell rate
than would be obtained from traditional methods.
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SELECTING CLASSIFICATION VARIABLES AND CLASSES

In current computer software packages that compute an
MCA (9), the MCA is usually provided after perform-
ing ANOVA. 1In turn the use of ANOVA provides the
appropriate method for selecting variables and
classes within variables. After developing a series
of hypotheses about possible variables and classes
of variables that might be used for the cross-
classification scheme, a series of ANOVAs can be
performed, from which several pieces of information
are obtained that indicate better or worse classifi-
cation schemes.

Several pieces of information are provided by a
standard ANOVA that enable this evaluation to be
made. First, there is an F statistic available for
each main effect and for the interaction effects. A
highly significant P statistic for the main effects
indicates that the variable is strongly associated
with the trip-rate variations in the data. A highly
significant F statistic for the interaction effects
suggests that the independent variables may be too
highly intercorrelated to be useful, and it is
likely to be necessary to choose among alternative
independent variables and reduce as much as possible
the interaction effects. There is also an overall F
statistic for the entire cross-classification scheme
that indicates the extent of covariation between the
trip rates and the set of classified independent
variables.

By trial-and-error procedures, or nested hypothe-
ses, it is also possible to compare alternative in-
dependent variables and to compare alternative clas-
sifications. Of course, as the number of classes is
changed, there is a consequent change in the number
of degrees of freedom of the ANOVA problem and a
consequent change in the expected P statistic. Ob-
viously, this must be taken into account in assess-
ing alternative schemes, but it then becomes possi-
ble to determine the amount of information loss
occurring by aggregating classes, or the amount of
added information obtained by disaggregating classes.

Thus ANOVA provides a structured and statisti-
cally sound procedure for selecting both the inde-
pendent variables and the best groupings of those
variables from those available. There is no claim
of optimality in this, and clearly there are coun-
tervailing tendencies from aggregating and disaggre-
gating variables, which demand the application of
judgment to the results rather than blind acceptance
of the statistical indicators. Also, the method is
only as good as the initial and subsequent hypothe-
ses of model structure. Thies may be interpreted as
an advantage to the method over linear regression.
The latter method permits too readily the abrogation
of judgment to stepwise or similar regression pro-
cedures that may build models that appear to perform
well, based on statistical measures and the R-square
values, but which make no ‘conceptual sense, whereas
the application of ANOVA is far more demanding of
the structuring of conceptually sound hypotheses,
particularly because of its rather low efficiency in
selecting good structures from blind application.

Finally, with each ANOVA it is possible to obtain
the MCA results., These can also be revealing be-
cause they provide the additional statistics of an
R-square and the eta-square for each variable, and
they indicate the size of the deviations from the
grand mean provided by each class of each indepen-
dent variable. These data items may illuminate,
clarify, or support the results from the ANOVA and
should generally lead to a more rapid closure on a
good structure for the model.

In summary, the use of the ANOVA that accompanies
the MCA procedure resolves the remaining disadvan-
tage of traditional cross-classification methods,
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namely the lack of a sound method for choosing among
alternative variables and alternative classes within
a variable.

There is, however, one disadvantage incurred as a
result of the use of MCA., MCA averages the effect
of the relationships of one variable over classes of
the other variables. Because the deviations are
based on row and column means, there is no longer
the capability for the shape of the relationship to
differ from class to class of each variable as ex-
ists in traditional cross-classification methods.
There does remain, however, no limitation on the av-
erage shape of the relationship for each independent
variable, which still is not required even to be
monotonic, let alone linear. This appears to be a
relatively small price to pay for the advantages ob-
tained, particularly when taking into account that
many of the variations in functional form between
classes in traditional models may derive from spuri-
ous small-sample effects.

USE OF ANOVA TO SELECT VARIABLES AND CLASSES

A case study application of this method used data on
2,446 households from, a metropolitan area in the
Midwest. FPor initial variable selection, several
candidates were identified and classifications were
proposed for each of these variables. As a pre-
cursor to the multiway analyses, one-way ANOVAs were
performed between trip rates and each candidate var-
iable.

There are two bases for selecting variables in
travel-forecasting models that hold true for any
model. This first is conceptual or behavioral jus-
tification that the variable has a causal effect on
the phenomenon being modeled, and the second is sta-
tistical justification that the variable shows a
significant and measurable empirical association
with the phenomenon being modeled.

Given 30 years of travel forecasting at the re-
gional level, considerable experience and informa-
tion exists now on variables that affect trip pro-
duction, so that extensive concept formulation is
not necessary. Based on past experience, the fol-
lowing variables were considered:

1. Household size (persons per household),
2. Automobile ownership or availability,
3. Housing type,

4. Household life cycle or structure,

S. Number of workers,

6. Number of licensed drivers,

7. Income, and

8. Area type.

Each of these variables is described briefly, to-
gether with its expected effects on trip production.

Household size is defined as the number of per-
sons in the household without regard to age. House-
hold size is expected to cause increases in tripmak-
ing for all trip purposes, although not in a uniform
manner. Trips per person is expected and has been
shown to be relatively stable; hence the more people
in the household, the more trips are likely to be
made by the household.

Automobile ownership or availability is measured
as the number of automobiles, vans, or lightweight
trucks usable for personal travel by household mem-
bers, either owned by the household or available to
members of the household. A well-documented phenom-
enon is that acquisition of a vehicle increases sub~
stantially the number of trips and motorized trips
made by a household. This arises both from substi-
tution of vehicular trips for walk trips and from
satisfaction of previously unsatisfied demand for
travel. The tripmaking rate of increase is nonlin-
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ear, with a decreasing rate of increase with in-
creasing automobiles. Vehicle availability |is
likely to be the more appropriate measure than own-
ership because it is a more accurate measure of the
potential to satisfy demand for vehicular trips.

Housing type is usually defined as single-family
or multifamily dwellings, and hotel and motel units
when tourists and nonresidents are to be included.
It has a weak conceptual link, deriving principally
from density considerations and some aspects of ve-
hicle availability associated with vehicle storage
space.

Recent research (10) suggests that a household-
structure variable correlates more strongly with
trip rates than almost any other variable. The
categories of this variable are described elsewhere
(see paper by McDonald and Stopher elsewhere in this
Record), as are the arguments for its conceptual ef-
fect on tripmaking (10), and they are not described
in this paper.

Number of workers may be defined as all workers,
or as full-time workers only, where worker is re-
stricted to work outside the home. Clearly, the
number of workers will be in direct proportion to
and is causative of the number of household work
trips. Also, as more members of a household of a
given size work, the number of trips for all other
purposes is likely to be fewer, except for non-home-
based trips, because more activities are 1likely to
be undertaken on the way to or from work.

To the extent that a household has more licensed
drivers than vehicles, more 1licensed drivers than
workers, and more vehicles than workers, the number
of licensed drivers would be expected to have a pos-
itive relationship to all nonwork trip purposes.

Income is usually defined as income groups of
fairly broad income ranges. As income increases
(all other things being equal), it is expected that
tripmaking would increase because purchasing trips
requires available wmonetary budgets and, as these
increase, so does the potential to satisfy pre-
viously unsatisfied demand.

Area type has been defined in a variety of ways
and is designed to differentiate between areas with
markedly different intensities of development and
activity. Therefore, either explicitly or implic-
itly, it is related to employment and residential
densities. Where densities are higher, wmotorized
trips are likely to be fewer because opportunities
for satisfying activities are closer and both con-
gestion and parking price may be significantly
higher, whereas parking availability is lower. In
addition, various services and home deliveries may
be more available, thus reducing the need for some
trips. The effect of area type is likely to be
greatest on discretionary travel (home-based social-
recreational, home-based other) and least on manda-
tory travel (home-based work or school).

The purpose of the one-way ANOVAs was both to de-
termine which variables appeared to have the stron-
gest relationships to tripmaking by purpose and to
determine the best grouping of data to use. The re-
sults of these procedures were as follows.

1. Number of cars available was consistently one
of the most significant variables for all trip pur-
poses. It always performed better than number of
cars owned.

2. Household size was also consistently a sig-
nificant variable for all trip purposes.

3. Area type, which was defined as two groups--
high density of either residences or employment, and
low density of both residences and employment--was
ranked third in significance across most trip pur-
poses.

4. BRousing type, denoted as single family and
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multifamily, ranked about fourth
across most trip purposes.

5. Household structure, which was defined in
terms of the relationships among household members,
presence or absence of children, and some aspects of
both household size and ages of members, was found
to be inferior to household size alone and to number
of cars available.

6. Other variables examined included number of
workers, number of licensed drivers, and {ncome.
Each of these variables was significant for at least
one purpose in the most disaggregated form of the
variables, but they did not perform satisfactorily
across a majority of the purposes.

in significance

In experiments on groupings, the results were as
follows.

1. Vehicle ownership or availability could be
specified as zero, one, and two or more without sig-
nificant loss of power of the variable.

2. The optimal grouping of household size ap-
peared to be one, two and three, four, and five or
more. Examination of some other recent models (1l)
revealed a small difference in tripmaking rates for
most purposes between two- and three-person house-
holds, which tended to confirm this grouping.

3. Income is best grouped into low (less than
$15,000), medium ($15,000 to $34,999), and high
{more than $35,000) categories.

4. Household structure should be grouped into
five categories: single-person households, one-
parent households, adult households with children
and more than one adult, adult households without
children and more than one adult, and households of
unrelated individuals.

5. Number of workers can be grouped so as to ag-
gregate households of four or more workers into one
class, yielding categories of zero, one, two, three,
and four or more.

6. Number of licensed drivers can also be aggre-
gated to a set comprising zero, one, two, three, and
four or more.

These results should not be considered indicative
of general rules of classification. They are for
the case study data and are provided here to illus-
trate the way in which ANOVA can be used for this
type of analysis. Details of the runs are not pro-
vided here, because the results were derived from
use of six trip purposes and involved running a.
rather large number of ANOVAs, Furthermore, it is
not the purpose of this paper to produce specific
recommendations on the structure of trip-generation
models or to develop conclusions about the inclusion
of one or another variable in the model. This is
left to other papers that may use the approach de-
scribed here to make more detailed studies of the
performance of alternative variables. Despite the
number required to be run, neither setup time to run
them nor central processing unit (cpu) time on the
computer to complete them were large.

The results of some of the multiway ANOVAs used
to select the cross-classification scheme are given
in Tables 1-4. The data in Table 1 give five pur-
poses by using car ownership, housing type, and
household size, whereas the data in Table 2 are the
same except for the use of car availability in place
of ownership. Por all purposes except shopping, the
F statistics are higher, although not significantly
s0, in most cases. The R-squares for the MCA tables
and the eta-squares for the vehicle variable follow
the same pattern. There are also two fewer signifi-
cant interaction terms for car availability than for
car ownership. This led to the selection of car
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availability in preference to car ownership,
confirming the results from the one-way ANOVAs.

The data in Table 3 give the replacement of the
partly insignificant housing type by total employ-

thus
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Confirming the NCHRP results (10), income is ap-
parently able to add little once vehicle availabil-
ity is included. 1In all purposes, none of the sta-
tistical measures for the ANOVAs is as good for this

ment. Only the home-based work model is clearly specification as for the one that uses housing type.
better in this specification, the models for all An additional interesting result is given in
other purposes being virtually indistinguishable Table 5. In the ANOVAs presented in Tables 1-4,

from the model with housing type. The data in Table
4 give the use of income in place of housing type.

household size was left disaggregated for two- and
three-person households. In Table 5 the best speci-

Table 1. ANOVA reasults for model structure 1.

Purpose
» Statistic HBWORK HBSHOP HBSOCR HBOTHR NHB
F 28.0 6.0 5.7 338 10.5
df
Within group 2,240 2,240 2,240 2,240 2,240
Between groups 29 29 29 29 29
Signiﬁcant s s -t - s
R 0.255 0.065 0.059 0.291 0.103
Eta-square
Vehicles owned 0.34° 0.14° 0.09° 0.10° 0.16°
Housing type 0.06° 0.05° 0.0t 0.02 0.05°
Household size 0.25° 0.16° 0.20° 0.50° 0.22°
Significant interactions  Vehicles owned and  None None Vehicles owned and  Vehicles owned and

househoid size household size; household size
housing type and

household size

Note: Independent variables are vehicles owned, housing type, and household size. F = F-score, df = degrees of freedom, HBWORK = home-
based work, HBSHOP = home-based shopping, HBSOCR = home-based social-recreation, HBOTHR = home-based other, and NHB = non-home-
based trips.

'Si;nlﬂunt at 99 percent or beyond. bSl;niHcam at 95 percent or beyond.

Tabie 2. ANOVA results for car availability.

Purpose
Statistic HBWORK HBSHOP HBSOCR HBOTHR NHB
F 29.5 5.9 6.0 35.1 114
df
Within group 2,292 2,292 2,292 2,292 2,292
Between groups 29 29 29 29 29
Signiﬁcant - - -t -~ -

R 0.261 0.062 0.060 0.295 0.113
Eta-square b .
Vehicles available 0.36° 0.12° 0.10° 0.11 0.20

Housing type 0.05° 0.05° 0.00 0.01 0.04,
Household size 0.24° 0.16° 0.19° 0.50 0.21
Significant interactions None None Vehicles available and Housing type and None

household size

household size

Note: Independent variables are vehicles aveilable, housing type, and household size. Statistics snd purposes are defined in Table 1.

'Suniﬂcanl at 99 percent or beyond.

Table 3. ANOVA resuits with employment.

bSl;nlﬂum st 95 percent or beyond.

Purpose
Statistic HBWORK HBSHOP HBSOCR HBOTHR NHB
F 37.0 43 52 259 9.5
daf
Within group 2,402 2,402 2,402 2,402 2,402
Between groups 42 42 42 42 42.
Si?niﬁcant -t -t —a . —
R 0.376 0.058 0.061 0.295 0.126
Eta-square
Vehicles available 0.22° 0.15° 0.11® 0.10° 0.1 6:
Workers 0.40° 0.04 0.02 0.05b 0.1 4b
Household size 0.16° 0.17° 0.20° 0.49 0.19
Significant interactions Workers and vehicles None Household size and Workers and househoild Workers and household
available; workers workers; household size size
and housechold size size and vehicles -
available
Note: Ind d are lab) , and housshold size. S and purposes are defined in Table 1.

'Sla\munt at 99 percent ot beyond.

bSl;nlﬂum st 98 percent or beyond.
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Table 4. ANOVA results with income.
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Purpose

Statistic HBWORK HBSHOP = HBSOCR HBOTHR NHB
5( 237 4.1 3.2 22.8 10.5

Within group 2,153 2,153 2,153 2,153 2,153

Between groups 41 41 41 41 41
Sifniﬁcant -~ - - -t -
R 0.298 0.053 0.046 0.284 0.119
Eta-square

Vehicles available 0.21° 0.13° 0.08° 0.08° 0.13°

Income 0.31° 0.00 0.02 0.07° 0.18°

Household size 0.19° 0.15° 0.08° 0.49° 0.17°
Significant interactions None None None Income and household Income and household

size size; vehicles available
and household size

Note: Independent variables are vehicles available, & and h hold size. S and purposes are defined in Table 1.

'mpunum at 99 percent or beyond. hSI;niﬂcmt at 95 percent or beyoand.

Table 5. ANOVA results with aggregated household size.

Purpose
Statistic HBWORK HBSHOP HBSOCR HBOTHR NHB
F 342 7.2 7.3 41.2 13.9
df
Within group 2,298 2,298 2,298 2,298 2,298
Between groups 23 23 23 23 23
Sifniﬁcant -8 -~ - - -
R 0.244 0.061 0.058 0.284 0.112
Eta-square
Vehicles available 0.37° 0.12° 0.11° 0.12° 0.20°
Housing type 0.0s° 0.05° 0.00 0.01 0.04
Household size 0.19° 0.15° 0.19° 0.49° 0.21°
Significant interactions Vehicles available and None Vehijcles available and None None
household size household size
Notes: Independ v are vehick ilsble, housing type, and h hold size, snd purposes are defined in Table 1.

'Sl;nlﬂelni st 99 percent or beyond. bSl;nlﬂum at 95 percent or beyond.

fication from the previous structures is used, but
with the two- and three-person households aggregated
into a single group. Because there is a decrease in
the number of degrees of freedom, it is expected
that the P score will increase. However, the in-
crease is larger than would be expected just from
this effect. Housing type still appears to be an
ineffective variable, but the use of the more aggre-
gated household size appears to be indicated quite
clearly.

DERIVATION OF CROSS~CLASSIFICATION TRIP-
GENERATION MODELS

A useful example of the MCA procedure is provided by
the use of some data from a trip-generation modeling
process used in San Juan, Puerto Rico (12). Pigure
1 provides a set of trip rates computed in the stan-
dard procedure by using individual cell means. Note
that cells 9 and 21 do not have trip rates because
the available data lacked observations in these two
cells. Pigure 2 shows the numbers of households in
each cell, and it can be seen that these range from
a low of 4 to a high of 133. This range indicates
clearly a significant range of reliability in the
estimates of rates. If conventional wisdom is
adopted, in that a mean and variance can be esti-
mated with some element of reliability from a mini-
num of S50 observations, 14 of the 24 possible cells
are estimated with too few data points.

As the next step in the procedure, a manual esti-
mation of a noninteractive MCA was undertaken. This
was done at the time because of the lack of availa-

bility of the computer software to undertake a full
MCA, but it is useful because it traces out the pro-
cedure for MCA. Pirst, a grand mean was computed
for the entire set of home-based work trips; it was
found to be 1.49. Then deviations were computed for
each of the three variables. For the four house-
hold-size groups, the group means were found to be
0.33, 1.26, 1.85, and 1.84; for the two area types,
they were 1.41 and 1,603 and for the three vehicle-
ownership groups, they were 0.65, 1.51, and 2.36.
The deviations are computed in each case by express-
ing the group means as values that deviate from the
grand mean. To compute the cell value for area type
1, vehicle ownership of 1, and household size of
four persons, the value is 1.98 (= 1.49 + 0.11 +
0.02 + 0.36). The complete set of cell values is
shown in Figure 3. Note that there are values now
in both cell 9 and cell 21.

Several points are worth noting from a comparison
of Pigures 1 and 3, First is the one already men-
tioned of the existence of rates for the empty cells
of Pigure 1 that appear in Fiqure 3. Second, some
counterintuitive progressions in Figure 1 are re-
moved or decreased substantially in FPigure 3. These
progressions appear to have been caused by problems
from the small sample size. From examining the data
in Pigure 2, it can be seen that the grand mean is
estimated from 1,178 observations, and that the
least-reliable deviation (for one-person households)
is based on 81 observations. All other deviations
are based on more than 120 observations. Although
there are still some large variations in the sample
size used to compute the deviations, the range of 8l
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Figurs 1. Conventional trip rates: home-based work.

Transportation Research Record 944

Figure 3. Noninteractive MCA trip rates: home-based work.
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to 689 observations represents a much less-signifi-
cant variation in reliability than in the data used
for Figure 1.

‘Figure 4 presents the results from a full-inter-
action MCA for the same data, There are clearly
some major interactions in this specification of the
model, as shown by the differences in the rates be-~
tween Pigures 3 and 4. The anomalous decrease in
rate between four and five or more person households
remains and is of a similar order of magnitude,
which suggests that this result is structured in the
data. PFor the remaining differences, some rates are
higher than before, whereas others are lower. As is

expected from the theory, the range of trip rates is
lower in Figure 4 than in Figure 3 because account-
ing for interactions decreases the net effect of
each variable. Thus the highest trip rate in Pigure
3 is 2.83, whereas the highest rate in Pigure 4 is
2.52. Similarly, the lowest value has increased
from 0.00 in Pigure 3 to 0.10 in Pigure 4. Perhaps
the most marked difference in the two figures is be-
tween the one and two or more vehicle households.
The large differences at all - household-size values
between these two have decreased markedly in Pigure
4, and the values of the one-vehicle households are
substantially higher in the one-person households,
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and lower in the largest households for Pigure ¢
compared with Figqure 3,

Some statistical comparisons among the results
serve to illustrate the differences better than can
be seen from a visual inspection. PFirst, root mean
square (RMS) errors were calculated between Figures
1 and 3, Pigures 1 and 4, and Pigures 3 and 4. For
Pigures 1 and 3, it is 0.47; between Figures 1 and 4
it increases to 0.51; but it is only 0.24 between
Figures 3 and 4. This is about as expected. The
largest difference is between the conventional rates
and the MCA rates with full interactions. The dif-
ference between MCA with full interactions and with-
out is by far the least of the differences. Given
an average trip rate of around 1.45, the differences
between the conventional method and the MCA methods
are on the order of one-third of the average trip
rate.

Chi-square contingency tests between values close
to 1.0 are notoriously misleading because the value
of chi-square is necessarily small in such a case.
This case is no exception, with the three compari-
sons producing chi-squares of 1.88, 4.22, and 1,30,
each with 21 degrees of freedom. These values would
not be considered significant. However, if the
rates are multiplied by the number of households in
the sample (Pigure 2), the chi-square test would be
for differences in the numbers of trips produced for
work. In this case the chi-squares are 55.5, 19.0,
and 41.4, respectively. The degrees of freedom are
the same as before, and all values except the second
one are significant beyond 95 percent. The low chi-
square between Figures 1 and 4 appears to arise
purely by chance, where two of the larger groups of
households are associated with a small difference in
trip rates, fortuitously. It is not clear whether
this result should lead to a conclusion of no sig-
nificant difference in trip rates between the two
cases. Thus these results indicate some real d4if-
ferences in trip rates that are likely to lead to
significant differences in forecasts.

CONCLUSIONS

The two case studies presented in this paper serve
to 1illustrate the potentials provided by the MCA
method and ANOVA from which it stems. This proce-
dure overcomes a number of the criticisms that have
been made before about cross-classification models.
Specifically, the method permits a statistically
based selection of variables for the cross-classifi-
cation model, and also allows comparisons to be made
between alternative groupings of any given vari-
able, Prom this it is possible to provide a model
structure that has both conceptual and statistical
merit, rather than relying only on a conceptual se-
lection.

Second, the method provides a statistically sound
procedure for estimating cell means, which reduces
the inherent variability of rates computed from dif-
ferent size samples of households and is capable of
providing estimates for some cells where data may be
lacking in the base data set (although the use of
this capability does reduce some of the available
statistical information). Third, there are good-
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ness—of-fit gtatistics from all of these steps in
the process that permit more specific comparisons to
be made, good hypothesis-testing procedures to be
followed, and results to be assessed in terms of the
amount of the variability of the dependent variable
that is captured in the model. PFinally, and most
important, the method takes into account the inter-
actions among the alternative independent variables,
which have never been taken into account in standard
cross~-classification models.

It should be noted that similar models have been
developed for predicting vehicle availability, as
well as for trip productions by a variety of pur-
poses. There is no reason why such cross-classifi-
cation models should not be built for any other
phenomenon that is appropriately modeled by this
procedure. Principally, any phenomenon that has a
nonlinear, and possibly discontinuous, functional
form, and that is most readily related to variables
that are categorical in nature, would be a prime
candidate for the method.
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Some Contrary Indications for the Use of
Household Structure in Trip-Generation Analysis

KATHIE G. McDONALD AND PETER R. STOPHER

The variables used to predict household trip-generation rates have long been an
area of concern for transportation planners; these variables included household
size, number of vehicl d, and i H , & recent NCHRP study
that used linear regression analysis has proposed that a household-structure
variable would correlate more strongly with trip rates than almost any other
variable, except vehicle ownership. In particuler, this should improve the model
significantly where it is combined with vehicle ownership and used as a substi-
tute for household size. The resuits of a trip-generation analysis performed on
data from the Midwest by using multiple classification analysis (MCA) in con-
trast to linear regression are described. The household-structure variable was
tested by using both analysis of variance and MCA to determine how well the
variable performs in various model structures when compared with other vari-
ables. The other variables tested were number of cars or vehicles availabie to
the h holid, h hold size, housing type, totat number of employed per-
sons, household income, and total number of licensed drivers. It was concluded
that the household-structure variable did not perform significantly better than
the other variables tested.

With the increasing acceptance into practice of be-
havioral models for travel forecasting, recent re-
search by the NCHRP has focused on enriching travel-
forecasting models with theories and procedures from
the behavioral sciences. [Note that these research
results are from work done at Boston College for
NCHRP Project 8-14 (New Approaches to Understanding
Travel Behavior); the report is available on re-
quest from NCHRP.] One of the first potential di-
rections examined for translation into practice is
the incorporation of behavioral concepts in trip-
generation modeling at the household level. As part
of this research, Charles River Associates (CRA)
proposed that a household-structure variable would
significantly improve the performance of such a
model (1).

This proposal was based on the premise that
households with differing structures, in terms of
adults, children, and personal roles, would have
differing activity requirements, mobility con-
straints, and opportunities for trade-offs with
other household members or for trip chaining. Thus
proposed changes in household structure, such as an
increasing percentage of single and single-parent
households as well as adult households with no
children, as is expected within the next decade,
would have a significant effect on trip-generation
rates within a population., It is argued that such a
variable should add behavioral content that is lack-
ing from traditional trip-generation models, which
generally have included such variables as household
size, number of vehicles owned, and income to pre-
dict household trip rates. Purthermore, a house-
hold~-structure variable would be more significant in
capturing changes in the future than many of the
more traditional variableg used.

The household-structure categories proposed were
based on the age, gender, marital status, and last
names of each household member. These variables de-
termined the presence or absence of dependents
within the household, the number and type of adults
present, and the relationships among and of house-~
hold members.

The results of an application of this household-
structure variable in trip-generation analysis in a
Midwest study area are described. The value of this
variable is compared with other variables that were
tested at this time by using multiple classification
analysis (MCA) (see paper by Stopher and McDonald

elsewhere in this Record). MCA is an extension of
analysis of variance (ANOVA) that, for a set of
classified data, expresses group means as deviations
from the grand mean.

HOUSEBOLD-STRUCTURE CONCEPT

The household-structure variable defined by CRA com~
prises eight household categories: male and female
single-person households, single-parent households,
couples, nuclear families, adult families with chil-
dren, adult families without children, and unrelated
individuals. Age 20 was used as the cutoff to dis~
tinguish between children and adults. These catego~
ries were determined by using the method shown in
Figure 1.

It was expected that these categories would have
varying effects on trip rates. Adults living alone
would be less mobility constrained than those adults
living with children; but they would have none of
the opportunities for trip coordination produced by
living with other adult members. 8ingle-parent
families would have both increased mobility con~-
straints as well as no opportunities for trip coor-
dination, whereas couples would have the advantages
of the opposite of both of these, An adult family
would have further increased opportunities for trip
coordination, but would perhaps differ from an adult
household of unrelated individuals where individual
activities would possibly be less influenced by
other household members.

More specifically, when trip-generation rates are
analyzed by purpose groups, differences between the
trip-~generation rates of these household categories
would be expected. Those households with children
would be expected to have a greater proportion of
school trips and trips serving passengers than those
households without children, whereas the latter
would probably have a greater proportion of social-
recreation trips.

CRA examined this household-structure concept by
using Baltimore survey data with regression analy-
sis, where the dependent variables were trip-genera-~
tion rates by purpose mode, and the independent var-~
iables tested included, in addition to household
structure, vehicles owned, income, number of persons
older than 12, age structure of household, housing
type, number of preschoolers present, number of
gradeschoolers present, employment status, race,
population per residential acre, a city limit clas-
sification, and length of residence at that ad-
dress. The trip-purpose groups defined as the de-
pendent variables were as follows: total home-based
trips, home-based work trips, home-based shopping
trips, home-based personal business trips, home-
based entertainment and community trips, howe-based
visit and social trips, and home-based service and
accompany-traveler trips,

CRA concluded that tne household-structure vari-
able was significant in predicting trip frequency.
It should be noted, however, that the regressions
were constrained to use all independent variables to
permit comparability, even though varying numbers of
independent variables were highly insignificant.
Potentially, intercorrelations among variables could
have masked some of the true underlying relation-
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Figure 1. CRA flowchart of household typology.
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ships. CRA concluded that, of two commonly used
trip-generation variables--number of vehicles owned
and income--only number of vehicles owned out~per-
formed the household-structure variable.

CASE STUDY

The analysis of travel data collected in the Midwest
examined the household-structure concept. The data
were collected from a stratified random sample of
the population in seven counties (2). The principal
purposes of the survey were to provide

1. The means to update trip-generation rates and
modal-split models,

2. Attitudes of the population toward transpor-
tation and energy,

3. Attitudes toward possible changes in the
transit system, and

4., Preferred methods of obtaining information on
carpooling.

The data were collected by using an in-home inter-
view and a 24-hr travel diary and included the vari-
ables age, gender, possession of a driver's license,
employment status, and income of household members,
all of which were available for use in trip-genera-
tion analysis.
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HOUSEHOLD
TYPE =
COUPLE
b

The final data set consisted of 2,446 house-
holds. Of these households, the average household
size was 2.9 persons per household, where less than
50 percent (1,656) of all households had two or less
persons; 60 percent (1,483) had no children; and 53
percent (1,300) were two adult person households.
In addition, almost 80 percent (1,952) of all house-
holds had at least one car available for use, and 30
percent (734) had more than one; 80 percent (1,875)
occupied single-family dwellings; and 87 percent
(2,124) of all households had at least one licensed
driver. Seventy percent (1,724) of all households
had at least one person employed, 63 percent (1,537)
had at least one person employed full-time, and 60
percent (1,468) of all households had 1980 incomes
greater than $15,000, with 14 percent (341) greater
than $35,000.

The household-structure variable defined by CRA
was derived from the data by the method shown in
Figure 2. This differs slightly from the CRA flow-
chart because of the definition of the variables
within the Southeastern Michigan Transportation
Authority (SEMTA) data set. These differences in-
clude the following: (a) the cut-off age between
children and adults is 18 years instead of 20, and
(b) relationship codes were used to distinguish be-
tween adult families without children and households
of unrelated adults; the last name of each person
was not ascertained in the survey.
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Figure 2. Flowchart of housshold typology used in analyzing SEMTA data.
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Table 1. Household-structure characteristics of SEMTA data.

Household-Structure No. of Percentage of
Category Households Households
Single male 200 8.3

Single female 254 10.5

Single parent 150 6.2
Couple 502 20.8
Nuclear family 483 20.0

Adults with children 347 i4.4
Adults with no children 420 17.4
Unrelated individuals 56 2.3
Missing 34 -

Total 2,446

The final breakdown of the data into these house-
hold categories is given in Table 1. Almost 19 per-
cent are single-person households, with slightly
more single females than single males (2 percent).
Single-parent households comprise only 6 percent,
whereas couples and nuclear families comprise 21 and
20 percent, respectively. Adults with children make
up slightly fewer households than those without
children (14 percent compared with 17 percent), but
households of unrelated individuals form the small-
est category--2 percent of all households. Thirty-
four households could not be classified. These in-
cluded 17 single-person households where the person
was younger than 18 years old.
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To analyze the role of the household-structure
variable in trip-generation analysis, this variable
and seven other variables that were also thought to
play a significant role in trip-generation rates
were selected from the data set. The other vari-
ables selected were car ownership, household size,
housing type, licensed drivers, household income,
and total number of employed persons in the house- '
hold (see Table 2). These eight variables were
first analyzed by using one-way ANOVAs to determine
how well they performed against the household-struc~
ture variable. Subsequently, the variables were
analyzed by using one-way ANOVAs to determine the
effects of varying grouping strategies on the
categories within each variable.

The household-structure variable was grouped in
three ways. The least-aggregate grouping combined
the single-male and single-female categories because
it was believed that there would be no significant
difference between the overall tripmaking charac-
teristice by gender, although there might be small
differences for specific trip purposes. The least-
aggregate grouping also combined nuclear families
with adult families with children, based on the
theory that additional adult members in the house-
hold would not significantly change the pattern of
tripmaking. The second grouping strategy further
combines all adult households, except single persons
and couples. This assumes that adult households
that consist of related persons will have little
difference in tripmaking characteristics than those
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Table 2. Variable grouping strategies used in SEMTA trip-generation analysis.

Variable Name Grouping No. Categories Used in Grouping

LIFE I (household 1-6
structure)

Single persons

Single parents

Couples

Families with children

Adult families without children
Unrelated individuals

Single persons

Single parents

Couples

Families with children

Other adult households with no
children

Single persons
Families with children
Households with no children

No cars available
One car available
Two or more cars available

One-person household
Two-person household
Three-person household
Four-person household

Five or more person household

One-person household

Two- and three-person house-
hold

Four-person household

Five or more person household

Multifamily
Single family

No employed persons
One employed person
Two or more employed persons

$0-514,999
$15,000-$34,999
>$35,000

No licensed drivers

One licensed driver
Two or more licensed drivers

LIFE II (household 1-5
structure)

NH W= AW —

LIFE III (household 13
structure)

NUMCAR (number of cars  0-2
available to househoid)

HHSIZ I (household size) 1-5

HHSIZ 1 (household size) 1-4

RN AW ND=O WK —

HOUSTYP (housing type)  0-1

TOTEMP (total number of 0-2
employed persons)

INC80 (1980 household 1-3
income)

TOTLIC (total number of 0-2
licensed drivers) .

N0 W= =0 =0 &Ww

households that consist of unrelated individuals.
Thus the theory of a coordination of tripmaking de-
cisions between related household members was ex-
amined. The most severe grouping strategy separates
households with children from households without
children, identifying this characteristic as the
most important in trip decision making. only
single-person households are further distinguished
to reflect unique trip-generation characteristics,

Other variable groupings are also given in Table
2. The model II household size grouping, which com-
bines two~ and three-person households, was examined
after initial analysis indicated little difference
in trip rates of these households. Income was
grouped into high-, medium-, and low-income catego-
ries.

Pinally, MCA (3, and paper by Stopher and Mc-
Donald elsewhere in this Record) was used to compare
different combinations of these grouped variables in
trip-generation analysis. MCA derives trip rates
within a standard trip-generation matrix by using
deviations from the grand mean of the data set.
Thus it improves on the traditional method of com-
puting individual cell means because it permits es-
timation of trip rates for cells that contain no
data. In addition, MCA, by using version 6, 7, or 8
of the Statistical Package for the Social Sciences
(87S8) (3), is able to take into account the inter-
active effects between independent variables where
these variables have nonzero correlations with each
other. This corrects for the overestimation of ad-
justments from the grand mean when these correlations
are ignored. This use of MCA and the cross-classi-
fication structure is different from the CRA ap-

95

proach, which was to use least-gquares regression
analysis to predict the trip—generation measures.
The effects of household structure were analyzed
both in terms of the additional level of variance
explained by the household-structure variable as
well as the level of variance explained when substi-
tuting household structure for another variable.

The models examined in trip-generation analysis
are given in Table 3. It can be seen that the num-
ber of vehicles (NUMVEH) available to the household
was substituted for number of cars in some models
because this variable performed significantly better
across all purpose groups.

Table 3. MCA models used in SEMTA trip-generation analysis.

Trip Purpose No. MCA Models
Home-based work, home-based 1 NUMCAR, HHSIZ I, HOUSTYP
shopping, home-based social- 2 NUMVEH, HHSIZ 1, HOUSTYP
recreation, home-based other, 3 NUMCAR, LIFE II, HOUSTYP
and non-home-based trips
Home-based work, home-based 1 NUMVEH, HHSIZ 11
shopping, home-based other, 2 NUMVEH, HHSIZ 11, LIFE 11
and non-home-based trips 3 NUMVEH, HHSIZ II, HOUSTYP
4 NUMVEH, HHSIZ i, TOTEMP
s NUMVEH, HHSIZ 11, INC80

In all three types of analysis previously dis-
cussed, trip-generation models were examined for
motorized trips by specific trip purpose. 1Initial
analysis distinguished social-recreation trips, but
the final ¢trip-purpose categories examined were
home-based work, home-based shopping, home-based
school, home-based other, and non-home-based trips.
These final trip-purpqse categories differ from the
categories used by CRA that (a) do not examine non-
home-based trips, and (b) break down the other cate-
gory into more specific purpose groups.

DESCRIPTION OF RESULTS

The results of the ANOVA for ungrouped variables are
given in Table 4; the results indicate that across
all purpose groups the number of cars available to
the household explains more variation than any other
variable. This result is consistent with results
obtained by CRA. Household size and housing type
are the next most significant variables across all.
purpose groups; and whereas the number of employees
in the household explains the most variation for
home-based work trips, it does not perform well for
all other purpose groups. Household structure and
income appear to be of equal strength, although they
perform better on different purpose groups. Income
is most effective in explaining the total number of
non-home-based trips, whereas household structure is
most effective in explaining the number of home-
based school trips. The -licensed-driver variable
ranks no better than third in explained variation
for any purpose group.

The ANOVA results of the grouping strategies per-
formed on the household-structure variable are given
in Table 5. The most effective grouping is the
model II grouping: single-person  households,
single-parent households, couples, other families
with children, and other adult households. There
appears to be little difference between the travel
considerations of adult families that consist of
related individuals and those that consist of unre-
lated individuals, because there is a large increase
in the F-ratio across all purpose groups when these
are combined, whereas the change in the within~group
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Table 4. ANOVA results for ungrouped variables.

Original Purpose
Category
Variable Values Statistic HBWORK HBSCHL HBOTHR NHB
LIF8 1,8 F 65.6 112.7 509 23.6
ss 5,711.1 6,062.2 19,116.3 17,464.1
df
Between group 7
Within group 2,402
NUMCAR 0,4 F 179.0 24.1 68.5 54.0
SS 5,296.5 7,809.3 19,902.0 17,265.3
df
Between group 4
Within group 2,440
HHSIZ 1,8 F 60.3 181.8 62.0 29.5
Ss 5,842.1 5,334.5 18,794.9 17,327.0
df
Between group 7
Within group 2,438
HOUSTYP 0,1 F 125.4 22.6 73.9 529
£ 6,195.7 7,842.4 20,7929 18,008.8
df
Between group 1
Within group 2,321
TOTEMP 0,8 F 205.6 12.7 24.6 30.8
SS 4,551.3 7,873.5 20,878.2 17,472.1
daf
Between group 6
Within group 2,439
TOTLIC 0,8 F 112.3 303 57.6 39.3
sS 5,006.4 7,383.5 18,624.0 16,649.3
df
Between group 8
Within group 2,437
INC80 1,7 F 148.4 15.8 327 41.0
SS 5,020.3 7,814.4 20,4935 17,075.2
df
Between group 6
Within group 2,439

Note: F = F-score, SS = sum of 5q

, and df = d

based school, HBOTHR = home-based other, and NHB = non-home-based trips.

Table 5. ANOVA results for grouped variables.

Purpose
Variable Statistic HBWORK HBSCHL HBOTHR NHB
LIFEI F 85.5 148.8 69.1 303
Ss 5,745.0 6,150.0 19,195.0 17,557.7
df
Between group S
Within group 2,406
LIFE I F 110.2 186.0 86.2 37.6
SS 5,748.9 6,150.0 19,200.0 17,564.8
df
Between group 4
Within group 2,407
LIFE 1II F 128.4 354.4 135.6 61.8
SS 6,146.4 6,221.0 19,730.9 17,7520
df
Between group 2
Within group 2,409
NUMCAR F 315.7 364 112.6 91.1
Ss 5,445.6 7,883.5 20,273.5 17,491.1
df
Between group 2
Within group 2,443
HHSIZ 1 F 104.2 278.9 98.2 50.5
Ss 5,853.4 5,572.0 19,219.6 17,405.2
df
Between group 7
Within group 2,438
INC80 F 358.5 37.1 78.1 108.7
sS 5,298.1 7.879.5 20,812.4 17,259.0
df
Between group 2
Within group 2,443

Note: Statistics and purposes are defined in Table 4.

of freed HBWORK = ho.me-bued work, HBSCHL = home-
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variance is small. This contrasts with the model
111 grouping (single persons, families with chil-
dren, and other families without children) where,
although there is a large increase in the P-ratio
across all purpose groups, and most particularly
with home-based school trips, this is accompanied by
a significant increase in the within-gqroup variance.

The ANOVA results of the other grouped variables
are also given in Table S. It is clear that the
number of cars available to the household remains
the most significant variable in household trip-
generation analysis. Once again, the P-scores are
substantially greater across all purpose groups,
even taking into account the difference in the de~
grees of freedom. Model II household size, which
combines two- and three-person households, improves
on model I household size by increasing substan-
tially the F-ratio without increasing substantially
the within-group variance. Household income (1980)
is also effective in explaining trip-generation
rates for all purpose groups except home-based
school and home-based other, and thus may be useful
when applied to specific trip-purpose models, The
total number of licensed drivers, a variable that
performed so poorly in earlier analyses, was not
tested as a grouped variable.

The MCA results for the two sets of trip-purpose
groups are given in Tables 6 and 7. From the first
set of purpose groups (Table 6), the basic model
consists of number of cars or vehicles available to
the household and model I household size. Of the
variables used as additions to this basic model,
housing type clearly performs the best across all
purpose groups. In addition, this model performs
better than the model that uses number of -cars,
household structure, and housing type, where house-
hold structure is used as a substitute for household
size, an alternative suggested by CRA (l). Further
improvements are made by using number of vehicles
available to the household instead of number of cars
available. ’

The results of the models analyzed for the second
set of trip purpose groups are given in Table 7. An
initial examination of these MCA results gives the
impression that the model that uses household struc-
ture, household size, and number of vehicles is the
best model, particularly from an examination of the
P-ratios. This is, however, a misleading impres-

Table 6. MCA resuits of set | models used in analyzing SEMTA data.
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sion. The P-ratio for an entire model is usually
based on all main effects and interactions. 1If data
are missing {n some cells of the matrix that define
the ANOVA problem, 8SPS8S (3) is unable to calculate
the interactions and computes an P-ratio on the main
effects only. This P-ratio has substantially fewer
degrees of freedom than one on the main effects and
interactions, and therefore it must be a larger nu-~
meric value for the same significance level.

The household-structure model generated empty
cells for some combinations of household structure,
household size, and vehicle availability (e.g., the
household structure of a couple can occur only for
two-person households) and resulted in suppression
of interactions in the ANOVA. The model that uses
household structure is the only model in Table 7 for
which this happened, and leads to an inflated P-
ratio compared with all other models. When P-ratios
are calculated on main effects only for the other
models (as indicated by a footnote in Table 7), the
F-ratios are almost all larger than those for the
household-structure model. Thus the addition of
household structure to the basic model of number of
vehicles available to the household and household
size does not improve its performance for any trip-
purpose group.

Of the other variables examined as additions to

the model, the total number of workers in the house-

hold improves the model for home-based work trips.
Household income (1980) and the model II household-
size variable are both improvements over the house-
hold-structure variable. Income is better in ex-
plaining home-based work trips and non-home-based
trips, and housing type is better in explaining the
other trips. Thus, unless a separate model is de-
veloped for home-based work trips by using the em-
ployment variable, the model of number of vehicles
per household, household size, and housing type
still remains the best approach. These conclusions
support those found with the previous set of purpose
groups, with the exception that the wodel II house-
hold size performs better than, and thus replaces,
the model I household size.

CONCLUSIONS

In the trip-generation analysis of the case study
data, the household-structure variable did not per~

Purpose
Model Statistic HBWORK HBSHOP HBSOC HBOTHR NHB
NUMCAR, HHSIZ I, HOUSTYP F 29.5 59 6.0 35.1 11.4
df
Between group 29
Within group 2,292
SIG 0.000 0.000 0.000 0.000 0.000
R? 0.261 0.062 0.060 0.295 0.113
NUMVEH, HHSIZ [, HOUSTYP F 291 56 5.0 355 118
df
Between group 29
Within group 2,244
SIG 0.000 0.000 0.000 0.000 0.000
R? 0.261 0.060 0.053 0.298 0.116
NUMCAR, LIFE II, HOUSTYP F : 28.3 5.2 5.1 26.4 9.5
df
Between group 29
Within group 2,259 ’
SIG 0.000 0.000 0.000 0.000 0.000
R? 0.254 0.056 0.054 0.238 0.096

Note: S1G-= significance, HBSHOP = h based sh

PP HBSOC =h based social

and the rest sre defined in Table 4.
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Table 7. MCA results of set 11 models used in analyzing SEMTA data.
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Purpose
Model Statistic HBWORK HBSHOP HBOTHR NHB
NUMVEH, HHSIZ I F 74.1 14.0 15.9 29.1
df
Between group 11
Within group 2,434
SIZG 0.000 0.000 0.000 0.000
R 0.246 0.057 0.060 0.109
NUMVEH*, HHSIZ II, LIFE II F 94.1 16.5 21.0 340
94.1° 16.5° 21.0° 34.0°
df
Between group 9
Within group 2,402
SlzG 0.000 0.000 0.000 0.000
R 0.261 0.058 0.073 0.113
NUMVEH, HHSIZ II, HOUSTYP F 34.8 7.0 7.3 13.9
127.2° 24.9° 24.2° 47.3°
df
Between group 23
Within group 2,299
SIZG 0.000 0.000 0.000 0.000
R 0.246 0.061 0.059 0.108
NUMVEH, HHSIZ I, TOTEMP F 38.7 5.0 5.5 9.7
176.2° 19.2° 14.2° 38.6
df
Between group 33
Within group 2,268
SlzG 0.000 0.000 0.000 0.000
R 0.348 0.057 0.055 0.105
NUMVEH, HHSIZ II, INC80 F 324 5.2 5.6 10.4
148.1° 21.1° 22.3% 44.3%
df
Between group 33
Within group 2,412
SIG 0.000 0.000 0.000 0.000
R2 0.298 0.057 0.060 0.112

Note: Statistics and purposes defined in Tables 4 and 6.

® Interactions suppressed. bF-I'lﬂOl calculated on main effects only.

form as well as was expected from the CRA analysis
of Baltimore data. This may, however, be a result
of the different methodologies that were used in the
two analyses. The analysis reported in this paper
applied traditional cross-classification models that
used MCA to predict cell-by-cell trip rates. The
final model consisted of number of vehicles, house-
hold size, and housing type. However, subsequent
analysis not discussed in this paper has revealed
that the use of an area-type variable instead of
housing type may improve the models even further.

Pigures 3 and 4 show the results of the automatic
interaction detection (AID) analysis performed on
1973 Niagara Prontier Transportation Committee (Buf-
falo) and a 1974 Genesee transportation travel sur-
vey (Rochester) data for all trips and for home-
based nonwork trips (4). The number of vehicles
represents the first cluster. This supports both
the conclusions drawn by CRA and by the authors.
This is followed by number of children (usually a
function of household size) and age of the oldest
child. The final clusters are based on household
size, vehicles per licensed driver (a function of
both vehicles per household and household size),
household employment status, and number of vehicles
available to the household. Although the various
age classifications may be a function of household
structure, they may also be a function of other var-
iables (for example, household size).

It is also pertinent to note that even had the
household-structure variable performed satisfac-

torily in this trip-generation analysis, there would
be problems implementing it in trip~generation
models. When presented with a possible trip-genera-
tion design that used the household-structure vari-
able, a metropolitan planning organization (MPO) was
reluctant to implement it. Although CRA stated that
the household-structure variable could be easily ob-
tained from census data, the MPO expressed doubts
that it could be. Forecasting at a zonal level,
particularly to obtain distribution of households by .
household-structure category, appears fraught with
problems. Possibly, forecasts could be made at the
regional level of the constituent elements of house-
hold structure, but current analysis-zone forecasts
in most metropolitan areas do not include these com-
ponents and would possibly be difficult to add to
current forecasts. In addition, household structure
cannot be used as a policy variable, whereas other
variables, particularly housing type, could be
used. This also helped in the decision to exclude
the household-structure variable from the SEMTA
trip-generation models.
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Figure 3. AlID analysis of Rochester survey data,
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Figure 4. AlD analysis of Buffalo data. NUMMH -9 DS 6-7
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Maximum-Likelihood and Bayesian Methods for the
Estimation of Origin-Destination Flows

ITZHAK GEVA, EZRA HAUER, AND U2! LLANDAU

The design of traffic management schemes usually requires knowiedge of
the pattern of trips on the system under scrutiny. This pattern is ordi-
narily described by an origin-destination (O-D) flow matrix. One common
task of this type of matrix is the ntlmmon of flows between the intersect on
approaches on a nrotch of road. Emmmon is based on intersection flow
counts that are suppl dbyal plate survey. in this paper a pro-
cedure is developed to obtain the most likely O-D flow estimates by using
both intersection counts and results of the license-piate survey. The pro-
cedure is described in detail on the basis of a numerical example. An earlier
paper reported a method of estimation that relies on intersection counts only
and does not roquure the eonduct of s sample license-plate survey. An em-
pirical i is d d to test how estimation accuracy increases
when the added information from the licanse-plate survey is used. This
examination reveals that when the supplementary license-plate survey is small,
the maximum-iikelihood method yields unsatisfactoty estimates. This defi-
ciency is rectified by the use of a Bayesian method. The resuiting solution
procedure is simple, and satisfactory estimates are produced.

A variety. of' transportation planning and management
tasks require the knowledge of the pattern of trip
flows between origins and destinations. This pat-
tern is usually described by an origin-destination
(0-D) flow matrix. One common task of this type of
matrix is the estimation of flows between the inter-
section approaches on a stretch of road. The esti-
mation is based on a license-plate survey that is
factored up to match counts of intersection flows.

In recent years attention has been given to the
problem of estimating an O-D matrix by using traffic
counts as the main source of information (1-4). A
recent paper (5) describes a method that departs
from previous work, in that travel behavior is
brought into estimation by information contained in
small O-D samples obtained by a survey. It is
therefore not necessary to rely on speculative mi-
crostates (as in entropy models) or to assume that
actual route choice is correctly captured by avail-
able models. Rather, the purpose is to find that
matrix of O-D flows that is consistent with the ob-
served traffic counts and that is most probable in
view of the O-D samples observed.

This approach is used in the present paper, in
which a procedure to estimate flows between the in-
tersection approaches on a stretch of road is devel-
oped based on intersection flow counts and a 1li-
cense-plate survey. The effect of sample size on
estimation accuracy is explored in a real-life ex-
ample.

In the first section of the paper two alternative
likelihood models, which capture the manner in which
data are obtained in the field, are presented. The
normal equations that identify the maximum-likeli-
hood estimate are obtained, and an algorithm for
their numerical solution is described. A numerical
example is presented in the second section. The ex-
ample is intended to illustrate the how-to of the
method and to assist the practitioner in its appli-
cation, As noted earlier (6), estimates of O-D
flows can be obtained from traffic counts alone,
without having to resdort to tedious 1license-plate
surveys. The increase in estimation accuracy ob-
tained as a function of sample size is examined in
the third section. The results of this examination
lead to the development of a new procedure based on
Bayesian statistics. This procedure is presented
and examined in the fourth section.

PROBLEM FORMULATION AND SOLUTION

Consider a street section as shown in Pigure 1. The
intersection approaches are thought of as origins
and destinations. Estimates of O~D flows are de-
sired,

Figure 1. Example of street section with eastbound flows.
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The method most commonly used for this purpose in
traffic engineering practice is to count traffic
volumes at every intersection and to conduct a 1li-
cense-plate survey of a sample of vehicles entering
and exiting the street of interest. Usually several
digits of the license-plate number are recorded and
later matched so as to obtain a sample O-D pattern.
The sample is later factored up in an attempt to
make the appropriate sums of O-D flow estimates
match the corresponding volume counts. The purpose
of this paper is to suggest an estimation procedure

.to replace the arbitrary and often ambiguous factor-

ing. The merit of the procedure is that it identi-
fies the O-D flows that are most likely in view of
the results of the license-plate survey and the in-
tersection volume counts.

In formulating the problem, the following basic
notations are used:

0; = number of vehicles entering the street at
entry approach i (i = 1,2,...,m) during a
specified period of time,

Dy = number of vehicles leaving the street at
exit approach 3 (j = 1,2,...,n) during the
same period of time,

tij = number of license plates matched between
records obtained at entry approach i and
exit approach j, and

Tij = number of vehicles that enter the street by
approach i and exit it by approach j.

The objective of the exercise is to obtain esti-
mates of le by wusing the data 0Oy, Dj, and
tiqe The estimation logic is of the customary
maximum~-likelihood kind, Thus the O-D sample matrix
(tj3) obtained from 1license-plate matching is
thought to be a random sample drawn from the matrix
of O-D flows (Tj4). The probability of observing
this sample can captured by an appropriate mathe-
matical model. A search is made for the estimates
of Ty4 that maximize this probability and at the
same time fit all the intersection volume counts.
These are the most likely O-D flows to have pre-
vailed at the time of the license-plate survey and
intersection volume counts.



Two points deserve mention. First, for traffic
planning and management purposes, O-~-D flow estimates
are needed that represent average conditions rather
than estimates of flows that have prevailed at the
time of the survey. To do so, tyqe and also O
and D;, would have to be regarded ds random vari-
ables (7). Because the focus in this paper is the
effect of the sampling ratio for the license-plate
survey on O-D estimation accuracy, the estimation of
0-D flows that prevailed at the time of the survey
are sought, This is what practitioners have been
doing anyway. The second point has to do with a
discrepancy between the model and the practicalities
of traffic surveys. In the model the analyst pre-
tends that the intersection volume counts, as well
as the license-plate survey, are conducted during
the same time period. But because of personnel lim-
itations, this is seldom true., With these qualifi-
cations, the random nature of the license-plate sam-
ple is described by using an appropriate probability
model.

The probability model chosen must fit the manner
in which the random sample is selected from the pop-
ulation., Thus the essential details of the 1li-
cense-plate survey procedure used have to be
stated. To reduce survey personnel requirements and
to keep errors of recording in check, it is usually
best to specify beforehand some part of the 1li-
cense-plate number to serve as the sampling cri-
terion. Thus if all even-numbered plates are re-
corded, the sampling ratio is 50 percent; if all
plates ending with the digit 0 are recorded, the
sampling ratio is 10 percent; and so forth. Pro-
vided that the digits selected to serve as a sam-
pling criterion are uniformly distributed in the
population of license plates, the sampling ratio is
established when the sampling criterion is specified.

Two alternative probability models are suggested
to capture the stochastic nature of this survey pro-
cedure, First, each 1license~plate match can be
viewed as a success of a Bernoulli trial in which
the probability of success is dictated by the sam-
pling ratio and the rate of errors of recording and
coding. The unknown flows Tj4 correspond here to
the number of Bernoulli trials.” Thus the likelihood
function is a product of binomial probability mass
functions. Second, the license plates recorded at a
certain survey point can be viewed as a random sam-
ple drawn (with replacement) from the constituent
0-D flows passing that point. This leads to the
multinomial probability model. Both models are con-
sidered and their merits are discussed.

Starting with the binomial model, let Uij de-
note the number of license plates within T;4 that
satisfy the sampling criterion. The probability
distribution of Ujs can be described by the bi-
nomial model. Thus

P(Uij)=(T‘5) Vg )
Uj;
where r is the sampling ratio.

Equation 1 would be a reasonable description of
the state of affairs if observers in the field were
able to record all license plates that should be
recorded and do so without error. 1In reality, er-
rors occur. Thus instead of obtaining Uj4 match-
ing license plates for a stream of vehicles, only
tigltiq < Uij) is obtained.

Now~ the “conditional probability mass function
(PMF) of tiy is given by

NWKM)=(&9qm(]_®Uu-m .

gl
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where q is the probability that nothing goes wrong
and the license plate is obtained and processed cor-
rectly at both entry and exit.

This case is known in the literature as partial
ascertainment (8). 1In such a case the original ais-
tribution will be distorted. If the model underly-
ing the partial destruction of original observations
(or the survival distribution) is known, the distri-
bution of the observed values can be derived. It
was shown that where the original distributions are
Poisson, binomial, or negative binomial, the modi-
fied distribution is of the same form.

Therefore, the PMF of tij is algo binomial and
given by

p(tiy) = (tTu) @ (1 -rg )
ij

An expression analogous to Equation 3 can be
written for every possible flow. It can be shown
(8) that if X;,...,X are binomial variates with
sample size Nl""’“t' respectively, and a common
probability of success in each trial, then the dis-

t
tribution of X = (Xj;,...,Xy) conditional on [ X; =
i=1
n is multivariate hypergeometric with parameters n,
N, and (Nj...N.). Therefore, the probability of
obtaining a matrix of (tij) if the matrix of flows
is ‘Tij) is given by

m A X Ty
P(t‘u)=[ﬂ n (Tﬁ)]/ iy )
i=1 j=1 tu 2 b3 tij

The identification of the array TI for which this
probability (or the logarithm of this probability)
is maximum is needed. However, the solution must
satisfy the traffic count constraints

T Ty=0, fori=1,2,...,m )
=1

and

m

Z Ty=D; forj=1,2,...,n ©

1

By forming the Lagrangean, using Stirling's for-
mula, taking derivatives, and equating to zero (6),
the following equation is formulated:

.. _ i=1,2,...,m 7
Tj = ty/(1 - AiBy) i=1,2,...,n "

To obtain numerical values for the estimates TIQ'
the unknown values Al,Az,...,Am and Bjy,Bys...,B,
first must be found. This can be accomplished by a
simple algorithm described in the next section.

The alternative manner of describing the survey
by a probability model is to consider the random
sample t{3,ti2,..-s%tipn Obtained at station i as drawn
from the flows Ty3,Ty2+...:Tips, which are unknown.
Only their sum (O4) is given. The probability of
observing this sample is given by the multinomial
model:

[(;.tu)!/g(tu!)] 0 (10’ @®

(The multinomial model is only approximate because
it assumes sampling with replacement. As long as
the sample is a small fraction of the population,
the assumption appears proper.)
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Accordingly, the probability of observing all
(tij) when the matrix of flows is (TU) is given by

X {[(? )00 (Tu/oi)'“} o

The solution must satisfy the same constraints
(Equations 5 and 6). By forming the Lagrangean and
taking derivatives (S5), the following equation is
given:

Tj; = t/(Ay + By)

i=1,2,...,m
j=1,2,...,n (10)

The next task is to solve a system of (m + n)
simultaneous nonlinear equations with (m + n) un-
knowns: AjrecesAy; By,sev., By, The simplest solution
algorithm consists of repeated balancing of the vec-
tors A; and By and is named after Kruithof (10). The
algorithm is ‘described and illustrated by a numeri-
cal example in the following section.

NUMERICAL EXAMPLE

To illustrate the procedure, consider the road sec-
tion described in Pigure 1, on which the eastbound
flows are obtained from ordinary intersection
counts. A license-plate survey is conducted with a
sampling ratio of 50 percent (r = 0.5). To achieve
this sampling ratio, only vehicles with even license
numbers were recorded. The number of vehicles that
were matched in the survey (tj4) are shown in the
upper left corner of each of the 16 cells in FPigure
2.

Figure 2. O-D matrix corresponding to strest section in Figurs 1.

From Ol 2 | 3 | 4 7 9 |z | A

180 %0 P56 2590 2705 [ 1000] .0000
2 | T A R PR 00 (10404
3 o P T 0 [rovss
5 s /-——832 —i.l,a 200 |1.0047
6 oAz —'0:5—6;-;2 300 [0.9961
7 w42 | 200

T 50| 30 | 70 | 150 | 1580 |[1880

Bj 0.7513{0.8430|0.6867

The flows T;5, T;3, and T.9 are 50, 30, and
200, respectively, because these values can be ob-
tained directly from the counts. Therefore, the es-
timation problem consists of the 13 empty cells that
have to be filled with estimates so as to satisfy
the 8 row and column sums. These sums are listed
under the heading I and obtained from the inter-
section counts.

The solution algorithm begins by obtaining ini-
tial estimates of Aj. A starting gquess may be
Ay =1.0. By using these tentative values for
Aj, the first estimates of each B; can be ob-
tained. For example, for j = 4, the sum T4 + Tyyq +
T34 must be 70. Thus by using Equation 7,

[14/(1 - Bg)] + [2/(1 - Bg)] + [1/(1 - By)} = 70.

In this case B, = 0.7571. The values of
and Bg are obtained similarly by using Equation 7
to fit the given sums of columns 7 and 9. Then new
estimates for A; are calculated from the given
sums of the appropriate rows and the current esti-

'10) is obtained by the same algorithm.
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mates of B;, The new estimates of A; are com-
pared with ‘the previous ones, Unless the desired
closure is attained, a new round of computations is
carried out. In this example, after a few itera-
tions, the solution in Figure 2 is reached. The
values of A; and By are shown in the rightmost
column and the lowest row, respectively. The final
estimates of T;; are shown in the lower right
corner of each Of the 13 cells. (A listing of a
PORTRAN program for this procedure is available.)

The solution for the. multinomial model (Equation
Both models
produced slightly different results, which vanish
after rounding to integers. Therefore, it is imma-
terial which model is used for the estimation.

ESTIMATION ACCURACY AND EFFECT OF SAMPLING RATIO

One of the purposes of this work has been to explore
the accuracy of estimates obtainable by the method
as a function of sample size. This is done empiri-
cally by comparing estimates obtained when different
sampling ratios are used with the 100 percent sam-
Ple. The information was provided by a detailed
license-plate survey conducted on a section of a
four-lane collector road with five intersections in
Toronto. In the survey four digits of the license-
plate code were recorded for 2 hr. The matched 1li-
cense-plate records were converted into O-D flows.
For this investigation, these results were consid-
ered as the true matrix, It had to be pretended
first that the survey was conducted with different
sampling ratios by considering only license plates
ending with certain digits. Plow estimates obtained
by the suggested method are then compared@ with the
true matrix.

Estimates were obtained for different sampling
ratios and also for the case of zero sample [i.e.,
from the traffic counts only by the method described
by Hauer and Shin (ll1)]. The error measure chosen
was the average absolute error (AAB), which is de-
fined as follows:

AAE =(1/N) 2 ITi = Tyl an
where

'r‘{j = egtimated flow from i to 3,
Tyy = true flow from i to j, and
3 = number of nonzero cells.

The results are shown in PFigure 3 (similar re-~
sults were found when other error measures were
used). Some observations follow.

First, as expected, estimation accuracy increases
with sample size. 1Initially, the improvement in ac-
curacy is considerable. As higher sampling ratios
are reached, the law of diminishing returns exerts
strong influence.

Second, even without an O-D sample, reasonable
flow estimates can be obtained. In this case none
of the models described here can be used. The ana-
lyst has to rely on the assumption of equally likely
microstates and use the method described by Hauer
and Shin (6,11). The accuracy of estimation in this
case (sampling ratio = 0) is shown by a square and
is comparable to what can be obtained by using Bqua-
tions 7 and 10 with a 20 percent O-D sample.

The reason for the unsatisfactory performance
when the sample is small is inherent in Equations 7
and 10. When the flow between an O-D pair (i3j) is
not captured by the sample- (i.e., ty4 = 0), then, of
necessity, the estimate sz =0, en the sample of
license plates recorded is sufficiently small for
this to occur often, estimation accuracy is 1likely
to suffer. Thus it is not so much the sampling



Figure 3. Effect of sampling retio on AAE of estimated matrix using the
maximum-likelihood procedurs.
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ratio as the absolute sample size that governs esti-
mation accuracy. When the sample size is small, the
analyst can do better by ignoring it altogether be-
cause it uncovers a deficiency in the maximum-likeli-
hood method of estimation described in the section
Problem Formulation and Solution; it forces the
analyst to assign zero values to flows, even though
it is known that this is highly unlikely to be a
satisfactory estimate. It is unwise to disregard
this prior knowledge. A method that makes use of
both the prior knowledge and the information con-
tained in the O-D sample should be sought. The next
section is aimed at developing such a procedure that
bridges the existing discontinuity and improves esti-
mation accuracy when relatively small samples are
used.

BAYESIAN APPROACH TO ESTIMATION

The essence of Bayesian methods (12) is to apply the
information contained in the outcome of an experi-
ment to the knowledge about the probability distri-
bution of some parameters that are available before
the experiment in order to generate a new, posterior
probability distribution function about these pa-
rameters.,

In the present case the experiment is the 1li-
cense-plate survey that yields the sample realiza-
tions (ty4). The prior probability distribution,
denoted by p9(Ty4), describes the probability of
obtaining the matrix of flows Ty4. With this, and
using Bayes' theorem, the posterior probability is
given by

p(Ty) = plty I Ty)p® (Tyy) (12)

The conditional probability component of Equation
12 has already been stated by Equation 4 (for the
binomial model) or Bquation 9 (in the case of the
multinomial model). Thus the prior probability dis-
tribution component p° (Ti?,) must be specified.

In the absence of other information, it may be
assumed that the probability of observing a certain
matrix (T"g) is proportional to the number of ele-
mentary evénts (microstates) from which it can arise
(6). If all elementary events are equally likely,
it can be shown. that
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Therefore, the posterior probability distribution
function can be written as

m n

p(Ty) = '"1 jII1 [1/(Ty - ty)!] (binomial model) 14)
i=1 =

or
m n (u

p(Ty) = lﬂl jH (Ty °/Ty?) (multinomial modet) (15)
= =1

From here on, the procedure follows the logic ex-
plained in the section Problem Pormulation and Solu-
tion. A search is made for that matrix 'r; that
makes the posterior probability in Equations 314 and
15 as large as possible. Again, by using the method
of Lagrange multipliers and Stirling's approximation,

Ti‘j =ty + AjB; (binomial model) @16)

and

Ty = exp(ty/Ty)A;B;  (multinomial model) an

Note that when tlj = 0, both equations produce
the same result ('r‘{ = ‘\inj) + which is also the gen-
eral solution for Zero sample (6,11). In this man-
ner the discontinuity problem near the origin (Fig-
ure 3) is eliminated.

Examination of Equations 16 and 17 reveals that
the first is easily sclved. Equation 17 requires a
complex iterative algorithm. Both equations were
used to obtain O-D estimates for the case of the
street section described in the previous section.
For sampling rates of up to 50 percent, both models
produced almost identical estimates. For higher
sampling rates, however, there is a difference be-~
tween them. This can be illustrated by considering
the extreme case of a 100 percent sample. At this
point, Bquation 16 gives the natural result sz = tiy
(which is the same as BEquations 7 and 10). However,
Equation 17 leads to different estimates.

The effect of sampling rate on the level of ac-
curacy, by using the maximum-likelihood procedure
(Equations 7 or 10) and the Bayesian procedure
(Equations 16 or 17), is presented in Figure 4. 1It
can be seen that for sampling rates of up to 30 per-
cent, the Bayesian method improves estimation accu-
racy. The maximum-likelihood procedure is appropri-
ate for the higher sampling rates.

Figure 4. Effect of sampling ratio on AAE of estimated matrix using the
maximunviikelihood and the Bayesian procedure.
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SUMMARY

Two coherent methods for the estimation of 0-D flows
from traffic count and license-plate survey informa~
tion are presented. The first estimation method
identifies the most likely set of flows that agrees
with the observed intersection approach flow counts
on a stretch of road and the results of a sample 1li-
cense-plate survey.

The effect of the sample size on the accuracy of
O-D flows obtained by this procedure is examined by
using data from a comprehensive license-plate survey
conducted on a stretch of road in Toronto. As was
expected, accuracy increases with sample size. How-
ever, for small samples, better accuracy can be ob-
tained by estimating from traffic counts only.
Therefore, a second procedure based on the Bayesian
approach has been developed. This procedure signif-
icantly improves the accuracy of O-D flow estimates
obtained from traffic count and small sample 1i-
cense-plate survey information. The procedure is
capable of producing relatively satisfactory esti-
mates from small samples and thus {s an aid in the
performance of a common task in practice.

It appears that this procedure is preferable be-
cause of {ts consistency and capability, whereas the
maximum-likelihood procedure should be used when
high sampling rates are available at all survey sta-
tions. The Bayesian procedure described here was
applied only to simple systems, such as street sec-
tions, freeway sections, and subway or bus lines.
Further research is required for the application of
the procedure to cases in which there are multiple
paths between an 0-D pair.
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Trip Table Synthesis for CBD Networks:
Evaluation of the LINKOD Model

ANTHONY F. HAN and EDWARD C. SULLIVAN

Origin-destination (O-D) synthesis methods deal with the problem of deriving
trip O-D patterns from traffic counts. A reliable O-D synthasis model for
small area [e.q., central business district (CBD)] applications has grest poten-
tial to help evaluate aiternative transportation system management measures.
Among various models reviewed, LINKOD was selected for in-depth evaluation
because of its apparent suitability for CBD applicstions. A 19756 Sen Josse,
Californis, CBD 0-D data set with traftic counts estimated by the microassign-
ment model was used to test the performance of LINKOD. Significant differ-
ences were found between the synthesized trip table and the base trip table;
nevertheless, when assigned to the network by the microassignment model,
both trip tables predicted similar flow patterns. Based on these tests, LINKOD
was judged to be an acceptable tool for pragmatic applications in CBDs. An
extensive sensitivity analysis of the performance of LINKOD was also made
to investigate the effects of different initial target trip tables and incomplete
link volume counts. Although LINKOD performed best with data on 100 per-
cent of the turning movements, it was found that with 26 percent coverage
(plus all cordon-station volume counts) there existed only a 10 to 20 percent
loss in synthetic O-D table accuracy. it was also determined that the geo-
graphic pattern of the traffic count data affected the outcomse considerably.
Because a better CBD data set is indispensable for conducting 8 more com-
plete validation of O-D synthesis models as well as other traffic models, s
comprehensive CBD travel data-collection effort appears warranted.

In the past the standard technique to obtain origin-
destination (0-D) information was to conduct an O~D
field survey. These O~D surveys were expensive and
sometimes disruptive. . Such difficulties caused many
different investigators to seek techniques for
deriving O-D information from routinely collected
field data such as traffic counts. These substitute
approaches, which do not require an O-D field sur-
vey, are generally called O-D synthesis techniques.

Potential applications of O-D synthesis tech-
niques can be divided into three categories (l):
single-path, corridor, and multipath applications.
This categorization is based on the relative com-
plexity of the route-choice problem. PFor a single-
path network, such as a section of urban freeway,
there is only one path between each 0-D pair; thus
these O-D synthesis techniques do not have to con-
sider route choice. A multipath network, such as
the street system of a central business district
(CBD), contains a large number of paths for each O-D
pair and thus requires an O~D synthesis technique
with a carefully selected route-choice assumption.
Corridor applications are between these two ex-
tremes, and solution techniques are often hybrids of
the single-path and multipath approaches.

Among multipath applications, the CBD is among
the most complex of operating environments for ap-
plying an 0-D synthesis technique. It is a small,
heterogeneous study area with a potential for sig-
nificant congestion, numerous route and modal-choice
options, and a high percentage of external trips
among the total trips observed within the study area.

The recent emphasis of planners and traffic en-
gineers on improving the performance of the CBD
transportation system has caused a great demand for
improved analytical tools. High-impact transporta-
tion system management (TSM) measures, such as bus
malls and automobile-free zones, must be evaluated
with respect to their {mpacts on local circulation
and ultimately in terms of the *economic health of
the CBD. However, available tools for analyzing the
performance of the CBD street system [such as micro-
assignment (3-5)) require a great deal of detailed
0~D information. This requirement has inhibited the

wide use of such analytical tools. Thus an O-D syn-~
thesis technique appropriate for CBD applications
has great potential to help improve decision making
for TSM measures.

Among the many existing O-D synthesis models that
were reviewed (9-13), a model called LINKOD, which
was developed for the PFHWA, was selected for in-
depth evaluation, principally because it was
designed specifically for small and congested area
analysis (7). The objective of this study was to
evaluate the performance of LINKOD for CBD applica-
tions. The study considered only the ability of
LINKOD to synthesize an 0O-D table of vehicle trips
from available trip-generation estimates and to link
vehicular traffic counts.

The remainder of this paper i8 organized as fol-
lows. First, the structure of the LINKOD model is
briefly reviewed. Second, the validation of LINKOD
by using a 1975 San Jose, California, CBD O-D data
set together with traffic counts estimated by the
microassignment model is described, Third, a sensi-
tivity analysis of the performance of LINKOD is pre-
sented. Pinally, conclusions and suggestions for
further research are given.

LINKOD MODEL STRUCTURE

- The overall structure of the LINKOD computer pro-

grams is shown in Pigure 1. As input data, the user

Figure 1. LINKOD model structure.
JNRAT

LINK DATA

FINAL O-D TABLE
VARIOUS SUMMARY
REPORTS

must provide a coded network, contained in a load-
node file and a link file. The load-node file gives
the node types (e.g., boundary or internal) and as-
sociated trip productions and attractions. The link
file includes the length, type, number of lanes, and
observed traffic volume for each link. Although the
theory underlying LINKOD calls for traffic volume
information on 100 percent of the links, the model
has the ability to insert artificial counts for
those links where actual counts are unavailable.
(The impact of using incomplete link count data will
be discussed in a later section.)
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Three principal steps are involved in using
LINKOD to develop a trip table from available data.

1. Prepare a network representation of the study
area  transportation system. Optionally, this
involves coding turning movements as network links
{program PREP).

2. Create a target trip table that subsequently
will be adjusted to conform to the observed traffic
counts, This step is performed by using a special-
ized small area gravity model that incorporates
numerous adjustment factors to deal with high pro-
portions of external and through travel (programs
TREE and SMALD). :

3. Through an iterative procedure, use available
link counts to adjust the target trip table such
that observed 1link counts are reproduced when the
adjusted trip table is assigned to the transporta-
tion network by using an equilibrium traffic assign-
ment procedure (program ODLINK) .

LINKOD also contains two utility programs
(CONVERT and ODEVAL), which are used for managing
data files and generating printed reports, respec-
tively. FPFHWA documents (6,7) should be consulted
for details of the LINKOD algorithms and their theo-
retical bases.

INITIAL VALIDATION

A 1975 San Jose, California, CBD data base was used
to evaluate the performance of LINKOD. Because of a
lack of full coverage of actual traffic counts and
turning movements, a well-validated set of traffic
counts estimated by the microassignment model (3,4)
was used to create the input link file. A 1975 trip

table that contained data updated from a 1964 O-D.

Figure 2. San Jose CBD network.
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survey was used as input to the microassignment
model. Because this was considered to be the best
available estimate of the true trip table, it was
used as the base table against which the synthetic
trip table was compared.

The San Jose CBD network is shown in Pigure 2. It
includes about 69 city blocks and covers about 1
mile?. To convert the data from the microassign-
ment format to the LINKOD format consistently and
correctly, turning movements were defined as sepa-
rate links., These are indicated by the dotted links
in Pigure 2. The coded network includes 857 one-way
links, 233 network nodes, and 156 load nodes. Among
them, 113 are internal load nodes, each of which
represents a block face. The network includes both
arterials and local streets, many of which are one-
way streets. For the initial validation, 100 percent
of link counts and turning movements were provided
as input. Trip productions and attractions used to
estimate the target trip table were obtained by sum~-
ming the rows and columns of the base trip table,
respectively.

Several goodness-of-fit statistics were used to
measure the cell-to-cell differences between the
synthetic LINKOD table and the base table. Specifi-~
cally, four cell-by-cell comparison statistics used
are defined as followas. For the mean absolute error
per cell (MABSE/cell),

MABSE/cell = £ E (IT; - T§1/N) (1)
1}
For the mean absolute error per trip (MABSE/trip),

MABSE/trip = £ E(IT;; - Tl/T) @
i

< 129
127304
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For the root mean square error (RMSE),
ruse = { [z zny -1or] Np ®)
}

And for the RMSE as a ratio of average cell value
(RMSE/AVGT) ,

RMSE/AVGT = (RMSE/T) x N )

where

Tij = value (number of trips in the ijth cell
. in the base table),
Tij = corresponding cell value in the pro-
duced table,
N = total number of cells in both tables, and
AVGT = average number per cell for the base table.

In addition, a chi-square statistic was used to mea-
sure the difference between two trip length distri-
butions, This statistic is defined as follows:

1
X2 = El ((0:-TPY}TR) (%)

where

O4 = number of trips in the comparison trip
table with length in the ith group (the full
range of trip length is divided into 11
groups) ,

T = total number of trips in the comparison
table, and

P; = percentage of trips in length group i for
the bagse trip table.

To detect any systematic distortions in the
model, comparisons were made separately for differ-
ent O-D groupings based on whether one or both load
nodes were internal or on the study area boundary.
The results, which are given in Table 1, were not
satisfactory. Significant differences existed be-
tween the two trip tables. However, without knowing
the true O-D table, a definite conclusion cannot be
reached.

As a second basis for comparison, both the syn-
thesized O-D table and the base O-D table were input
to the microassignment model and the differences in
the assigned traffic flows were measyred. The data
given in Table 2 indicate that the assigned traffic
flows from the two O-D tables were close to each
other. From this viewpoint, the LINKOD software
package is considered to be an acceptable tool for
pragmatic applications. Detailed descriptions of the
data and results of this case study can be found in
Han et al. (8).

Table 1. Goodness-of-fit statistics: synthetic versus base trip table.
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SENSITIVITY ANALYSIS

Sensitivity analysis was performed to determine
which features of the model are most critical to
successful application and to assess how the model
reacts to variations in input. The San Jose data
set was used to investigate the sensitivity of
LINKOD to different model parameter values, to
changes in the initial target trip table, and to the
extent and coverage pattern of available traffic
counts.

Sensitivity to Control Parameters and
Adjustment Factors

Pour runs were made to find appropriate values for
the control parameters that determine the number of
program iterations. Little improvement, in terms of
synthetic trip table accuracy compared with the base
0-D table, resulted from allowing the program to ex-
ceed 3 equilibrium assignment iterations and 10 link
flow correction iterations. These parameter settings
can save appreciable computer time relative to the
values proposed in the published documentation (7).
8ix runs were made to test model sensitivity to
adjustment factors of the small area gravity model
(SMALD) used to create the target trip table. Vary-
ing fixed penalties and directional change factors
were found to have little impact on the final trip
table. However, the default values for these adjust-
ment factors appeared to be slightly better than
other values tested. '

Sensitivity to Different Target Trip Tables

The accuracy impact of different target trip tables

.was also investigated. The modular structure of

LINKOD (Figure 1) makes it an easy matter to run the
program with other than the built-in gravity model.
For convenience, TS5 and T7 are used to denote the
target trip table and the final trip table, respec~
tively [these notations are adopted from the LINKOD
user's manual (7)). Besides the internally generated
TS5, denoted by SMALD T5, two alternative target trip
tables, GRAV TS5 and AVG TS5, were used and evaluated.
GRAV TS denotes an O-D table generated by a simple
origin-constrained gravity model that uses the input
trip production and attraction data as internally
calculated node-to-node travel times. AVG TS5 denotes
a trip table in which all cell values are equal to
the average number of trips per cell.

Let SMALD T7, GRAV 77, and AVG T7 denote the
final trip tables created from the target trip
tables SMALD T5, GRAV TS5, and AVG TS5, respectively.
The performance of these final trip tables, in terms
of the four error measures defined earlier, is shown
in Pigure 3. As seen in the figure, SMALD T7, the
final trip table that results from the internally

No. of Trips

—_— Mean Absolute Error  Root Mean Square Error

Base Ratio® Chi-square
Trip Table ODLS10 (%) (df =10) Per Cell  Per Trip RMSE RMSE/AVGT
Internal-to-boundary 3,977 3,544 89.1 1222 1.6441  1.0096 40019 2.4634
Internal-to-internal 141 1,039 736.9 196.9 0.0982 8.0426 0.4475 36.6398
Boundary 4o-boundary 10,309 10,234 99.3 516.8 15.2835  0.6849 34.8227 1.5606
Boundary 4o-internal 1,753 1,599 91.2 309.8 1.0302 1.283§ 49478 6.1643
Total trips 16,180 16,416 101.5 480.4 08694 0.8937 6.2770 6.4524

®Ratio = (ODL510/base table) x 100 percent.
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Table 2. Synthetic link fiows versus gound ts: the S d Street screen
line.
Dif ference
Direc- Base O-D LINKOD
Street tion* Table 0-D Table? No. Percent
Reed EB 27§ 282 +7 2
WB 261 285 +24 9
William EB 24 14 -10 42
WB 20 19 -1 N
San Salvador EB 92 68 -24 26
WB 200 213 -13 6
San Carlos EB 633 521 -112 18
WB 358 353 =5 1
San Fernando WB 410 368 42 10
Santa Clara EB 785 816 +31 4
WB 492 494 +2 0
St. Johns WB 304 285 -19 6
St. James EB 1,019 1,076 +57 6
Julian WB 522 473 -49 9
Subtotal EB 2,828 2,777 -51 2
WB 2,567 2,490 77 3
Total 5,395 5,267 -128 2

3 Direction is divided into eastbound (EB) and westbound (WB).
bLlNKOD O-D table with 100 percent turning movements.

Figure 3. Accuracy impact of target trip tables on final trip tables.
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generated target ¢trip table, is consistently and
significantly closer to the base O-D table than the
others. The trip length distributions of the final
trip tables were also compared with that of the base
trip table. Results again showed that SMALD T7
yielded the closest comparison.

Therefore, it was concluded that the internal
SMALD performs better than alternatives such as the
simpler gravity model and the maximum entropy model
used in this study. Until a more cost-effective al-
ternative is found, the user is advised to use the
internal model.

Sensitivity to Incomplete Link Data

The accuracy impact of incomplete link data has been
analyzed for the single-path network case (ll) and
for small multipath networks (2). However, practical
guidelines for real-world application have not been
developed. Thus a systematic investigation of the
sensitivity of LINKOD to incomplete link volume data
was made in this study to provide guidelines to help
users collect and prepare efficient data sets that,
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although incomplete, can generate satisfactory solu-
tions.

Note that in a micronized network, such as that
shown in Pigure 1, each link represents a single
through or turning movement. Por simplicity, the
terms turning movements (which also include through
movements) and links are used interchangeably in the
following discussion.

To define a strategy for collecting link-count
data from a network, two factors must be included:
location (where the surveyed links are) and coverage
(the percentage of links counted). Relative to loca-
tion, three sampling strategies were considered:
random sampling (R), major 1link selection (M), and
geographic pattern schemes (GP). R means that the
counted links are randomly selected from all links
of the network. When the M scheme is used, only
links that carry the highest traffic flows are
selected. Links selected by a GP scheme form a par-
ticular geographic pattern, e.g., a cordon or screen
line(s), or a combination of these two.

These three link selection schemes, together with
different coverage levels, were used to define the
16 experiments summarized in Table 3, Here the num-
ber associated with each experiment specifies the
percentage of links for which link volumes were in-
put. For example, R30 is the experiment that used a
link file that contained turning movement volumes
for a randomly selected 30 percent of the links of
the network. Brief descriptions of the geographic
patterns associated with the six GP experiments are
given in Table 4.

Accuracy measured by RMSE and by MABSE/trip for
the final trip tables produced in the 16 experiments
are plotted in Piqures 4 and 5. As shown in these
figures, the GP scheme is the preferred sampling
strategy because it yields the closest match to the
base O-D table for almost all link coverage levels.

Table 3. Experiments with different sampling strategies.

Percentage of

Observed Turning Random Major Link Geographic Pattern
Movements" Sampling Selection Scheme

0-15 € ¢ GP13
16-29 - M25 GP2S
30-39 R30 M30 GP37
40-59 RS0 M350 GPSO
60-69 R60 M60 GP60
70-79 R75 M75§ GP75
80-89 ¢ M8S =€
;Tumlnl lude through mo:

See Table 4 for a more detailed description of each GP experiment.
®Not tested.

Table 4. Descriptions of the six GP test runs.

Description of Geographic ‘Pattern

Experiment

GP13 A broken cordon including some turning links

GP25* A complete cordon with about half of the turning links con-
necting to the cordon

GP37 GP25 plus the through movements on three screenlines
(Market, San Carlos, and Santa Clara)

GP50 GP37 plus one more screenline (San Fernando), all the

turning movements between the four screenlines, and the
other half of turning links at the cordon

GP60 GP60 plus three more screenlines (Vine, Almaden, and
Notre Dame) and all turning movements between these
three streets and all other screenlines

GP75 GP60 plus three more screenlines (St. James, William, and
Third) with their turning links

%See Figure 8 for locations of the links selected.
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Figure 4. RMSE of experiments with different sampling strategies.
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Figure 5. MABSE of experiments with different sampling strategies.
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It was also found that when the 1link file con-
tains turning counts for more than 60 percent of the
links, the final table T7 produced by the GP experi-
ment is closer to the base table in both RMSE and
MABSE/trip than the target trip table SMALD TS.
However, when the link file contains less than 60
percent of the total turning counts, the results are
ambiguous. In such cases the final table has a bet-
ter RMSE and yet a worse MABSE/trip than the SMALD
TS, This is shown in Figures 4 and 5. It implies
that a target trip table generated from a complete
load-node file may be even better than a final trip
table adjusted to correspond to a scanty link file.

When comparing the final trip table (T7) against
the target trip table (SMALD TS5) within the range of
40 to 60 percent available turning counts, the gain
in the RMSE measure is much larger than the loss in
the MABSE/trip measure. It implies that, in this
range, the correction procedure tends to correct the
bad cells in the trip table while sacrificing some
overall goodness of fit.

Because both error measures are meaningful, the
alternative data-collection schemes based on a
single measure cannot be evaluated. Although the
trade-off between these two error measures is still
unclear, a combined measure of effectiveness (MOE)
was defined based on the following assumptions:

1. The users are more concerned with the rela-
tive (percentage) improvement rather than the abso-
lute improvement in the error measures, and

2. Both error measures are of equal importance.
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On this basig, the MOE is defined as follows:

MOE; = (percentage improvement in RMSE) + (percentage
improvement in MABSE/trip)
= { [((RMSE, - RMSE;)/RMSE,) + [(MABSE,
- MABSE;)/MABSE,] } x 100% O]

where

MOE; = combined MOE for experiment i,

RMSE; = RMSE of the final trip table produced
by experiment i,
RMSEg = 9.5438 = RMSE of SMALD TS,
MABSE; = MABSE/trip of the final trip table
produced by experiment i, and
MABSEg = 0.9527 = MABSE/trip of SMALD T5.

The combined MOEs for the various experiments are
pPlotted in PFigure 6. It is clear that the geographic
pattern scheme is the most effective data-collection
scheme among the three tested. It can also be ob-
served that, when using this link selection scheme,
a minimum of 15 percent turning count data is re-
quired to produce a better final trip table than the
initial SMALD TS.

Suppose that the data-collection cost is propor-
tional to the number of links for which counts are
available. The horizontal axis of Pigure 6 then
serves as a proxy for cost. The effectiveness/cost
(B/C) ratio can thus be illustrated for each experi-
ment, as shown in Figure 7. Again the six GP experi-
ments are more cost effective than the others. Among
these experiments, GP1l3 has a negative E/C ratio,
presumably because less information is contained in
the link file than is provided in the complete load-

Figure 6. Overall sffectiveness of different sitamatives.
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Figure 7. E/C ratio for aiternative dsta-collection schemes.
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node file. Finally, the alternative GP25, in which
the selected links located along the cordon of the
study area are emphasized by black lines in Piqure
8, is found to be the most cost-effective data-col-
lection scheme.

The complete results of each experiment and a de-
tailed description of this sensitivity analysis .can
be found in Ran et al. (8, Chapter 7).

SUMMARY AND CONCLUSIONS

0-D synthesis techniques deal with the problem of
deriving trip O-D patterns from traffic counts.
Among the many applications considered for 0O-D syn-
thesis, the CBD is among the most complex because of
the potential for congestion and its varied choice
alternatives (including routes, modes, and vehicle
occupancy) . In this study the performance of a
leading O-D synthesis technique was examined when it
was applied to the estimation of vehicle trips in a
1 mile? portion of a major California CBD.

Among various models reviewed, the LINKOD model
that was designed primarily for small and congested
area analysis was selected for in-depth evaluation.
A 1975 San Jose CBD O-D data set with traffic counts
estimated by the microassignment model was used in
the evaluation. Significant differences were found
between the synthetic LINKOD trip table and the base
trip table. However, when assigned to the network
that used the microassignment model, both O-D tables
produced similar flow patterns. LINKOD is thus con-
sidered as an acceptable tool for pragmatic applica-
tions in CBDs.

An extensive sensitivity analysis was also made.
Among three alternative target trip tables, the in-
ternal SMALD performed much better than a simpler

Figure 8. Links selected in test run GP2S,
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gravity model and a naive maximum entropy distribu-
tion. 1t was concluded that the trip-distribution
model internal to LINKOD should be used whenever
possible. The sensitivity of the model to incom-
plete link volume sampling strategies was tested to
find the most effective way to collect this type of
data. The alternative that used traffic counts
solely along the study area cordon was found to be
the most cost-effective data-collection scheme of
those tested.

In the realm of future research, there are sev-
eral topics that merit further investigation.

1. A comprehensive data-collection effort should
be launched for a CBD study area. The data collec-
tion should include a field survey of vehicular 0-D
patterns and simultaneous collection of travel time
and traffic volume information. Such a data set
would be vastly superior to the San Jose data set
used in this study, which was model derived. With
this improved data set, the following topics can be
investigated in greater detail.

2. PFurther research should be undertaken regard-
ing O-D patterns of external vehicle trips traveling.
through a CBD. Techniques for estimating the exter-
nal trip O-D based on minimal external network data
should be investigated, as well as technigques for
forecasting the changes in external trip O-D pat-
terns that result from TSM measures in the internal
network.

3. A cost-effective combination of manual turn-
ing movement counts and machine volume counts needs
to be determined. The current research focused on
turning counts only. Initial attempts to investigate
the trade-off between turning counts and machine
counts were inconclusive and require further inves-
tigation,
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4. The effect of inaccurate traffit counts on
the accuracy of the synthetic 0O-D table needs to be
examined. The current research dealt with consis-
tent, accurate count information only.

5. Finally, research is needed to expand the
equilibrium framework to permit estimation of multi-
modal trip tables and the analysis of shifts in
vehicle occupancy.
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Estimating Trip Tables from Traffic Counts: Comparative
Evaluation of Available Techniques

YEHUDA J. GUR

Methods for estimating trip tables from traffic counts are potentially useful
because of their relative efficiency in data requir s. Two techniques for
estimating existing trip tables in urban highway networks—the information
theory (iT) technique and the LINKOD model—are analyzed in this paper.
The separate description of the two techniques is followed by a formulation
of an algorithm that is designed for application of the two techniques as well
as other variations. By using the algorithm, extensive experimentation with
the various techniques is made by using artificial data. Both the convergence
speeds and the ability of the techniques to stay close to the target trip table
are evaluatad. The main contribution of the paper is its presentation of the
two major techniques within an easily understood, unified format. It opens
a way for extending the IT techniques for equilibrium assignment problems.

Much work has been done in recent years in develop-
ing procedures for estimating trip tables from traf-
fic counts. These methods are potentially useful
because of their efficiency in terms of data re-
quirements compared with the available alternatives.
Chan et al. (1) and Willis and Chan (2) recently
compiled a comprehensive survey of the various esti-
mating methods and the types of problems that they
solve.

One type of problem is dealt with in this paper--
estimating an existing trip table for a typical urban
highway network, based primarily on traffic counts
on many links. Two different approaches to the
problem have been reported. The first is the infor-
mation theory (IT) approach, developed independently
by Van Z2Zuylen (3) and by Willumsen (4), and later
described by Van Zuylen and Willumsen (5). The
second is the network equilibrium approach proposed
by Nguyen (6-8) and extended by Gur et al. (8) into
the LINKOD system.

The two methods have been developed independently
from each other. Both have been developed primarily
(but by no means exclusively) for estimating trip
tables for "windows” in city centers. Recently, van
Vliiet and Willumsen (10) have reported the testing
of the IT model on data from the center of Reading,
England. Test application of LINKOD in downtown
Washington, D.C., is reported by Gur et al. (9).
Recently, a large-scale validation of LINROD on data
from downtown San Jose, California, has been re-
ported by Han et al. (1ll).

The purpose of this paper is to present the two
methods by using a common basis, and to evaluate
them comparatively. As a result of the evaluation,
a third method, which uses some elements of each, is
developed and tested.

DESCRIPTION OF PROBLEM

Consider a road network that consists of nodes con-
nected by links; some of the nodes are load nodes,
where trips originate or terminate or both. It is
assumed that trips between the load nodes are the
only cause for traffic on the links. Given volume
counts on some of the links, the problem is to find
the true trip table T = (Ei) that is served by the
network. (Note that for simplicity of notation, t;
denotes the ith cell in the table, giving the number
of trips between two load nodes, e.q., k and (t).
There are three important attributes inherent to
the problem. PFirst, the solution requires assump-
tions regarding the assignment rule, which describes
how travelers select their paths. Two different
types of assignment assumptions are possible. The

.changes served by them.

first is the proportional assignment where 1link
volumes are directly proportional to the inter-
This happens where path
selection does not depend on link volume, as in an
all-or-nothing assignment. Alternatively, with
nonproportional assignment rules, path selection is
a function of link volumes as in equilibrium assign-
ment. Proportional assignment assumptions make the
solution process simpler, but this assumption might
be unrealistic in congested networks. The main body
of this paper deals with all-or-nothing assignments.

A second important attribute of the problem is
that in most cases there is no accurate solution;
i.e., there is no trip table that, when assigned
(according to the assumed assignment rules), satis~
fies exactly the given set of counts. This can
happen both because of data imperfections (e.g., the
counts are taken in different time periods) and
modeling imperfections (e.g., the assumed assignment
rule only approximates the actual route selection).

Third, in most cases the problem is underspeci-
fied; i.e., if there exists one table that satisfies
a given set of flows, then there exist many other
tables that, when assigned, produce those same
flows. A complete solution method must address all
these issues., It must be based on a realistic as-
signment assumption; it must be robust enough to
withstand data inaccuracies and to estimate a table
that approximates (rather than duplicates) the
counts, It should also identify the best table
among those that satisfy the counts.

Both the IT and the LINKOD models satisfy these
requirements; although LINKOD can operate for both
proportional and equilibrium assignment assumptions,
the current version of the IT model operates only
for proportional assignment. The problem of multi-
plicity of solutions is addressed in the two models
in a similar way, i.e., the input to the model in-

., cludes a target trip table--a trip table that de-

scribes the best estimate of the true table without
traffic count information. The LINKOD model corrects
this table as little as possible to approximate the
observed flows. The IT model looks for the most
likely, closest table to the target trip table that
approximates the observed flows.

INFORMATION THEORY MODEL

Willumsen (4) developed a solution method based on
entropy maximization considerations. The model (as
well as a variation of {t) is described by Van
Zuylen and Willumsen (5). The problem is to find
the maximum entropy trip table among those that
satisfy the observed flows. Entropy of a table is
defined as the number of micro states associated
with it, weighted by probabilities that reflect the
target trip table.

van Zuylen and Willumsen (5) indicate that for
the all-or-nothing assignment, the solution to the
problem is of the form

tf =i * Ther; Xa )
where

t} = ith element of the final trip table,
f; = ith element of the target trip table,
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ry = set of links that are included in the path
of the ith interchange, and
x, = link-specific parameters,

Van Zuylen and Willumsen suggest that Equation 1
can be solved (i.e., the values of X = (x,) can be
found] by using iterative proportional fitting and
an algorithm that will be described later. They
note that even though the convergence of the method
has not been proven, numerous experiments with arti-
ficial data failed to show a case of nonconvergence.
As will be shown later, a case of nonconvergence was
found, which was rectified by a minor change to the
algorithm.

LINKOD APPROACH

The LINKOD model is described by Gur et al. (9) and
by Turnquist and Gur (12). The theory was developed
by Nquyen (6,7). Nguyen specifies a nonlinear opti-
mization problem; it is shown that any solution to
that problem is a trip table that, when assigned by
using equilibrium assignment, replicates the ob-
served flows. The optimization problem is similar

to the problem connected to equilibrium assignment
with elastic demand.

As in any other equilibrium assignment problenm,
the LINKOD model uses volume-delay functions. How-
ever, here both the link volume and the impedance at
load are known. It can be shown that the correct
solution to the problem is arrived at regardless of
what function is used as the volume-delay function,
as long as it is a strictly increasing function and
it gives the correct impedance at the observed load.
FPor convenience, LINKOD uses linear, or bilinear,
functions, e.q.,

Cy (V.) = C.l + bl (‘;l - Vl) (2)

where
Ca (V) = impedence of link a at volume v,
a observed volume,
a ca(V.') = impedence at the observed
volume, and
b, = a parameter.

»
a

Those functions operate like error functions, where
the error measure e, = ca(v) 1is directly related to
the difference between the observed and assigned
volumes.

Another important attribute of the model is that
the theory does not provide for a unigque solution to
the problems; i.e., all the trip tables that satisfy
the observed flows have exactly the same value as
the objective function. To overcome this problem
the solution algorithm was designed to keep the
final trip table as close as possible to an input
target trip table. Thus the LINKOD model actually
corrects the target trip table so that it approxi-
mates, as close as possible, the observed flows.

ALGORITHM FOR SOLVING THE ALL~OR-NOTHING PROBLEM

In spite of the different theoretical backgrounds of
the IT and LINKOD models, their solution algorithms
are similar. The following algorithm describes the
solution process by the two models and various pos-
sible combinations of them. This version of the
LINKOD model is a special case, where it can be
assumed that only one path is used for each origin-
destination (0-D) pair (for example, travel on an
expressway) .

1. Given the target trip table (P), the observed
volumes (;I), the 1ink impedence at load (C), and the
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link error (volume-delay) functions [ch(*)], deter-
mine the minimum impedence path for each 0-D pair.
Denote by ry the set of all 1links that serve the

ith 0-D pair and determine the skim trees at load O:
U= xurl 6 G)

Asgign the target trip table to the network and
obtain vi.

2. Setm=0, vOa0, T" =P, and T = 0.

3. Bvaluate the solution (VM,?™)., 1f {t is
satisfactory, go to step 10.

4. S¢t m = m + 1, VW = v, 10 o N, ang
cl = c(vh.,

5. Calculate for each link the link error mea-
sure:

Ya =Y [‘;a » v:l »Ca ()] (O]

(The definition of y is given later.)
6., Calculate a correction factor for each in-
terchange:

8 = s(Y,; aer) (&)
That is, the interchange correction factor (s) is a
function of the volume errors of the links along the

path that serves the interchange. Calculate a cor-
rected or a correction trip table:

tf =t(s;) (6)

7. Assign TC and get VC.
8. Pind A such that

T =(1-A)T° +AT* @)

VP = (1=N) VO #AVE ®)

where 0 < 2 < 1 and ) wmninimizes the value of
the objective function.

9. Go to step 3.

10. The solution to the problem is the trip
table ™. Stop.

In the LINKOD model, steps 5 and 6 use linear re-
lations:

Y} = él ~Ca (V:') (9)

In cases wvhere c(*) is linear (Eguation 2):

Yo =@y -vD)eb, (92)
8= zur. Ya (10)
and

§ =1 {142 [s/CG - -9)1} an

where uf is the skim trees that use the imped-
ances

cg =c, (0) (12)

In Willumsen's IT model, multiplicative relation-
ships are used, i.e.,

Yo =Valvg 13)
' = Hyer, ¥a (14)
and

e s a3
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Table 2. Bias coefficients for modal-choice disutility equations.

Income Coefficients

Group Automobile

Automobile Drive Alone (1, I) G, 1)
Income Access Penalty
Group* (1) Coefficient Coefficient t-Ratio  Coefficient t-Ratio
Home-based
work trips
1 1.4165 1.4014 13.74 1.6733 21.14
2 1.0683 0.7979 8.24 1.2677 18.89
3 0.4943 -0.0750 -0.32 0.8939 10.01
4 —0.2245 -0.6783 -6.59 0.6140 7.83
Home-based
other trips
1 2.9661 0.0934 9.06 —1.5281 -24.40
2 2.3095 -1.1802 -21.00 -2.2168 -35.62
3 1.9305 -2.1397 -30.61 -2.7419 -44.41
4 1.4125 -2.9294 -38.33 -3.1109 -50.70
Non-home-
based trips
1 -1.3447 -11.73  -1.3496 -11.52
2 -1.9311 -17.53 -2.1027 -17.19
3 -2.6904 -24.48 -2.5040 -21.67
4 -3.0689 -27.57 =2.7298 -23.35
Note: See Tabie 1 for equations used for biss coefficients.
*lncome groups are divided as follows: 1 = low, 2 = | iddle, 3 = high-middle, and
4 = high. .
Table 3. Variables used in modal-choice calibration.
Units of
Acronym Description of Variable Measure
Transit variables
TRN RUN In-vehicle time from the transit network, not Minutes
including automobile access time
AUTO ACC Automobile access time from the transit Minutes
network
WALK ‘Walk access time from the transit network Minutes
WAITI1 Transit boarding time for the first transit vehi- Minutes
cle from the transit network
WAIT2 Time spent-transferring from the transit Minutes
network
TXFER Number of transfers from the transit network Number
FARE Transit fare Cents
AUTO CONN Dummy variable signifying if an automobile -
was required to access the transit system
(0 is no, 1 is yes)
TRN DACC 25 Percentage of regional employment within 25 Percent
min of total transit time from destination
zone
Highway variables
HWY RUNI Highway in-vehicle time from highway network Minutes
for one person per car (drive alone) trips
HWY RUNG Highway in-vehicle time for group automobile =~ Minutes
trips (same as HWY RUNI plus an additional
time for each passenger)
HWY CST1 Highway operating cost for one person per car  Cents
trips
HWY CSTG Highway operating cost for group trips Cents
PRK CST! Avg parking cost for one person per car trips Cents
PRK CSTG Avg parking cost for group trips Cents
HWY EXC Time spent parking and unparking an automo-  Minutes
bile; the sum of highway terminal time at the
origin zone and the destination zone (also
called highway excess or terminal time)
3
CL=K/Z [A@)+C] ¢))

where

C.I. = value of composite impedance,
A(i) = modal choice disutility function for mode i
(L =1,2,3),

C = constant chosen such that all A(i)‘'s are
positive, and

K = constant chosen such that all C.I.'s are
between 1 and 127, inclusive.
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This formula is simply the reciprocal of the sum
of the modal impedances, scaled to represent suit-
able values. The second formulation sums the expo-
nential of the disutility function for all modes,
takes the reciprocal of the sum, and takes the nat-
ural logarithm of this reciprocal. This is called
the log sum method, and is described as follows:

CL=Ksln @

CI Z exp[-AQ)]

Both of these functions meet the criteria previ-
ously described, but 1little was known about the
ability of either to perform as a measure of spatial
separation. Therefore, both measures were tested by
calibrating the home-based work trip-distribution
model twice, each time by using a different mea-
sure. The choice would then be made on the basis of
whichever formulation provided the closer match to
observed conditions, based on average trip length
and other such measures.

CALIBRATION TECHNIQUE

The New Orleans distribution model uses the standard
gravity model form (15). This model postulates that
the number of trips for a given zone interchange is
proportional to the number of trip productions at
the origin zone and‘ the number of trip attractions
at the destination zone, and inversely proportional
to the travel impedance between the two zones. The
relationship with impedance is generally described
by a nonlinear function that relates impedance to a
nondimensional P factor (also called friction
factor).

The usual calibration process involves determin-
ing the relationship between the impedance values

‘and the F factors such that the distribution of es-

timated trips by impedance matches that of the ob-
served trips. Additional adjustment factors (K fac-
tors) are used to help match observed and estimated
trips by geographic stratification (such as dis-
tricts). For this project, separate models were de-
veloped for each trip purpose and for each of four
income levels. Observed person trips came from the
home interview survey.

Initially, it was assumed that the UTPS program
AGM, operating in the so-calléd SAC mode, would be
able to automatically calculate the proper P fac-
tors. However, this function of program AGM was not
operating correctly at that time and an ad-hoc
method of calibrating the F factors was developed.
This method used essentially the same technique as
described in the AGM program documentation. F fac-
tors are calculated by using a gamma function, i.e.,

F(D=A+IB +EXP(G=*]) 3)
where

P(I) = F factor for impedance value I,

A,B, and G = calibrated coefficients, and
EXP = exponential function.

This function was judged to be adequate because
there is considerable documentation that it simu-~
lates the relationship between F factors and imped-
ance adequately. Calibration of a distribution
model consists mainly of fitting this curve. This
was done as follows.

1. Apply program AGM in.the apply-and-calibrate
(AC) mode, which reports the observed and estimated

trips stratified by each unit of impedance.
2. The observed and estimated trips and the F
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Tables 1 and 2. As the equations in Table 1 {ndi-
cate, travel disutility is a linear function of the
time and cost of the transit, drive alone, and group
automobile wmodes, and other service characteristics
such as number of transfers and transit accessibil-
ity. Also, the income level of the traveler is a
prime influence on perceived disutility. The dif-
ferential effect of walk access to transit versus
automobile access to transit on modal choice i{s de~
fined through the use of an automobile access pen-~
alty dummy coefficient in the transit disutility
equation. The variables are described in more de-
tail in Table 3. For the work trip purpose, peak-
hour impedance values were used; for home-based
other and non-home-based purposes, off-peak values
were used.

The mode and variable definitions for these equa-
tions are similar to other modal-choice models re-
cently developed for Minneapolis-St. Paul (9), Seat-
tle (10), Houston (l1), St. Louis (12), and Buenos
Aires (13). The group mode consists of persons in
automobiles with two or more occupants. A separate
logit submodel is used to estimate the proportion of
two-person, three-person, and four or more person
trips in order to determine the average group occu-
pancy for each interchange. The transit and highway
variables are created from standard Urban Transpor-
tation Planning System (UTPS) network analysis pro-
grams (14) and special submodels are used to esti-
mate accessibility, terminal time, and parking
cost. The calibration data consisted of a compre-
hensive, home interview origin-destination survey
conducted in the New Orleans region in 1960.

The coefficients and the final list of variables
were developed by using ULOGIT on a sample of the
survey file, followed by disaggregate validation and
adjustment by using the full survey file. The coef-
ficients are comparable to coefficients from other
cities, exhibit internal consistency, and have -ac-
ceptable t-ratios (see Tables 1 and 2). The follow-
ing observations support the reasonableness of these
equations:

Table 1. Modal-choice disutility equations.
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1. The out-of-vehicle time coefficients exceed
those for in-vehicle time;

2. The model is much more sensitive to automo-
bile access time to transit than to time spent on
the transit vehicle;

3. The ratio of the time coefficient to the cost
coefficient, which is the implied value of travel
time, is approximately one-third to one-half the av-
erage 1960 regional income in cents per minute; and

4. The income bias coefficients indicate that as
income level increases, there is a lower propensity
to use transit, and within the automobile mode, a

higher propensity to be a driver rather than a pas-
senger.

COMPOSITE IMPEDANCE CALCULATION

The previous section describes how impedance is de-
fined for each mode. The remaining challenge is to
combine the three impedances into one value. PFor
this task, the following conditions must be met.

1. The combined value must decrease as any of
the modes becomes better, i.e., declines in time or
cost.

2. The combined value must increase if a mode is
not available [i.e., an interchange with even unsat-
isfactory transit service must have a better (lower)
impedance than one with no service at all).

3. The value must lie between 1 and 127, inclu-
sive. The UTPS program AGM assumed that the input
impedance values are stored as l-byte matrix ele-
ments. The highest value that can be represented in
this format is 127.

4. The distribution of values within this range
should be reasonable; i.e., they should not be con-
centrated at the top or bottom of the range.

It was ascertained that at least two mathematical
formulations meet these criteria. One formulation
is a variation of the harmonic mean function:

Mode Equation

Home-based work trips
Transit disutility
(4.07) (20.21) (8.85)

0.0332 « WALK + 0.0769 « WAIT] +0.0319 » WAIT2 + 0.0078 « FARE + 0.0145 « TRN RUN + ? 1005 « AUTO ACC

(10.45) (6.72)

+0.0588 » TXFER + Auto Access Penalty (I) « AUTO CONN

(3.59)

Drive-alone disutility
(4.94) (6.72)

Group automobile disutility
(1.74) (6.72)

Home-based other trips
Transit disutility
(7.45) (9.55)

+ Auto Access Penalty (I) « AUTO CONN
Drive-alone disutility

0.0693 « HWY EXC +0.0145 » HWY RUNI + 0.0078 + HWY CST1 + 0.02145 « PRK CST1 + Income Coefficient (1, 1)
(10.45)

(10.45)

0.0174 » HWY EXC + 0.0145 + HWY RUNG + 0.0078 « HWY CSTG + 0.02145 » PRK CSTG + Income Coefficient (G, I)
(10.45)

(10.45)

0.0165 « (WALK + WAIT!1 + WAIT2) + 0.0116 « FARE + 0.0066 » (TRN RUN + AUTO ACC) - 0.0183 « TRN DACC25

(-22.91)

0.3403 » HWY EXC + 0.0066 « HWY RUN1 + 0.0116 « HWY CST1 + 0.0319 « PRK CST! + Income Coefficient (1, I)

(25.98) (7.45) (9.55) (9.55)
Group automobile disutility  0.2828 » HWY EXC + 0.0066 s HWY RUNG + 0.0116 » HWY CSTG +0.0319 » PRK CSTG + Income Coefficient G, D
(28.50) (7.45) (9.55) (9.55)

Non-home-based trips
Transit disutility
(9.41) (2.75)

+2.7472 « AUTO CONN
(4.91)

Drive-alone disutility
(20.14) (9.41)

Group automobile disutility
(25.58) (9.41)

0.0328 « (WALK + WAIT1 + WAIT2) + 0.0047 « FARE +0.0131 » (TRN RUN + AUTO ACC) + 0.0750 =« TXFER
)

(9.41

0.2423 « HWY EXC + 0.0131 « HWY RUNI1 + 0.0047 ¢« HWY CST1 + 0.0291 » PRK CST1 + Income Coefficient (1, I)

(2.75)

0.3048 » HWY EXC + 0.0131 « HWY RUNG + 0 0047 « HWY CSTG + 0. 029)1 * PRK CSTG + Income Coefficient (G, I)
(2.75) 2.75

t-ratios. T-ratios were not calculated foe the

Note: Disutilities must be muitiplied by -1 before taking the oxpononthl in nn logit
work and other automobile access penalty coefficients, or the

L inp
on TXFER. See Tabln 2 for .xplmlbn of bias coefficients used for the equations.
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Trip Distribution Using Composite Impedance

WILLIAM G. ALLEN, JR.

in this paper the theory and resuits of a trip-distribution modei that uses a
multimodal posite definition of imped as its s of separation,
instead of highway time, are presented. The distribution model is part of a
complete travel-demand model chain developed for the New Orleans region.
This model chain is briefly described, and its special features of income strati-
fication and ivity 9 programs are emphasized. The disutility
functions of a three-mode logit modal-choice model are used to develop
modal impedance values. The structure and cosfficients of these equations are
discussed. Two siternative methods for combining these modal impedances
are presented: harmonic mean and log sum. A special technique for cali-
brating the F factor curves was developed to circumvent shortcomings in the
urban transportation planning system (UTPS) software. The results of the
calibration are presented. These results indicated that the log sum formula
produced better results than the harmonic mean formula, based on various
observed and estimated comparisons. In addition, the log sum composite im-
pedance-based model proved suitable only for home-based work trips. Un-
satisfactory results for the other trip purposes led to the use of off-peak
highway time for those purposes. Resuits for home-based other and non-
home-based dels are also pr d. The | of this analysis are
that a distribution model can be succassfully calibrated by using composite
impedance; that, at least in this case, the [og sum formuia worked better than
harmonic mean; and that a successful aiternative to the standard AGM gravity
model calibration process can be developed.

The theory and results of a trip-distribution model
that uses a composite definition of impedance as its
measure of separation, instead of highway time, are
presented in this paper. The premise that such a
model is inherently logically superior to a gravity
model based on highway time ie accepted as a given.
This superiority involves a composite impedance-
based model that is sensitive to the characteristics
of all modes and provides for improved connectivity
between the distribution and modal-choice models.
This should, in theory, produce more reasonable es-
timates of trip distribution. The distribution
model is part of a complete travel-demand model
chain developed for the New Orleans region. Previ-
ous work is reviewed here; the accompanying logit
modal-choice models are described; and alternative
methods of combining impedances, a different tech-
nique for calibrating gravity models, and the final
results are presented.
PRIOR RESEARCH

The use of composite impedance in distribution
models is not new. For example, an early reference
to a generalized resistance formulation for the
gravity model is a 1973 paper by Manheim (1) based
on his earlier work (2). Wilson (3) also describes
a composite generalized cost function. Much of the
recent work in this field has focused on the joint
choice type of model, By combining destination
choice and modal choice (and often trip frequency)
into a single model (generally by using a logit
structure), this type of model effectively incorpo-
rates the impedances of all modes and the socioeco-
nomic status of the traveler into the trip-distribu-
tion process. There are numerous references to and
examples of this model type in the literature (4,5),
with perhaps the best known of these being the Met-
ropolitan Transportation Commission (MTC) model set
(6).

" However, the New Orleans model chain uses the
traditional sequential application of models, and
there appears to be but one previous attempt at us-
ing composite impedance in this context. In 1975 a
similar set of models was developed for the Regional
Transportation District in Denver (7). That study
used modal-choice logit coefficients to define im-

. sequentially, independent of each other.

pedance. Alternative methods of combining imped-
ances were reviewed, and a parallel resistance
(harmonic mean) formulation was selected.

Basically, the New Orleans distribution models
are a direct extension of the Denver work. The
major changes are that separate models are developed
for each income level and the log sum method of com-
bining impedances was used. The log sum method,
which is simply the natural logarithm of the denomi-
nator of the modal-choice logit equation, was also
used in the San Francisco MTC models (6).

MODEL CHAIN

The distribution model can best be described by
placing it in the setting of the entire travel model
chain (see paper by Schultz elsewhere in this Rec-
ord). The New Orleans model chain consists of the
traditional generation, distribution, and modal-
choice models. What distinguishes these models is
that they are entirely income stratified and highly
connected with each other. The generation models
use an elaborate cross-classification structure, in-~
cluding the capability of estimating trip produc-
tions and attractions for each of four income levels
(quartiles). The modal-choice models consist of a
three-mode 1logit structure, which contains bias
variables based on income level.

One of the criticisms of the traditional type of
travel-demand models is that the models are applied
It is gen-
erally recognized that actual travel decisions are
seldom made in this fashion. Rather, decisions on
frequency, destination, mode, and route tend to be
interrelated. The use of composite impedance i{s an
attempt to address this concern. The modal-choice
and distribution models are tied together because
the coefficients of the logit models are used to
define the composite impedance value. Therefore,
the distribution of trips is sensitive to both high-
way and transit service levels, travel cost as well
as time, and the income level of the traveler. The
high level of transit service in New Orleans makes
this multimodal definition of impedance especially
meaningful. This multimodal sensitivity is also es-
sential to one of the goals of this model chain: to
be able to respond more accurately to the existence
of transit guideways, high-occupancy vehicle (HOV)
facilities, and a wide range of transportation pol-
icy variables.

The results of the model calibration indicated
that the composite impedance formulation was suit-
able only for the work trip purpose. For the home-
based other and non-home-based trip models, compos-
ite impedance could not succesafully be used, and
thus highway time was used. PFor the work model, the
log sum method of combining impedance gave better
results than the harmonic mean formulation. Fi-~
nally, all three models were calibrated to a high
degree of accuracy, with K factors used sparingly
and only for trips crossing major geographic bar-
riers.

MODAL-CHOICE DISUTILITY FUNCTIONS

As previously mentioned, a -th_ree-mode logit modal-
choice model was calibrated for each trip purpose
(8). These models are defined in terms of their
disutility equations for each mode, as given in
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residual of 70 after 6 iterations, and a residual of
15 after 15 iterations.

4. The three multiplicative versions of the
model always resulted in similar trip tables, which
tended to be slightly different than that of the
LINKOD algorithm.

S. Adding the 1) weighting (Equation 8, model
3) increased the convergence speed only slightly.

CLOSENESS OF FINAL TRIP TABLE TO TARGET TRIP TABLE

The data in Table 3 give the value of & for the
final and target trip tables for the different algo-
rithms and target trip tables. Pigure 3 shows the
ratios of ¢ for LINKOD (model 1) and the square
root version of the IT algorithm (model 4).

1. All the algorithms succeed in producing final
trip tables that are close to the target tables.
Different target trip tables result in completely
different final trip tables that, nevertheless, are
similar in their ability to reproduce the observed
flows.

2. The different multiplicative algorithms re-
sult in final trip tables whose distances from the
target trip tables are similar. This is particularly
significant relative to the algorithm with the
weighting (model 3); its divergence from the basic
form of the IT model (Equation 1) does not appear to
harm its performance.

3. In most cases the multiplicative algorithms
result in final trip tables that are slightly closer
to the target trip table compared to LINKOD. This
can be seen clearly in Figure 3.

4. In cases where the algorithms show conver-
gence difficulties (Table 2f), the final trip table
is not the feasible solution closest to the target.
To confirm this point, a systematic search for the
closest solution was made by using linear combina-
tions of the eight basic solutions. The best trip
table had ¢ = 0,274 compared with & = 0.553 for
the final trip table of the algorithm. In all cases
without convergence difficulties, only slight dif-
ferences between the two ¢'s were found.

CONCLUSIONS

In this paper the two major models for estimating
trip tables based on traffic counts that have been
verified in full-scale applications are compared.
The analysis concentrates on all-or-nothing assign-
ment problems. It is shown that the two models are
similar, both in the structure of their algorithms
and in their performance. LINKOD uses additive
terms for the table correction.steps, whereas the IT
models use multiplicative terms. The different
versions of the IT model produce similar results.
They tend to produce final trip tables that are
slightly closer to the target tables when compared
with LINKOD.

The target trip table is shown to have major
effects on all aspects of the solution. It dictates
the structure of the final trip table and the speed
of convergence. In any application of the model,
the selection of a target trip table should be made
with care.

The standard IT algorithm (model 2) failed to
converge in one case. It should be used with care.
All the other algorithms performed satisfactorily in
all cases.

A significant result is the successful perfor-
mance of model 3--multiplicative corrections with )
weighting (Equation 8). The ) weighting step is
an essential element in any equilibrium assignment
algorithm; the success of the model that includes
this step gives a strong indication that it can

perform successfully
assumptions.
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under equilibrium assignment
Development work in this direction is

under way.
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small enough to permit complete analytical solu-
tions. Out of the 15 cells in the trip table, 4 are
always zero because of the structure of the network,
The 10 volume counts provide 8 independent equa-
tions. Those equations, when combined with non-
negativity constraints on the cells of the trip
table, can be solved with eight different basic trip
tables, each with eight positive cells, which sat-
isfy the observed flows. The data in Table 2b mark
the cells that can be zero. The data in Table 2c
are an example of a basic solution. BEvery scaled
linear combination of the eight basic tables also
satisfies the observed flows.

There exist a number of measures for the distance
between two matrices. These measures are described
by Willis and May (13). For the present project,
the following distance measure was selected:

@ = (1/Z;4) Ziltf » Hog (t/£;) 1] (18)

where F is the target trip table and T" is the
final trip table. This measure is a normalized
equivalent to the distance measure used in develop-
ing the IT model.

The extent to which the final trip table approxi-
mates the observed flows was measured by two vari-
ables: the LINKOD objective function and the sum of
absolute volume errors, i.e.,

VOLER = Z, i, =~ v3! 19

For the main body of the experiments, a number of
different target trip tables were specified, and a
set number of iterations (5 or 15) were run by using
the different models. The statistics of the dif-~
ferent runs were used for model evaluation. The
major results are shown in Pigures 2 and 3 and are
given in Table 3.

Figure 2. Convergence speed for the different algorithms.
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CONVERGENCE CHARACTERISTICS

The data in Table 3 give the values of the various
error measures that use different target trip ta-
bles. Residual errors after each jiteration for two
gample tables are shown in Figure 2. The main con-
clusions are as follows.

1. At least in one case (target table as speci-
fied in the data in Table 2d), the simple IT algo-
rithm (number 2) failed to converge. The other
three algorithms always converged.

2. The LINROD algorithm tends to improve the
solution more than the IT algorithms during the
first one or two iterations. However, the multipli-
cative algorithms tend to be more efficient when the
errors are small. In general, after five or more
iterations, all the algorithms show similar residual
errors.

3. The speed of convergence depends strongly on
the target trip table. It is interesting to note
that all of the algorithms display convergence dif-
ficulties exactly for the same target trip tables.
The data is Tables 2e and f give the two target
tables whose convergence patterns are shown in Fig-
ure 2; these patterns display that behavior. Al-
though the data in Table 2e give a residual of about
4 after 6 iterations, the data in Table 2f give a

Figure 3. Distance ratios for LINKOD and IT modeis.
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Table 3. Summary of performance measures by trip table and aigorithm.

Residual Error (VOLER?®) Distance from Target ($°)
T I
Target IT (square IT (square

Table LINKOD with root) LINKOD with root)
1 25 22 28 0.159 0.157 0.158
2 29 28 31 0.154 0.138 0.138
3 20 15 15 0.289 0.284 0.284
4 60 56 56 0.426 0.410 0415
S 13 4 5 0.300 0.292 0.292
6 26 17 26 0.363 0.371 0.356
7 16 8 10 0.476 0.488 0.481
8 4 4 4 0.131 0.131. 0.131
9 12 4 13 0.553 0.555 0.557
10 70 66 65 0.467 0.446 0.452
11 9 8 7 0.195 0.195 0.195

Note: The table presents values of the performance measures after five iterations.
SVOLER is the sum of absolute link volume errors, VOLER = Ejv, - vjl.
hO is defined as described in Equation 18.

cBy using analytical techniques, solutions with ® of 0.130 and 0.268 were found for
target trip tables 8 and 9, respectively.
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Another difference between the two algorithmas is
the need for the A weighting (step 8). 1In the
LINKOD model the table TC is a correcting trip
table that points to the direction of the needed
correction in any iteration. Therefore, the )
weighting is an essential part of the algorithm. 1In
the IT algorithm T is a corrected trip table;
thus the )\ weighting is not a necessary part of
the algorithm; it might even be harmful.

Note that in the IT algorithm, without A weight-
ing (x from Equation 1) is

Figure 1. Test network.

Table 1. Test network sttributes.

Node A  Node B Cy by A

4 8 6.9 003 130
- 8 9.2  0.04 130
6 S 310 0.5 20
6 7 196 004 290
7 1 80 00s 60
7 8 13.9  0.03 230
8 2 135 005 170
8 3 126 003 200
8 4 114 006 90
8 H 6.5 005 30

Table 2. Test trip tables.

-was programmed,
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X =Tm Yy " (16)
where Y4'™ is the value of y from Equation 13
at the mth iteration. However, if )\ weighting is
used, then the solution trip table (T") cannot be
expressed in terms of Bquation 1. Thus it is doubt~
ful whether the solution with the ) weighting is
the best solution, as specified by the IT criteria.
In the pure IT model, ) in Equation 8 is always 1.

EXPERIMENTATION

The algorithm as described in the previous section
and a set of experiments with the
two models and some other variations were performed.
The experiments were designed to answer the follow-
ing questions.

l. How do the various algorithms perform in
terms of speed of convergence to a trip table that
approximates the observed flows? Are there cases
where the algorithms fail to converge?

2., How do the various algorithms perform in
terms of finding a solution that is close to the
target trip table?

The experimentation started with three models:

(a) LINKOD, (b) IT with » = 1, and (¢) IT with
optimal A (step 8 of the algorithm). After a few
experiments, it was found that in certain circum-

stances the standard IT model overcorrects the trip
table and fails to converge. A fourth version of
the model was added, where Equation 13 was replaced
by Equation 4:

yr' = SQRT (7,/%) an

and A = 1.

The experiments use the network shown in Figure
1, with the link attributes given in Table 1. The
data in Table 2a give an example of a trip table
that satisfies the observed flows. The problem is

a. A solution (an example) b. Structure of a solution

l 1 2 3 4 S 1 2 3 4 S
3 0 60 40 0 30 - 0 0 - x| 130
4 0 30 60 40 0 - 1] 0 0 - 130
5 60 80 100 50 20 x 0 1] 0 x{ 310
60 170 200 9 S0 570

Note: — means it must be zero, 0 means it
can be zero, and x means it must be positive.

d. A target that cannot converge with

o
-

. A quickly converging target

. A slowly converging target

c. A basic solution (an example) algorithm 2

1 2 3 4 5 1 2 3 4 5
3 0 0 100 0 30 3 0 52 52 0 S22
4 0 0 40 90 0 4 0 52 52 52 0
H 60 170 60 0 20 S 52 52 52 52 52

H

1 2 3 4 5 1 2 3 4
3 0 60 50 0 40 3 0 0 50 0
4 0 40 50 40 0 4 0 0 9% 80
H 50 70 9% 60 50 s 80 60 70 0

40

0

30
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factors used in that run were then keypunched into a
file that could be used by Statistical Package for
the Social Sciences (SPSS) programs (16).

3. The 8PSS subprogram REGRESSION was then used
to obtain a least squares fit for the coefficients
A, B, and G (after suitable transformation of the
variables).

4. New P factors were calculated by using the
new coefficients, and program AGM was reapplied.
The observed and estimated trip lengths were then
compared, and if the results were inadequate, steps
2-4 were performed again.

The results were judged by a visual inspection of
the impedance distribution and by comparing the av-
erage values for composite impedance and trip
length. By using this technique, a satisfactory set

of P factors could be obtained in between six and
nine iterations.

RESULTS

The results of the impedance calculations are given
in Table 4. The composite impedance values differ
markedly by income level and are biased in the
proper direction. That is, the lower-income levels
are associated with higher impedance. This reflects
the fact that lower-income persons tend to have
lower mobility (for example, they are less likely to
own automobiles). The composite values also indi~
cate a larger spread than the time values, which may
suggest more specific relationships between com-
posite impedance and F factors. These statistics
indicate that the composite impedance formulation
behaves mathematically. This increases the confi-
dence with which it can be used in gravity model de-
velopment.

Table 4. Summary of observed impedance values.

Purpose and Income Average Lowest Hi;hest Standard
Level® Valueb Value® Value® Deviation
Home-based work trips

1 62.189 44 111 9.908

2 56.338 38 98 8.695

3 47.171 29 84 8.596

4 38.063 21 17 8.670
Home-based other trips

1 7.579 1 43 4.942

2 7.965 1 39 " 5334

3 8.214 1 44 6.118

4 7.692 1 44 5.679
Non-home-based trips

1 7.720 1 36 5.263

2 7.671 1 43 5.451

2 1.710 1 39 5.392

4 7.520 1 39 5.130

* level is divided as foll 1 = low, 2 = low-middle, 3 = high-middle, and 4 =
leu values for home-based work log sum d All other

values represent highway time. All'hkhmy ﬁmﬂ used were oﬂ puk highwsy times
without terminal time.
Highest and lowest values that contain observed trips.

The results of calibrating the home~based work
model with both sets of composite impedance func-
tions are given in Tables 5-7. These comparisons
indicate that the log sum results are superior to
those obtained with the harmonic mean formula. The
basic philosophy of these comparisons was that, if
the model could be calibrated by using one type of
impedance and could be shown to properly replicate
the means of a different (but related) type of im~
pedance, the calibration would be considered suc~
cessful. The log sum formulation estimates average
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Table 6, Comperison of two composite impedance formulas: highway running
time (min),

Harmonic Mean Log Sum
lncoms Esti- Percent Esti- Percent
Group Observed mated Error Observed mated Error

10.17 10.67 4.92 10.17 10.82 6.39
10.18 11.02 8.25 10.18 10.59 4.03
10.87 11.59 6.62 10.87 1097 092
116 11.87 6.36 11.16 11.26 0.90

All income 10.68 11.39 665 10.68 1094 243
groups

RS Yo

Note: These values represent the home-based work purpose gravity model runs, without
K factors.

'lncomo groups are divided as follows: 1 = low, 2 = low-middle, J = high-middle, and
4 = high.

Table 6. Comparison of two composits impedance formulas: highway
distance (mile).

Harmonic Mean Log Sum
Income Esti- Percent : Esti- Percent
Group® Observed mated Error  Observed mated Error
1 429 4.53 5.59 4.29 4.64 8.16
2 4.29 4.70 9.56 4.29 4.52 5.36
3 4.72 5.15 9.11 4.72 4.80 1.69
4 491 5.29 7.74 491 4.96 1.02
All income 461 4.99 8.24 4.61 4.75 3.04
groups

Note: These values represent the home-based work purpose gravity model runs, without
K factors.

*acome groups are dlngd as follows: 1 = low, 2 = low-middle, 3 = high-middle, and
4 = high.

Table 7. Comperison of two composite impedance formulas: number of
intrazonal trips.

Harmonic Mean Log Sum
Income Esti- Percent Esti Percent
Group® Observed mated Error Observed mated Error

936 882 =577 936 857 -8.44
2,202 1,854 -15.80 2,202 2,396 8.81
2,895 2,471 -14.65 2,895 3437 1872
3,113 2,374 -23.74 3,113 2,866 ~7.93

All income 9,146 7,581 -17.11 9,146 9,556  4.48
groups

AW e -

Note: Thess valucs represent the home-based work purpose gravity model runs, without
K factors.

*ncome groupe are divided as follows: 1 = low, 2 = low-middle, 3 = high-middle, and
4= high.

highway travel time and distance considerably better
than did the harmonic mean formulation, except for
the lowest income quartile. When intrazonal trips
are compared, the log sum approach is superior for
total trip estimation, but slightly inferior for the
low and high-middle income quartiles. In comparing
major trip patterns, such as trips across the Mis-
sissippi River, the harmonic mean model overesti-
mated the observed data by 69 percent, whereas the
log sum model overestimated by only 44 percent (be-
fore K factors were applied, in both cases). 1In
addition, a comparison was made of the number of
district interchanges (there are 20 districts) for
which the difference between observed and estimated
trips was greater than 100 trips and the percentage
difference was greater than 15 percent. The har-
monic mean model had 68 such district interchanges,
whereas the log sum model had 56.
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Based on this analysis, the log sum formulation
was chosen to complete the calibration of the dis-
tribution model. Because the log sum formula worked
well for home-based work trips, this method was used
for home-based other and non-home-based trips as
well, An F factor equation for home-based other
trips was calibrated, and the model was applied for
a validation check. However, in this case, in com-
paring observed and estimated trips with respect to
highway time and distance, the estimated trips
showed a much higher trip length. The estimated
trips were considerably less than the observed trips
in the 1-, 2-, and 3-min time range and considerably
higher in the 4-, 5-, and 6-min time range. At
times greater than approximately 7 min, the two dis-
tributions were similar. Considerable thought was
given to correct this imbalance in distribution, but
no methodology appeared to offer any reasonable
chance of successful calibration. Because of these
results, the home-based other distribution model was
calibrated by using off-peak highway travel time
rather than composite impedance.

Similar results were obtained for the non-home-
based model calibration, leading to the same solu-~
tion: use of off-peak highway time instead of com-
posite impedance. Off-peak highway time was also
used for the remaining models (taxi, internal-
external, and truck).

There is speculation that the lack of success in
using composite impedance in the nonwork models is
related to the nature of nonwork trips compared with
work trips. Work trips are methodical and repeti-
tive, and the commuter may actually have more knowl-
edge than the nonwork traveler about his modal op-
tions and their associated impedances. Nonwor k
trips are less structured, and perhaps less thought
is given to alternative modes for such trips. That
is, cost considerations and the availability of
transit service may not strongly affect nonwork des-
tination choice. .

The calibrated P factor equations for all trip
purposes are given in Table 8, with the P factors
being defined by the three coefficients of the gamma
distribution. All coefficients are statistically
eignificant, and the correlation coefficient (R?),
which compares the required F with the calculated P,
was greater than 0.90. The regression program equa-
tions have been adjusted, where necessary, to ensure
that the highest F value is not more than 999,999,
in order for the data to be acceptable to AGM.

Table 8. F factor aquations.

Equation Coefficient Values®

Purpose and Income

Group® A B G
Home-based work trips

1 4,296,752 0 ~0.09300397
2 EXP (26.82271) -3.153498 -0.0836755
3 EXP (34.10976) -6.800698  -0.024841

4 EXP (28.39026) -4.819197 -0.041024
Home-based other trips

1 1,064,302 -1.055559  ~0.1054066
2 1,070,772 -1.292004 -0.09307232
3 647,077 -1.838836 -0.03701391
4 1,033,560 -1.838298  -~0.05231526
Non-home-based trips

1 663,504 -0.6655663 -0.1231575
2 869,114 -0.9009789 ~0.1125171
3 267,378 -0.9540237 -~0.1127642
4 371,881 -0.7850539 -0.138105

*Income groups are divided as follows: 1 = low, 2 = low-middle, 3 = high-middle, and
4 = high.

bl" factors are caiculated by using the equation: F(I) = AOIB‘EXP(GOI); where [ is the
composite impedance for work trips and highway time for the other trip pusposes.
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The primary reason for calibrating the distribu-
tion models by income quartile was the hypothesis
that tripmakers in different income levels would
react differently to the impedance measure. Al-
though the gamma function coefficients are different
for the four income levels, it is hard to ascertain
the true difference because the F factors are rela-
tive, and the mean composite impedance values are
different by income level. To test the hypothesis
that the F factors are truly different by income
level, a set of normalized F factors were calculated
by using the mean composite impedance values and the
standard deviations from the mean. Normalized P
factors were developed by adjusting the constant
term (the A coefficient in the gamma equation) so
that the F factor would (arbitrarily) equal 100,000
at a composite impedance value, which was 2.5 stan-
dard deviations less than the mean value., This com-
parison is shown in Figure 1. In essence, the com-
parison shows that F factors for the lower incomes
are less sensitive to the impedance values, It
would not appear reasocnable, though, to use this
comparigon to draw the conclusion that poorer people
like to travel more than richer people. Perhaps a
better explanation is that the lower-income traveler
has fewer destinations to choose from, thereby re-
ducing the impact of travel impedance on travel be-
havior, at least on distribution.

Most calibration reports on distribution wmodels
give the observed and estimated trips stratified by
highway travel time. Por distribution models cali-
brated by using highway time, these comparisons nor-

Figure 1. Home-based work normalized factors plotted against standard

_devistion units of composite impedance.
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mally indicate a great deal of agreement between the
observed and estimated trips, which i{s only reason-
able because the F factors are directly related to
highway time. Because the spatial measure used in
this model was composite impedance, of which highway
travel time was only one component, a comparison of
the observed and estimated trips measured against
highway travel time would be a useful validation
test, as mentioned previously. Thege comparisons
are shown graphically in Pigures 2-6. As can be
.seen from the data in these figures, the estimated

Figure 2. Comparison of trip distributions for low income
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Figure 3. Comparison of trip distributions for low-medium
income home-based work trips. 9.000

8.000
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6.000
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HOME BASED PERSON WORK THIPS
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trips agree with the observed trips extremely well.
The comparisons by income level are similar to nor-
mal gravity model trip-distribution comparisons.
when the trips for all incomes are combined (FPigure
6), the observed trip pattern is much smoother and
the estimated trips compare extremely well with the
observed trips.

After calibrating the P factors, the next step in
the calibration procedure was to ascertain the trip
movements that were inadequately simulated and that
had specific attributes that would be identifiable

ESTIMATED
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Figure 4. Comporison of trip distributions for high-medium
income home-based work trips.
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Figure 8. Comperison of trip distributions for all home-based
work trips.

HOME BASED PERSON WORK TRIPS

in the future. The two most important movements
meeting these criteria were the water crossings,
specifically the trip movements across the Missis-
sippi River and the Navigational Canal. As can be
seen from the data in Tables 5-7, even the log sum
approach overestimated these trip movements for work
trips. River crossings are traditionally difficult
to estimate because there is a psychological factor
agsociated with crossing this type of barrier. The
calibration method to estimate the K values was to
summarize the observed and estimated trips crossing
the barrier and calculate the K value as a ratio of
these two values. Because the K value appears both
in the numerator and the denominator of the distri-
bution formula, this formulation does not estimate a
correct K ‘factor in one iteration. Several itera-
tions were required to develop K factors that pro-
duced adequate results. The final K factors are
given in Table 9.

Table 9. Final K factors.

K Factors
Purpose and Income Across Across
Group* Mississippi River Navigational Canal
Home-based work
1 0.496 0.798
2 0.463 0.962
3 0.703 0.896
4 0.660 0.895
Home-based other
1 0.197 0.972
2 0.184 0.897
3 0.241 0.899
4 0.241 1.000
Non-home-based
1 ) 0.365 0.702
2 0.316 0.860
3 0.368 0.818
4 0.351 0.805

Note: For trips that cross both waterways, the Mississippi K's are used.
*Income groups are divided as follows: 1 = low, 2 = low-middle, 3 = high-middle, and
4 = high.
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Once the F factors and K values were calibrated,
the full distribution model was applied by using
AGM. The resulting trip table was then compared
with the observed trip table by using several
tests. The results of these tests for the work trip
purpose are given in Tables 10-12, A primary check
on the distribution model was to ascertain if the
estimated trips had the same distribution as the ob~
served trips when the impedance measure was highway
time or highway distance or both. For the work trip
model, this comparison was excellent. Total esti-
mated work trips had an average highway travel time
and highway distance that differed from observed
trips by less than 0.2 percent. When the average
travel time was compared by income level, the re-
sults were slightly less accurate but well within
normal limits of acceptability. The number of in-
trazonal trips was also compared, and the results
were favorable. Three screen-line checks were
made: trips across the Mississippi River, trips
across the Navigational Canal, and trips between
Orleans Parish and Jefferson Parish. The model
overestimated the latter by 1l.44 percent, and most
of this error was in the lowest income quartile.

The home-based other and non-home-based results
are given in Table 13. The average travel time and
distance for observed and estimated trips were sim-
ilar. The model tended to underestimate intrazonal
trips, but estimated travel across both major water-
ways (the Mississippi River and the Navigational
Canal) extremely well., However, the movements be-
tween Orleans Parish and Jefferson Parish were over-
estimated.

The income-related sensitivity of the home-based
other models to travel time is similar to that of
the work models in that low-income travelers are
less sensitive than high-income travelers, as shown
in Pigure 7. However, this sensitivity is less pro-
nounced than for work trips.

Similar models were calibrated for internal-
external person trips, taxi vehicle trips, internal-
external truck trips, and internal-internal truck
trips. They are discussed in the more detailed re-
port on distribution models for New Orleans (15).
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Tabie 10. Final calibration results of home-based work gravity model: average impedance.

Highway Running Time

Highway Distance

Composite Impedance

. Percentage Percentage Percentage
Income Group Observed Estimated Error Observed Estimated Error Observed Estimated Error
! 10.17 10.56 3.83 4.29 4.49 4.66 62.19 62.18 -0.02
2 10.18 10.31 1.28 4.29 4.35 1.40 56.34 56.14 -0.35
3 10.87 10.77 -0.92 4.72 4.68 -0.85 47.17 46.85 -0.68
4 11.16 11.04 -1.08 491 4.84 ~-1.43 38.06 37.85 -0.55
All income groups 10.68 10.70 0.19 461 4.62 0.22 48.94 48.73 -0.43
YIncome groups are divided as follows: 1 = low, 2 = low-middle, 3 = high-middle, and 4 = high.
Table 11. Final calibration results of home-based .
work gravity model: number of intrazonal trips. tl)r}t{_zztc;;\?rlriTpr;ps as a Percentage
Income Percentage
Group? Observed Estimated Error Total Trips Observed Estimated
1 936 884 -5.56 61,994 1.51 1.43
2 2,202 2,438 10.72 105,327 2.09 231
3 2,895 3,477 20.10 120,191 2.41 2.89
4 3,113 2,906 -6.65 127,533 2.44 2.28
All income 9,146 9,705 6.11 415,045 2.20 2.34
groups

8income groups are divided as follows: 1 =low, 2 = low-middle, 3 = high-middie, and 4 = high.

Table 12. Final calibration results of home-based work gravity model: major
movement comparison.

Observed Estimated Percentage
Movement Trips Trips Error
Across Mississippi River 25,269 26,639 5.42
Across Navigational Canal 38,770 39,985 3.13
Between-Orleans and 71,143 72,164 1.44

Jefferson Parishes

SUMMARY

A complete set of distribution models was calibrated
for the New Orleans region. The original intent of
this calibration was to prepare a set of distribu-
tion models stratified by income level and using a
combined impedance measure that would adequately re-
flect the travel time and cost of all models. This
design proved to be feasible for home-based work
trips, thus producing an excellent trip-distribution
model. The log sum method of combining impedances
yielded better results than the harmonic mean method.

FPor home-based other and non-home-based trips,
the use of a combined impedance measure produced a
model that overestimated long trips. For this rea-
son, these models were calibrated by using off-peak
highway times. For the home-based work and home-
based other distribution models, the income strati-

fication produced F factors that were substantially
different by income level, but were logical, in that
the higher income strata were more sensitive to
travel impedance. The F factors for the non-home-
based model showed only minor differences among in-
come strata. 1In all cases the F factors were cali-
brated by using the function described in the
documentation of program AGM and by using standard
statistical regression techniques. A set of K
values was required for all models for trip move-
ments across the Mississippi River and the Naviga-
tional Canal. The final screen-line checks were
quite accurate, with the exception of the home-based
other trip movements between Orleans and Jefferson
parishes.

With respect to model validation, the results of
applying the models to 1980 conditions proved quite
satisfying. As reported by Schultz (see paper else-
where in this Record), the changes between 1960 and
1980 in New Orleans have been substantial. Nonethe-
less, the 1980 estimates of vehicle miles of travel
were within 5 percent of the observed data, which
indicate that the distribution (and modal-choice)
models performed adequately.

ACKNOWLEDGMENT

The results given in this paper are from a study
performed for the Regional Planning Commission (RPC)
of Jefferson, Orleans, 8t. Bernard, and St. Tammany
parishes, Louisiana, which was funded in part by

Table 13. Final calibration results of home-based other and non-home-based gravity models.

Home-Based Other

Non-Home Based

Percentage Percentage

Measure Observed Estimated Error Observed Estimated  Error
Highway running time (min) 7.891 7.864 ~0.34 7.630 7.642 0.16
Highway distance (mile) 3.186 3.225 1.22 3.089 3.118 0.94
No. of intrazonal trips 90,632 72,593 -19.90 17,827 17,817 -0.06
Major movements

Across Mississippi River 14,941 15,022 0.54 5,520 5,575 1.00
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Development of a Travel-Demand Model Set for the

New Orleans Region

GORDON W. SCHULTZ

A complste set of travel-demand models was calibrated for the New Orleans
region by using the 1960 origin-destination survey. The general form of the
model set was sequential, with care being taken to include transportation
system characteristics in all submodels of the modeling set. Other unique fea-
tures of the model set were that (a) all submodels were stratified by income
quartiles; (b) the distribution model used a composite impedance that com-
bined travel time and costs for all modes, (c} the generation model used ac-
cessibility and locational measures, and (d) the exogenous input dats, required
in forecasting, were iimited to six data items. The calibrated models were ap-
plied to 1980 conditions, and the resulting travel sstimates were compared
with ground This parison indicated that the model set could
produce reasonably accurate 20-year forecasts.

In 1980 the New Orleans Regional Planning Commission
(RPC) decided to update its travel-demand modeling
procedures to support ongoing transportation plan-
ning in the New Orleans region. A previous set of
models was developed in 1972. A review of these
models indicated a number of deficiencies that made
them inappropriate for the current planning environ-
ment, especially with respect to the modeling of
substantial new transit service and high-occupancy
vehicle (HOV) incentives.

Because of limited resources available for this
model update, it was necessary to use an existing
home interview survey, which was taken in 1960,
rather than to conduct a limited new origin-destina-
tion survey.
a limited survey indicated that more than a third of
the available resources would be required to conduct
this survey. It was also observed that a set of
models based on the 1960 survey would allow the
study ‘team to immediately make a 20-year forecast,
i.e., to 1980, which could be validated by using
existing ground counts.

It was judged that the available resources were
sufficient to develop a set of sophisticated models
that could be applied by using the standard trans-
portation planning computer programs. An initial
decision was made that the model set would be imple-
mented by using the Urban Transportation Planning
System (UTPS) developed by UMTA and PHWA. Another
initial decision was that the general model struc-
ture would be the sequential model form (generation,
distribution, mode choice). It was believed that
this model structure gave the best assurance of suc~
cessfully calibrating the model set within the re-
sources available, and that by proper specification
most of the shortcomings of a sequential model
structure could be overcome or minimized.

In this paper the general philosophy and struc-
ture of the New Orleans travel-demand model set are
described, and the results of applying this model
set to the 1980 conditions are presented.

MODEL STRUCTURE AND PHILOSOPHY

The goals of the New Orleans travel-demand model up-
date were to develop a model set that would include
transportation system characteristics for all major
travel functions, would be reasonably easy to apply
in the forecast mode, and would require a minimal
amount of exogenous data in the forecast mode. The
goal of incorporating transportation system char-
acteristics into all major travel function submodels
(i.e., generation, distribution, and mode choice) is

A conservative estimate of the cost of .

a fairly standard objective for a travel-demand set,
but in many cases the goal is not realized. The
ease-of-application goal is reasonable and obvious,
but there are many urban area model sets that re-
quire extremely large amounts of computer resources
and person hours to implement.

In many ways the goal of minimizing exogenous in-
put data is the key to producing logical forecasts
with a reasonable amount of resources. Model sgets
that require extremely detailed exogenous data
simply shift the possibility for errors to other
modeling efforts, impose a large expenditure of re-
sources on other planning groups, and contribute to
the phenomenon of adjusting the data so that the
answer 1is correct. It was the objective of this
study to constrain the exogenous input data to ele-
ments that are normally forecasted and can be eval-
uated for reasonableness by using other forecasts or
by using standard reasonableness checks.

The stated goals for the New Orleans travel-de-
mand model update led to the establishment of the
following objectives:

1. The trip-generation element of the model set
should include not only sociceconomic and land use
data, but it should also include locational measures
that describe the transportation system and the ur-
ban form of the area;

2. The distribution element of the model set
should incorporate all relevant transportation sys-
tem characteristics for all modes of travel;

3. The modal-choice element of the model set
should be properly sensitive to transportation sys-
tem characteristics, socioeconomic measures, and
land use form, and the model should be applicable to
planned HOV incentives;

4. All elements of the model set should be
stratified by a socioeconomic characteristic that
measures the wealth of the traveler:;

5. The model set should require a minimal amount
of exogenous data in the forecast mode, and this
data should lend itself to reasonableness checks; and

6. The procedures for forecasting with the model
set should use straightforward computer programs,
either UTPS programs or programs compatible with the
UTPS system, and these programs should be relatively
easy and inexpensive to apply.

There are two general types of model forms that meet
the first three objectives and that have been
developed in other wurban areas: direct-demand
models and sequential models. The direct-demand
structure is theoretically the better structure for
including transportation system characteristics in
all elements of the model set. For this study,
though, it was believed that the resources required
to calibrate a direct-demand model set. would prob-
ably exceed the project's budget, and that a sequen-
tial structure could be developed to meet all the
objectives. In addition, the sequential structure
allowed the project to have a fallback position in
the event that the initial model specifications were
impossible to implement within the budget con-
straints (the fallback position being the standard
sequential model specification).
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The objective to stratify all the model ele-
ments--generation, distribution, and mode choice--by
a soclioeconomic characteristic that measures wealth
is not a unique proposal. Most trip-generation pro-
duction models use this type of stratification, and
many modal-choice models also have a stratification
based on wealth. The deficiency with most of these
model sets is that the distribution model is not
stratified by the wealth measure, and therefore
there is no connectivity among the submodels with
respect to the wealth measure. By performing a com-
plete stratification by the wealth measure, the
model set would have complete connectivity with re-
spect to this measure. That is, low-wealth trip ends
would be distributed by using a low-wealth impedance
measure, and these person trips could then be allo-
cated to each mode by using a low-wealth modal-
choice formulation. The development of a distribu-
tion model stratified by a measure of wealth
presented no theoretical or practical problems. The
major impediment in the development of a fully
stratified set of travel-demand models was the
development of a stratified trip-generation attrac-
tion model. It was hypothesized at the beginning of
the project, though, that a wealth-stratified at-
traction model could be developed if proper atten-
tion was given to locational variables.

The last two objectives--minimal data input and
ease in application--were essential if the model set
was to be frequently used in the forecasting mode.
Model sets that require extremely large resources,
both in person hours and computer costs, have little
usefulness, regardless of their level of accuracy,
because most planning organizations have constrained
resources and tend to implement these expensive
model sets only once every 2 or 3 years. It should
be the 1intent of all organizations developing
travel~-demand models that these models can be rea-
sonably used at least three or four times a year.

In summary, the philosophy for developing the New
Orleans travel-demand model set was to (a) develop a
sequential set of models completely stratified by a
measure of wealth, (b) have transportation system
characteristics present in each submodel, and (c¢)
require a minimal amount of exogenous input data.
Locational measures were anticipated to be signifi-
cant variables in the trip-generation model, and
measures representing time and cost for all modes
were to be explored as independent variables for the
distribution model. Care was to be taken in the
development of the models to ensure a resource-effi-
cient application methodology.

MODEL DEVELOPMENT

The final New Orleans travel-demand model set con-
sisted of three major models--generation, distribu-
tion, and mode choice--and six auxiliary models. The
study team was able to develop a model set by using
only six socioeconomic and land use data items along
with the normal set of transportation system data
items. The following list gives a summary of the
exogenous data input items:

1. Socioeconomic and land use data (at the zone
level) --population, households, retail employment,
nonretail employment, area of zone, and mean zonal
household income;

2. Highway saystem data (link specific)--dis-
tance, facility type, number of lanes, and toll; and
3. Transit system data--distance (link spe-

cific), facility type (link specific), travel time
for nomlocal route links, headway (route specific),
and fares (interchange specific).
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The use of population and households to estimate
travel demand is normal. The study team would have
preferred to use a more detailed classification for
employment than retail and nonretail, but the base
year data did not allow any finer stratification.
Traffic analysis zones were used to calculate gross
density measures, such as employment per acre. The
mean household income of a zone was chosen asg the
only exogenous socloeconomic variable and was pri-
marily used to estimate the number of households in
each income quartile by zone. The project team con-
sidered whether to use income or automobile owner-
ship as the primary socioeconomic variable. Although
automobile ownership appears to have a greater ef-
fect on tripmaking and mode choice than income,
automobile ownership was not chosen for the follow-
ing reasons.

1. There are many variables that influence auto-
mobile ownership. Some of the obvious variables are
household income, the availability and magnitude of
the transit system, the structure of the city in
terms of density, and general economic conditions.
The use of automobile ownership as a variable would
require a fairly detailed forecasting model (includ-
ing the use of an income measure), which was con-
sidered to be a difficult model to calibrate,

2. There are a considerable number of indepen-
dent forecasts of national and regional income
levels that can be used to evaluate the income esti-
mates used in the forecasts.

3. A recent study (1) has indicated that house-
hold trip rates are declining over time for a given
level of automobile ownership. In some cases the
decline is more than 30 percent in a 10-year period.
This lack of temporal stability suggests that auto-
mobile ownership and trip generation may not be as

. firmly related as previous studies indicated.

Because the model set requires only six socioeco-
nomic and land use data items, the effort required
to develop forecasts should be minimized, thereby
allowing for a more rigorous assessment of the input
data.

The specification of minimal exogenous data means
that this model set had to include a set of auxil-
iary models that would estimate values of variables
that in other model sets are simply specified as re-
quired data inputs. A summary of these auxiliary
models is given in Table 1. The data developed from
these models include parking cost, highway terminal
time, an area-type classification, the stratifica-
tion of households by income quartile and family
size, and network speeds. Perhaps the most important
auxiliary model was the procedure to stratify zonal
households by family size and income quartile. This
model was calibrated by using data from the 1960
origin-destination study and the 1960 census; the
model consisted of a set of stratified curves and a
procedure to ensure that the regional household and
population totals were balanced. The area-type
model classified zones into five urban area types:
central business district (CBD), CBD fringe, urban
residential, suburban residential, and exurban. The
technique used to assign area types to zones. was
developed with the aid of discriminant analysis (2)
and a standard statistical computer software package
(3). These area types were used in developing high-
way and transit link speeds. The auxiliary models
also contained procedures to estimate both highway
and transit link speeds. The highway network used
the UTPS program UROAD speed-capacity tables, which
allowed the user to specify highway speeds by area
type and highway facility type. Transit speeds were
developed similarly, in that local transit speeds
were a function of area type and the highway facil-
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Table 1. Summary of auxiliary modeis.
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Modet

Measures Estimated

Independent Variables

Estimated Measures Are Used in

Parking cost model
Highway terminal time model

Area-type model

Income and family size stratification
model

Transit speed model

Highway speed model

Daily and hourly parking cost

Production and attraction terminal
times

Stratification of zones into five
types of areas

Stratification for each zone of
households by income quartile
and family size

Peak and off-peak transit speeds
for local transit routes

Off-peak highway speeds

Employment density

Employment and population
density

Employment and population
density

Households, population, and
mean household income

Modal-choice model
Modal-choice model

Highway and transit speed models

Trip-generation model

Area type and highway facility Preparation of transit networks

type

and travel times

Area type and highway facility Preparation of highway networks

type

and travel times

ity type. A special program was required to imple-
ment this model.

The trip-generation models were calibrated by
using a combination of cross-classification analysis
and regression analysis. The normal socioeconomic
and land use data were used in the model, but ac-
cessibility and locational variables were also found
to be significant. The accessibility measures were
defined as the number of jobs or households within a
given highway or transit travel time. The loca-
tional variable used was the number of jobs or
households within 0.75 mile. This was interpreted
as a measure of the potential of a traveler to use a
nonmotorized mode, i.e., walk. Obviously, as the
potential for using a nommotorized mode is in-
creased, the probability for using a motorized mode
should decrease. It was found that for almost all
of the trip-generation submodes, this locational
variable had to be included in the model to obtain
logical coefficients on the accessibility measures.

It was also found that the accessibility and loca- -

tional measures were essential in estimating attrac-
tions by income level.

A detailed description of the trip-generation
model would be too long for this paper, but a short
description of the final home-based work trip equa-
tions will illustrate the use of the locational and
accessibility measures. The home-based work produc-
tion equations are given in Table 2. There are five
linear equations, one for each household size group;
each contains a constant, three income quartile dum-
my variables, and three locational variables. The
constant and dummy variables are analogous to a
cross-classification model with family size and in-
come quartiles being the independent variables. The
locational variables are (a) the number of jobs
(employees) within walking distance of the house-
hold, with the walking distance being defined as
0.75 mile; (b) the percentage of all jobs within 30
min of highway driving time; and (c¢) the percentage

Table 2. Home-based work production equations.

of all jobs within 25 min of transit travel time.
The walk potential measure (i.e., employees within
walking distance) will reduce the number of motor-~
ized trips as the number of employees increase,
whereas the two accessibility measures will show an
increase in the trip rate as the accessibility in-
creases.

Point elasticities were calculated for each of
the three locational variables for each strata of
household size and income. Although these elastici-
ties varied for each strata, in general the walk po-
tential variable and the transit accessibility mea-
sure had the same elasticity (with, of course,
opposite signs), whereas the highway accessibility
elasticity was approximately 3 times as large as the
other two elasticities.

To estimate home-based work attractions by income
quartile, it was first necessary to estimate the
employment by income quartile. The equations for es-
timating this employment are as follows (note that
in application, estimated employees by income are
normalized to total employment):

ESTIEMP(1) = TOTEMP x 0.09562 + 0.025532[DURAT(1))

+0.046435[ACRAT3(1)] m
ESTIEMP(2) = TOTEMP x 0.19560 + 0.021294{DURAT(2)]
+0.056881[ACRATI(2)] @
ESTIEMP(3) = TOTEMP x 0.25138 + 0.073811 [DURAT(3)]
~0.028823(DURAT)
+0.052197 [ACRATI(3)] 3)
ESTIEMP(4) = TOTEMP x 0.21657 - 0.004334(DURAT)
+0.042297{ACRAT4(4)] @)

where

ESTIEMP(i) = estimate of income i employees;
TOTEMP = total zonal employment (mean =
881.15);
DURAT(i) = ratio of income i dAwelling units
within 0.75 mile to employment

Income Dummy Variables®

Family d
Size Constant 1 2 3 EMPWK2° PHWYACC3® PTRNACCI
1 0.1215 -0.20750 0.01960 -0.07919 -0.000001949 0.0040951 0.0038508
2 1.2614 -0.73882 -0.23995 -0.03878 -0.000012201 0.0040951 0.0038508
3 1.8393 -1.07462 -0.45938 -0.24010 -0.000019252 0.0040951 0.0038508
4 1.7926 094112 -0.25897 -0.16738 -0.000012401 0.0040951 0.0038508
>S5 1.9193 -0.87939 -0.50307 -0.24072 -0.000014707 0.0040951 0.0038508
31ncome dummy variables are defined as follows: 1 = lowest income quartile, 2 = medium-dow income quartile, and 3 = me- -

dium-high income quartile.
l’EMI’WKZ = employees within 0.75 mile (mean = 5§962.2).

CPHWYACC3 = percentage of regional employment within 30-min peak highway time (mean = 92.77).
dPTRNACCl = percentage of regional employment within 25-min peak transit time (mean = 22.38).
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within 0.75 mile (weighted means:
income 1 = 0.2172, income 2 =
0.2077, income 3 = 0,1932);

DURAT = ratio of dwelling units within 0.75
mile to employment within 0.75 mile
(weighted mean = 0.8082);

ACRAT1 (i) = ratio of percentage of income i
dwelling units within 25-min peak-
hour transit time to percentage of
all dwelling units within 25-min
peak-hour transit time (weighted
means: income 2 = 1.0449, income
3 = 0.9113);

ACRAT3 (i) = same as ACRAT1 (i), except for 35-min
peak-hour transit time (weighted mean
for income 1 = 1,1253); and

ACRAT4 (i) = same as ACRAT1 (i), except for 40-min
peak hour transit time (weighted mean
for income 4 = 0.9273).

These equations use two types of locational vari-
ables: (a) the ratio of dwelling units within walk-
ing distance (0.75 mile) to the number of employees
within walking distance, and (b) the ratio of one
income strata of household to all households within
a given transit travel time range. These independent
variables are relative variables in that they de-
scribe the mix of land use rather than the absolute
value of the land use. The walk potential variable--
the ratio of dwelling units to employees within
walking distance--describes the mix of residential
units and employment within a given area. For the
lower income categories, the employment for these
categories increases as the number of households in
these categories increases, whereas for the highest
income quartile the employment will decrease for
this category when the number of total households
increases. In other words, the model is showing that
there is a relationship between low-income employ-
ment and low-income households, but the high-income
employment tends to be in areas with little or no
residential units. The accessibility variable--the
ratio of one income strata of households to all
households for a given transit travel time range--is
always positive; that is, as the number of house-
holds for a given income group increases, the number
of employees for the same income group increases.

when the number of employees for each income
quartile is known, estimating home-based work at~
tractions by income quartile is fairly simple. The
equations for this model are as follows:

ESTATR(1) = EMP(1) x {1.3279 - 2.6367 x 10~¢ {DUWLK(1)]} 3)
ESTATR(2) = EMP(2) x {1.3463 - 1.4483 x 10~* [DUWLK(2)} } (6)
ESTATR(3) = EMP(3) x { 1.3419 - 5.8307 x 107 [DUWLK(3)] } O]
ESTATR(4) = EMP(4) x { 1.3573 - 1.7085 x 10™* {DUWLK(4)}} 3
where

ESTATR(i) = estimated work attractions by income

i employees,
EMP(i) = number of income i employees (weighted

means: income 1 = 132,59, income 2 =
225.14, income 3 = 254.20, income 4 =
269.22), and

DUWLK (1) = number of income i dwelling units
within 0.75 mile (weighted means:
income 1 = 2604.3, income 2 = 1140.7,
income 3 = 1075.6, income 4 = 1122.5).

This model is a set of linear equations that con-
tains a constant and a locational variable--percent-
age of dwelling units within walking distance. The
constant can be considered the average number of at-
tractions per employee if no households are within
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walking distance. The locational variable has the
correct sign, in that, as the number of households
increases, the number of motorized work attractions
decreases, but it does not contribute significantly
to the trip rate; at the mean, the change in the
trip rate is less than 2 percent.

The distribution model was specified as a normal
gravity model. Attempts were made to use the modal-
choice model equations to calculate a composite
impedance by combining travel times and costs for
all modes. This attempt was extremely successful
for the home-based work trips, but it was not com-
pletely successful for other trip purposes. Highway
travel time was thus used as the impedance measure
for these other purposes. All the distribution
models were stratified by income quartiles, and it
was found that the low-income travelers were less
sensitive to the impedance measure than were the
high-income travelers. The modal-choice model was a
multinomial logit model that used three modes: tran-
sit, drive alone, and group automobile. A submodel
was used to split the group mode into integer auto-
mobile occupancies (two persons per automobile,
three persons per automobile, and so forth). The
initial modal-choice model was calibrated on a dis-
aggregate level by using the UTPS program ULOGIT and
then validated at the aggregate level. The use of
integer automobile occupancies allowed the applica-
tion methodology to be configured in a manner that
would allow HOV incentives to be explicitly con-
sidered.

Because of the model specification, the normal
forecasting procedure sequence (i.e., generation,
distribution, and mode choice) was not applicable.
For the New Orleans model set, the modal-choice
model must be applied before distribution in order
to generate the composite impedances; the general
flow of the model application is shown in Figure 1.
The modal ‘probabilities, generated by the modal-
choice model, can be saved and used to split the
person trip distribution or, if computer time is
less costly than storage, the modal-choice model can
be applied again after the distribution model. Al-
though the entire model set is fairly intricate, it
does not use excessive computer resources., The
central processing unit (CPU) time for the entire
chain (468 traffic analysis zones) is approximately
1.5 hr on an IBM system 370 model 158.

In summary, the New Orleans travel~-demand models
were developed within the framework of the goals and
objectives specified for the model set. The de-
veloped models are unigue in that all models are
stratified by income quartiles, the generation model -
includes accessibility and locational measures, and
the home-based work distribution model uses a com-
posite impedance measure. The goal of using trans-
portation system characteristics in all major sub-
models was essentially met, although the inability
to use the composite impedance measures for the non-
work trip-distribution models was somewhat disap-
pointing. The development of six auxiliary models
minimized the number of exogenous data items re-
quired for the model set, thereby reducing the ef-
fort required to apply the models and maximizing the
objectivity of the forecasts.

MODEL APPLICATION RESULTS

A practical advantage of calibrating a travel-demand
model set by using an old origin-destination survey
was that the first forecast could use data for the
present year and this forecast could be validated by
using ground counts and other data sources. The New
Orleans model set, which was calibrated by using the
1960 origin-destination survey, was applied for the
year 1980. The resulting estimates compared quite
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favorably with actual ground counts and preliminary
cengsus data.

The comparison of the 1980 estimated data with
observed data {8 given {n Table 3, The number of
households and the population for 1980 had been es-
timated before the publication of the preliminary
1980 census data, and these estimates appear to be
slightly low (approximately 5 percent for households
and 1 percent for population).

Figure 1. General model spplication flow diagram.

EXOGENOUS
INPUT DATA

AUXILIARY
MODELS

DATA GENERATED MODE
BY AUXILIARY CHOICE
MODELS (SUCH AS MODEL
PARKING COST)
GEN;:IAPTION COMPOSITE
IMP
MODEL EDANCES
\
PRODUCTIONS TRIP
AND DISTRIBUTION
ATTRACTIONS MODEL
PERSON
TRIP
TABLES
LEGEND:
[C] COMPUTER PROGRAM(S)
< INPUT/ OUTPUT DATA
NOTE: Normal programming processes, PROGRAM
such as network building, sre not shown. (UMATRIX)
TO GENERATE
MODAL TRIPS

Table 3. Comparison of 1980 sstimated data with data from other sources.

MODAL
PROBABILITIES
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The Louisiana Department of Transportation and
Development developed a 1978 estimate of daily ve-
hicle miles of travel (VMT) primarily from ground
counts, and this estimate is approximately 5 percent
higher than the model estimates. The model overesti-
mated transit trips by approximately 3 percent.
These rather gross comparisons indicate that the
model set was able to forecast trips for a 20-year
time period with a reasonable degree of accuracy,

Data from Percentage
Item Estimate Other Sources Difference Sources
Households 365,182 385,351 -5.2 Preliminary 1980 census
Population 1,064,876 1,076,171 -1.1 Preliminary 1980 census
Daily vehicle miles of travel 7,922,045 8,325,000 -5.1 1978 estimate by Louisiana Department.
(VMT) of Transportation and Development
Transit trips (not including 197,577 191,542 +3.1 Office of Transit Administration, city

school trips)

of New Orleans
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although there is some indication that VMT may be
slightly underestimated.

In the past 20 years there has been a significant
change in travel patterns in most urban areas., The
data in Table 4 present some travel measures indica-
tive of these changes. The estimated increase in
travel per person 18 approximately 16 percent,
whereas the average trip length has increased by
more than 20 percent. More significantly, the aver-
age VMT per person is estimated to have increased by
approximately 100 percent during the past 20 years.

Table 4. Comparison of 1960 data with 1980 estimates.

Percentage
Item 1960 1980 Change
Person trips per person 1.41 1.63 +15.6
Person trips per household 4.62 475 +2.6
Avg trip length (miputes 8.44 10.36 +22.7
of highway time)
Daily VMT per person 371 7.44 +100.5
Percentage transit (total) 2543 12.53 -50.7
Percentage transit (CBD) 54.14 36.71 -32.2
Vehicle occupancy (total) 1.477 1.480 +0.2
Vehicle occupancy (CBD) 1.487 1.365 -8.0

This growth, which represents approximately a 3.5
percent per year increase, was soO substantial that
growth rates from other urban areas were obtained to
ascertain the reasonableness of this increase. The
annual growth rate of VMT per person for the Vir-
ginia suburbs of Washington, D.C. (the counties of
Arlington, Fairfax, and Prince William) was deter-
mined to be approximately 2.3 percent per year be-
tween 1968 and 1978 (4,5). This increase is not
quite as large as the forecasted New Orleans in-
crease, but it is in the same range. Transit rider-
ship as a proportion of the total travel market
decreased significantly between 1960 and 1980. The
percentage of transit for the region decreased by S0
percent, whereas the percentage of transit to the
CBD decreased by more than 30 percent. The model es-
timated only minor changes in vehicle occupancy,
which was unexpected. Higher gasoline and parking
costs probably account for the stable vehicle occu-
pancies, in spite of rising incomes.

Vehicle assignments were compared with ground
counts for five screen lines. In all cases the as-
signment volumes were lower than the ground counts.
This occurred, in part, because highway assignments
cannot always replicate double screen-line crossings
and short (intrazonal) trips; the 1960 survey data
revealed a 10 percent difference in assignment ver-
sus ground counts for one of these screen lines. The
avajilable ground counts were also simple tube
counts, with no correction factor for multiaxle ve-
hicles. The study team identified a range of errors
that could be associated with the ground counts and
the computer assignments, and two sets of error cor-
rections were prepared. The ratio of assignments to
ground counts for five screen lines, with the two
error ranges, is given in Table 5. Perhaps the sig-
nificant element of the screen-line comparisons is
that the ratio of assigned volumes to ground counts
are similar, which indicates that the model set es-
timated the distribution of travel correctly.

In summary, the New Orleans model set, calibrated
on 1960 data, was used to estimate 1980 travel. This
is equivalent to a 20-year forecast. The resulting
travel patterns were similar to observed data,
thereby providing regional planners with greater as-
surance that this model set could be used to fore-
cast future travel.
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Table 5. Screen4ine comparisons.
Assigned Volume to Ground Count Ratio
With Least With Highest
Screen-Line Forecast/ Error Cor- Error Cor-
Description Ground Count rection rection
Mississippi River crossings  0.870 1.086 1.206
Navigational Canal 0.746 0.930 1.034
Jefferson Parish— 0.717 0.894 0.993
Orleans Parish Boundary
on East Bank '
Harvey Canal 0.603 0.753 0.836
Donner Canal 0.714 0.890 0.989

CONCLUSIONS

A complete set of travel-demand models was cali-~
brated for the New Orleans region by using 1960
travel data. These models were successfully applied
to 1980 conditions within a reasonable degree of ac-
curacy, although the observed data were only avail-
able at an aggregate level. Although the physical
changes in the transportation system between 1960
and 1980 were not radical (consisting primarily of a
few freeway additions), the changes in aggregate
travel patterns were substantial. The average VMT
per person increased by approximately 100 percent,
whereas the transit market share decreased by 50
percent. There was also a substantial change in

~economic conditions between 1960 and 1980. The con-

sumer price index increased by more than 170 per-
cent, whereas per capita income increased by more
than 60 percent, in constant dollars. Most as-
suredly, changes of this magnitude would be con-
sidered significant changes for any forecast. The
successful application of the model to 1980 condi-
tions, coupled with the substantial changes in the
travel patterns and economic conditions between 1960
and 1980, would imply that an appropriately speci-
fied travel-demand model set may indeed be tempo-
rarily stable (within reason), and that the use of
old survey data is not appropriate in investigating
travel behavior and i{n calibrating travel-demand
models.

The calibrated travel-demand model set is fairly
unique in that all submodels were stratified by in-
come quartiles. Other noteworthy aspects of the
model were the use of a composite impedance measure
in the distribution model, the use of accessibility
and locational factors in the trip-generation model,
and the use of minimal exogenous input data.
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Estimation and Use of Dynamic Transaction Models of

Automobile Ownership
IRIT HOCHERMAN, JOSEPH N. PRASHKER, AND MOSHE BEN-AKIVA

Models of automobile ownership level and type choice are described by using s
dynamic transactions modsl structure. The functional form of the model is
two-stage nested logit: the higher level in the hisrarchical decision process is a
decision on the type of transaction in the car market. The lower-level decision
is on type of car, which is conditional on the decision to buy a car. Automobile
type slternatives are defined by make, model, vintage, and body type. The
model was estimated with data from the Haifs urban area in israel. The sample
consisted of a choice-based (stratified) sample of 600 households that did not
buy a car in 1978 and 800 houssholds that bought a car during the same year.
Each stratum was drawn at random from the respective populiation of the Haifs
urbanized area. The models estimated in this paper are sensitive to attributes of
the type of car, household charscteristics, and accassibility by public transit
and private car. The modals take explicit of the ion costs that
are incurred when operating in the car market.

The purpose of this paper is to develop and test a
dynamic demand model for automobiles. Understanding
the demand for cars has always been an important
consideration in transportation studies. 1In recent
years the composition of the car market has become a
key factor in the evaluation of energy-consumption
policies. The relative roles of purchase price and
usage costs in determining car choice are of inter-
est to policy decision makers. This is especially
true in a country such as 1Israel, where cars and
fuel are taxed at high levels. Thus changes in the
structure of these taxes can be used to achieve
policy goals, such as increasing the share of small
cars. In Israel, car purchase and use also affect
the balance of payments, because almost all the cars
s0ld and all the oil consumed are imported.

The market for private cars in Israel is charac-
terized by two major aspects. PFirst, the level of
ownership is relatively low compared with North
America and Western Rurope, where a third of the
households (40 percent in the major urban areas) own
cars, and of these only about 6 percent (2 to 3
percent of the total population) own more than one
car. Growth of the private car fleet still occurs
mainly by purchase of a first car.

The second important characteristic of the
Israeli car market lies in the composition of the
car stock. Most of the cars in Israel are small
European cars, with only a small percentage of U.S.
made cars, one popular Japanese brand (Subaru), and
two domestic models that are assembled in Israel.
The Israeli car fleet is heterogeneous and includes
scores of different makes. The typical car in Israel
i8 older than in the United States. About 60 percent
of all cars are more than 5 years old, with 20 per-
cent more than 10 years old.

These characteristics imply that the usual cate-
gorization of cars into subcompact, compact, and so

forth, used in some models of car type choice (1,2)
is not valid for the Israeli market, as almost all
cars fall in the subcompact category. Also, the
relevant ownership levels are zero and one. Owner~
ship of two or more cars may become of interest in
the future, but any attempt to model this phenomenon
now will require special data-collection efforts.

In summary, a practical model of the Israeli car
market may confine itself to zero- and l-car house-
holds; should deal with holding or purchase of all
cars, new or old; and should be able to describe the
determinants of growth in the market.

MODELING APPROACH

The model developed in this study is a disaggregate,
dynamic transactions model for level of ownership
and type of car owned., As its name implies, the
decision process involved in buying or replacing a
car at the household level is the model studied.
The model is dynamic in the sense that 1level of
ownership and type of car owned during the previous
time period are assumed to influence decisions about
transactions made during the current (modeled) time
period.

The key aspects of the model developed here are
as follows.

1. The model is dynamic. It uses data on pre-
vious car holdings and includes a detailed treatment
of transaction costs.

2. It is a transaction model that concentrates
on changes in automobile holdings.

3. It is a nested logit model of the decision to
transact and then the choice of car type given a
transaction.

4. It describes the Israeli market, which may be
more representative of conditions in some European
or developing countries than in North America in
terms of type, composition, and levels of ownership.

THEORETICAL FRAMEWORK

Previous Disaggregate Automobile Ownership Models

The development of the discrete choice econometric
techniques facilitated a disaggregate approach to
the modeling of car ownership. The first studies
dealt with level of ownership, usually as a joint
decision with mode to work (3-7).

Lave and Train (1) studied the choice of new
vehicles by size class. Manski and Sherman (8)
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developed a car type choice model where the car
alternatives were defined by make, model, and vin-
tage. Hensher and Manefield (9) suggested a nested
logit model of automobile acquisition and type
choice and presented some preliminary results. The
car types were grouped into three classes according
to fuel consumption. A different approach to model
automobile market shares was applied by Cardell and
Dunbar (10) and by Boyd and Mellman (11). They
estimated a logit choice model with random coeffi-
cients by using aggregate market share data (12).

Almost all the studies mentioned used static
holding models. Manski and Sherman’ (8) used an
aggregate estimate of the proportion of cars pur-
chased during the previous year as an external
estimate of a constant transaction cost.

Rationale for a Dynamic Model

The importance of a dynamic model structure stems
from the following observations.

1. Transaction costs: With time, the car owned
by a household gets older and some of its attributes
change, and the car may no longer match the require-
ments of the household., Also, the characteristics
of the household may alter, thereby causing further
changes in the relative attractiveness of the var-
ious car alternatives. Nevertheless, cars are usu-
ally kept for a number of years (in Israel the aver-
age holding period is 3.5 years). The reason for
this phenomenon is that the process of selling and
buying a car involves significant transaction costs.
A static model assumes a perfectly competitive
market with no transaction costs. A dynamic model,
on the other hand, allows for the inclusion of vari-
ables that measure these costs.

2, Brand loyalty: Brand loyalty is a well-known
marketing phenomenon, which is apparent in the car
market. It is revealed in the tendency of households
to buy a new car of the same make, or even the same
model, as that of a previous car. Brand-loyalty
reflects lower information acquisition costs and
idiosyncratic tastea. Allowing for a brand-loyalty
effect in the car type choice model imposes a dy-
namic structure.

3. Income effect: The money received from sell-
ing an 0ld car may be used toward the purchase of
another car, so that, all else being equal, a house-
hold with a car during time period t - 1 may be able
at time t to spend more money on its new car than a
household without a car in the previous period. In
general, knowledge of the choice made in the last
time period provides useful information for the pre-
diction of the choice during the current period.
This information can easily be obtained in a house-
hold survey. Omitting such information may not only
weaken the explanatory power of the model, but also
may induce biases in the estimates of the parameters.

On the other hand, a dynamic model introduces
econometric difficulties. If the error terms of a
model are serially correlated, then the error term
will be correlated with lagged explanatory vari-
ables, This means that the use of a dynamic model
structure requires the assumption of serial indepen-
dence,

It was assumed that there was no serial correla-
tion, thus allowing for the use of a dynamic model.
This decision is justified if the biases caused by
violation of serial independence are small compared
with the advantages of a dynamic characterization.

Behavioral Framework

The behavioral framework assumed in this study is as
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follows. Every time period (a year was chosen to
avoid the effects of seasonal variations and also
becaugse new car models come out yearly), each house-
hold evaluates its current car holdings and decides
whether to transact in the car market or not. A
transaction may mean buying, buying and selling, or
just selling. If the decision involves buying a
car, then the type of car i{n terms of make, model,
and vintage is also decided on.

The househocld is assumed to act as a utility
maximizer, that is, the household assigns a utility
value to each of the alternatives based on the at-
tributes of the alternative and the costs involved,
including the transaction costs. The alternatives
that the households face are either do-nothing or
transact in the car market by buying a specific type
of car or selling the existing car or both., The
household will decide to transact when the utility
of one of the possible alternatives is greater than
the utility of the current state.

The decision to transact and the choice of car
type are assumed to be based on last year's holdings
and current socioeconomic status. This results in a
first-order Markov process., This is not an essential
assumption to the model, but it is imposed by data-
collection limitations and the relative ease in
using the model for predictions.

The dependence on only last year's holding may be
justified by realizing that, because of the rela-
tively long car~holding period, the most recent car
holding has the strongest impact on the current
decision. Furthermore, some of the influence of
past history is captured by the last holding.

Future expectations probably influence the deci-
sion process; for example, a household usually pur-
chases a car with an a priori intention of keeping
it for a fixed number of years. Also, expectations
about future earnings and use of the car may enter
the process. Unfortunately, it 18 difficult to
collect reliable data on future expectations.

In the models presented the possible transactions
are either buying (for households that 4id not own a
car last year) or replacing (for households that
owned a car). The possibility of buying a second
car is omitted because, as previously mentioned, in
Israel more than 95 percent of the households have
Zero or one car.

Another option that is not considered here |is
selling only. This restriction stems from the nature
of the data. In reality, this type of transaction
is rare in Israel. However, it can still be allowed
in the aggregate, for example, as a function of age
of head of household, when the model is used for
prediction.

Model Structure

Formally, the model can be stated as follows. Let
j1i ‘indicate the transition from owning a car of type
i in time period t - 1 to owning a car of type j in
time period t, where i = 0 is the state of not own-
ing a car at time t - 1. Assume that

UGi) = V(li) + ¢ 1)
where

U(ji1i) = random utility of the (jii) tran-
sition,
V(j1i) = average utility of the (jii) tran-
sition, and
€y = a disturbance that represents unob-
served utility of alternative j.

The error terms are assumed to have the following
joint probability distribution:
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Fley, ... .€,.. ,€....)=exp- {exp(-pq)

+ [kzﬂ e"P(“fk)]u}, O<pu<1 @

This is a special case of the generalized extreme
value (GEV) family of distribution functions devel-

oped by McFadden (12). The marginal distributions
of ¢; and ¢, for all k are gumbel (0,y).

The first term inside the brackets [-exp (~uey)]
refers to the alternative of no transaction; the
second term {{ZIexp (-:k)]“} refers to all the alter-
natives that involve a transaction; and y is a
measure of similarity of the unobserved attributes
among the transaction alternatives.

It has been shown by McPFadden (12) and Ben-Akiva
and Prancois (13) that the assumption of the GEV
distribution on the error terms results in the fol-
lowing choice probabilities:

PG1i) = PG ltr, i) - Ptrli) 3)

{1+ exp[~o(Ver 1o+ D]}, fori=0

P(trli) = ' O<pp< ;0 <1 (4)
1/{1+ explty (Vee s + 1))}, for1£0
P(itr, i) = exp(V,“)/k%}‘exp(Vk“),j #i (5)

where the expected maximum utility from available
car types is Iy = t¢n fexp (Viii); and Vi, ,4 i8 an
k¥l

average utility component of the transition from
state i that is equal for all alternative transac-
tions (where tr denotes transaction). The subscript
0 denotes no car owned at time t - 1. The subscript
i for 1 # 0 indicates that one car of type i was
owned at time t - 1.

The choice probabilities describe a dynamic
nested logit model with two decision levels. The
first level decision is whether to transact or not,
and the second (lower) level decision is on the type
of car to be purchased, which is conditional on a
decision to transact.

The choice probabilities of the first stage have
a logit form with scale parameter u and with Iy
(a composite variable from the lower-level model).
The choice probabilities of the second level have
the logit form with scale parameter normalized to
equal one. The particular form of the GEV distribu-
tion that was assumed was chosen because it imposes
a nested structure in the choice probabilities,

Figure 1. Structure of the model. t-1 ownership level and type

first decision

do nothing

second decision

type
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which is behaviorally reasonable and computationally
feasible.

As mentioned before, two distinct types of trans-
actions are allowed in the model, depending on the
level of ownership at time t - 1: buying a first car
or replacing an existing car. To enable different
specifications for the utilities associated with the
two types of transactions, two different transac-
tions models were assumed. The two models can be
viewed as one model with all variables specific to
either of the two transaction types. Because the
two transactions are mutually exclusive (i.e., each
household has only one type of transaction in its
choice set), the estimation can be done separately.

The utilities of the automobile type choice model
are assumed to have the same functional form for all
households, regardless of their level of car owner-
ship at time t - 1. However, the specification may
include variables that are specific either to first-
time buyers or to previous owners. This assumption
simplifies the estimation process significantly. It
may be justified by realizing that once the decision
to transact was made, the household faces the same
set of alternatives, whether or not a previous car
was owned. The structure of the suggested model is
shown in Figure 1.

SPECIFICATION OF THE MODEL

The utility that a household derives from buying or
replacing a car is a function of the attributes of
the purchased car, the transaction costs, household
characteristics, and previous car characteristics.
In the following sections the variables in each of
these groups that were used to specify the model are
described.

.Household Characteristics

Household characteristics affect car purchase deci-
sions in three ways:

1. The income and wealth of the household affect
the amount of money it is willing or able to invest
in buying a car:

2., Some household characteristics, such as resi-
dential and work place locations and household size,
influence the need for a car and the type of car
suitable for the needs of the household; and

3. There exist household car choice preferences
that can be modeled with variables such as age and
education.

In this study income was measured in four cate-

0 1,1

eplace

buy do nothing

1,0v03y...k Lyeeedaens



+

.

Transportation Research Record 944

gories. Also used were proxy variables for income
and wealth, such as education, age, and work status.

Household characteristics that affect the need
for a vehicle can be divided into two groups: vari-
ables that affect the relative utility of owning a
car compared with not owning one, and variables that
influence the relative utilities of different types
of vehicles. The first group consists mainly of
accessibility measures for work and other trips.
The characteristics that affect the type of car
chosen are household size and composition and the
need to ugse a car for work-related purposes. Indi-
vidual preferences were characterized mainly by
interacting age and education of the car user with
car attributes such as performance and age.

Attributes of Previous Car

The attributes of the cars owned during the previous
time period affect the decision to replace a car and
the choice of car type. The replacement model in-
cludes the following attributes of the previous car:
age, engine size, number of years owned by the
household, and average mileage. Engine size serves
as a measure of durability, and mileage is a measure
of use.

Attributes of the previous car were also assumed
to affect the car type choice. Purchase price for
each type was defined as its market price minus the
sale price of the existing car. Brand loyalty was
captured by a dummy variable, which is set to 1 if
the type is of the same make as the previous car.

Attributes of Alternative Cars

The car attributes are of special interest because
they characterize the alternatives that a household
faces when choosing a car, thus enabling predictions
of the effects of policy and technological changes
on the market. The car attributes were selected
according to two criteria: (a) the attribute has to
be familiar to prospective car buyers, and (b) a
reliable data source for the attribute exists for
all the alternative car types. The following attri-
butes were selected: cost--retail price and fuel
efficiency; size--dimensions, weight, luggage space,
and engine size; performance--acceleration (measured
by HP/kg) and maximum speed; and other--age, manu-
facturing country, and number of cars of the same
type in the market.

The alternative-size variable (i.e., the number
of cars of the same type in the market) is also of
special interest. In the type choice model, each
type represents a group of elemental alternatives~-
all the cars of the same make, model, year, and body
type on the market. All of these cars have identical
observed attributes. 1In this case it is necessary
to add to the utility of an alternative a normaliza-
tion term equal to the logarithm of the number of
elemental alternatives (tan). The coefficient of
tnNy is a measure of the variation of the unobserved
attributes among cars of the same type. It is rea-
sonable to assume that as cars get older, the heter-
ogeneity among them increases. To enable different
coefficients for car types of different ages, the
alternative-size variable was introduced in the
model as a group of age~specific variables. Four
type size variables were used for cars: 2 to 5, 6 to
9, 10 to 14, and 15 or more years old. The type-size
variable is not used for new car types. The choice
probability for new cars does not depend on InN
because the buyer faces only one new car that he
orders from the dealer. As described in the next
section, the type-size variable is also a proxy for
search cost so that the coefficients of these vari-
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ables capture the total affect of alternative size
on the utility.

Transaction Costs

Transaction costs arise from two main sources:
search costs in terms of time and money that are
incurred in the process of searching for a car, and
information costs that are caused by incomplete
knowledge of the attributes of alternative cars.
This model includes a detailed specification of the
transaction costs, expressed as functions of the

attributes of the previous car, the purchased car,
and the nature of the transaction.

In the process of testing alternative model spec-
ifications, some simplifying and generalizing
assumptions had to be made with respect to the spec-
ification of transaction costs (TC). The specifica-
tion of TC in the car type utility function is as
follows:

TC() = @185 + az nm; + % ago- 8,,,,1 fnn; + g.‘ ago 6,,1,1 (6)

where

{ 1, if make (j) = make (i)
5411 =
0, otherwise
my = number of cars of same make as j,
ny = number of cars of same type as j,
v4 = age of car jJ,

1, if vintage of car j belongs to
{ vintage group 2

0, otherwise

and aj, a3, a3y and a4y are unknown parameters.

The first term represents brand loyalty. The
second term captures the market-size effect of all
cars of the same make. The third term captures the
effect of the number of cars of the same type on
search costs and the basic correction for alterna-
tive size of the utility. These effects are allowed
to vary with the age of the vehicle. The fourth
term represents the effect of the age of the vehicle
on the information acquisition costs through a num-
ber of age-specific dummy variables. This effect is
measured relative to new cars.

The average TC for each of the two types of
transactions appears in the respective transaction
models as part of the alternative specific constants.

SAMPLING STRATEGY AND ESTIMATION PROCEDURE

The estimation of the models was carried out by
using the data from a sample of households that were
collected in the Haifa urban area during 1979. The
nested structure of the model dictated the sampling
strategqy. The upper-level (transaction) model re-
quires a sample of buyers and nonbuyers, with and
without a previous car. The lower~level (car type)
model requires for its estimation the households
that bought a car during the study year. A random
sample of households would not provide enough such
purchases unless it is large, because only 40 per-
cent of the households own cars and less than one-
third of these households are expected to purchase a
car in a given year.

The sampling strateqgy used was choice based or
endogenously stratified, where the stratification
was based on the transaction decision., The total
sample consisted of a random sample with one sam-
pling quotient of households that did not transact
in the car market during the study year, and another
sample with a greater quotient of households that
purchased a car during that year. About 500 house-
holds that did not buy a car during the study year
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were surveyed, as well as 700 households that pur-
chased a car in the same year.

The estimation of the model was carried out in
two steps. Pirst, the lower~level or conditional
model of car type was estimated by using the data of
the purchase sample alone. Then the two samples
were combined, and the expected maximum utility from
all car types was calculated for each household by
using the results of the type choice model estima-
tion. The combined choice-based sample was then
used to estimate the coefficients of the upper-level
models of transaction choice. The alternative spe-
cific constants were then corrected to produce con-
sistant estimates.

ESTIMATION RESULTS

Type Choice Model

The type choice model describes the choice of a car
type, which is conditional on the decisiop to buy a
car. The alternative cars are defined by make,
model, body type, and vintage; the choice set during
1978 consisted of 950 alternatives. To reduce the
cost of model estimation, a sample that included the
chosen alternative and 19 randomly selected alterna-
tives was selected for each household. This sampling
procedure results in consistent estimates of the
parameters (12).

The estimation sample had 786 households that
purchased a car in 1978 in the Haifa area. The
estimation results are given in Table 1.

The coefficients of the cost variables indicate
that, all else being equal, a low price is a desired
attribute. The effect of price on the utility de~
creases as the household's income increases. The
cost coefficient for households whose head is 45
years of age or older is not negative, but the over-
all effect of price and other variables is still
negative at all income levels. The only exception
is a small group of households of disabled drivers
that are exempt from taxes. These households are
allowed to sell the car at market price after a few
years of ownership, so that a higher cost means for
them higher gains. The last two dummy variables in
the cost group measure the preference of older
people and people with higher incomes for more ex-
pensive cars. Age here is probably a proxy for
accumulation of wealth.

The effect of fuel efficiency of a car on its
choice probability is measured separately for owners
who pay for the fuel costs themselves and for owners
who are reimbursed by their business or employer.
Both groups preferred fuel-efficient vehicles but,
as expected, the first group placed higher weight on
this attribute.

The data in Table 2 give the marginal rates of
substitution between purchase price and fuel econ-
omy. To understand these figures, consider an aver-
age travel rate of 2000 km per month., Savings of 1
I.L. (Israeli lira) per 1000 km amounts to 24 I.L. a
year. Por a used car with an average depreciation
rate of 10 percent a year, these savings are equal
to an increase of 240 I.L. to the purchase price.
For a new car that is held for 2 years and depreci-
ates 35 percent during this period, the savings are
equal to an increase of 420 I.L. These rough cal-
culations indicate that the marginal rates of sub-
stitutions obtained from the model for households
that pay for car operating costs are reasonable.

Two performance variables were tested during the
model estimation process: maximum speed and acceler-
ation (measured by HP/weight). Maximum speed was
found to have no effect on choice probabilities.
Acceleration was found to be a positive attribute
for users younger than 45 years of age, but it had
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Table 1. Estimation results—a logit model of car type choice conditional
on purchase.

Coefficient Asymptotic

Variables Estimate t-Statistic
Cost*
Cost when income < 10,000 I.L. per month ~0.148 -5.36
Cost when income 10,000-20,000 I L. per month -0.137 -8.40
Cost when income 20,000-30,000 I.L. per month -0.093 -5.22
Cost when income >30,000 I.L. per month ~0.072 -2.70
Cost when income unknown -0.086 =3.31

Cost when head of household > 45 years old 0.0029 0.134

Cost when tax exempt 0.214 6.62
Dummy for high income and expensive car® 0.723 1.97
Dummy for age 45 or older and expensive car® 1.19 4.38

Fuel efficiency
Liter per 1000 km for owners who do not get

-0.0224 -4.69
full maintenance and operating cost coverage

Liter per 1000 km for owners who get full -0.0092 ~1.15
5 maintenance and operating cost coverage

ize

Size of car® for S or more member households 0.0111 1.38

Engine size for receivers of fuil maintenance
costs or self-employed

Dummy for smalil car? and 1- to 2-member 0.470 2.28
households

Luggage space when car not used for work

0.0564 2.69

-0.0059 -1.89

Luggage space when car used for work 0.0034 1.05
Performance
HP/weight when user <30 years old 0.872 1.72
HP/weight when user 3045 years old 1.89 4.4]
Transaction costs and alternative size
Brand loyaity dummy 1.48 106
£n number of cars same make x 100 0.248 4.48
n alternative size for cars aged 2-9 years 0.868 15.8
£n alternative size for cars aged 10-14 years 10.493 6.79
£n alternative size for cars aged 15 or more years  0.904 6.60
Dummy for cars aged 15 or more years =367 -5.80
Dummy for cars aged 10-14 years ~4.76 -10.1
Dummy for cars aged 2-9 years -6.64 -17.8
Other
Age of car when main user <30 years old 0.056 247
Age of car for first car 0.107 5.40
Dummy for cars made in Israel 0.583 415

Note: Number of houssholds = 786, ber of observations = 14,834, L4 =-1,543.79,
and ~2(Lo - L) = 1,609.7.
SCost is defined as purchase price or resale price of previous car.
Expensive car * car with purchase valus higher than the median (120,000 I.L.).
:Cu size = length x width (in ¢m)/1000.
Small car = engine size up to 1300 cc.

Table 2. Marginal rates of substitution of purchase price versus fuel cost.

Price Premium (I.L.) to Save 1 I.L. per 1000 km in Fuel Costs

Full Car Cost, Not Covered Full Car Cost, Covered

Income <45 Years >45 Years <45 Years »45 Years
(L.L. 000s) o Oid Oid old
<10 199 : 202 83 85
10-20 215 219 90 92
20-30 321 329 132 136
>30 341 426 170 178

no effect on the decisions of older users. This
attribute has a stronger weight for users in the age
group 30 to 45 than on younger users. A possible
explanation is that the latter group, which has more
limited resources, views acceleration as a luxury
and puts more emphasis on other, more essential,
equalities. It is interesting to note that in the
Manski and Sherman model (8), acceleration had nega-
tive coefficients for all age groups.

All measures of the transaction costs have highly
significant coefficients. The coefficients of the
type-size variables are positive and smaller than 1,
as expected. The highly significant and negative
coefficients of the three vintage dummy variables
represent the effect of lower transaction costs
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involved in purchasing a new car, as well as the
effects of other desired qualities of a new car,
such as reliability and prestige. The different
magnitudes of the three coefficients represent the
effects of unmeasured attributes that are related to
either age or vintage of the cars.

The other two age variables measure the prefer-
ence for old cars displayed by young buyers and by
first-time buyers. In part this represents more
limited resources, but it may also indicate a lesser
concern for reliability on the part of inexperienced
buyers and young users. :

The last dummy variable for locally assembled
cars represents a preference for these cars that
cannot be explained by their lower prices.

To examine the goodness of fit between the esti-
mated and observed aggregate choice probabilities
for the sample, the 950 car types were grouped ac-
cording to engine size and vintage. Generally, a
satisfactory fit between the estimated and observed
probabilities was revealed, and none of the differ-
ences was greater than 3 percent.

Purchase Model for Households Without a Vehicle

The purchase model for households without a vehicle
describes the purchase decision in year t for house-
holds that did not own a car in year t - 1. The
model was estimated with a sample of 618 households,
about half of which came from a random sample of
households in the Haifa area and the other half from
a random sample of car buyers from the same area.
The estimation results are given in Table 3. All
coefficients in the model have the expected signs.

Table 3. Estimation results—a logit model of car purchase decision for
households without vehicles.

Coefficient  Asymptotic
No. Variable Estimate t-Statistic

1 One-adult households -1.04 ~2.96

2 Income >10,000 I.L. 0.498 1.92

3 Income not reported, head of household -0.06 -0.15

employed

4 Head of household self-employed 0.699 1.52

S Occupation of head of household— 0.624 2.31

academic or managerial

6 Education of head of household—-more 0.416 1.88

than 12 years

7 Age of head of household when older -0.0093 -2.56

than 50
8 Use of car on Saturday (1 = yes and -0.409 -1.63
2 = no)

9 Travel time to work by bus 0.0185 3.56
10 Travel time to work by car -0.0131 -1.70
11 Walking distance to bus stop (in minutes) 0.142 441
12 Dummy for purchase alternative -6.5 -3.55

(corrected)
13 Expected maximum utility from the car 0.512 3.22

type choice (2n sum)

Note: Number of observations = 618; L5 = ~339.56;and -2(Lo - £§) = 177.60, d.f. 13.

Attributes 1-6 represent the financial ability to
purchase a car; they include income and some socio-
demographic descriptors that are correlated with
potential earnings. Attributes 8-12 represent the
need for a car. They include the following accessi-
bility measures: travel time to work by car and by
bus, walking distance to the nearest bus stop, and a
proxy to the need for a car for leisure trips, that
is, traveling on the Sabbath, when public transpor-
tation service is significantly reduced.

The variable age of head of household when older
than 50 represents the tendancy to change that is
associated with age as well as the increasing dif-
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ficulty of acquiring a driver's license. The last
variable is the expected maximum utility that the
household derives from the car choice, given that a
decision is made to own a car.

The data in Table 4 demonstrate the influence of
socioceconomic and accessibility attributes on pur-
chase probabilities. The effect of the relative
accessibility by bus and by car is especially sig-
nificant; for example, when travel time to work is
10 min by car and 30 min by bus, the purchase proba-
bility for a blue-collar employee (column 3 in Table
4) {8 0.08. When travel time to work by car in-
creagses to 20 min and by bus to 60 min, the proba-
bility that the same household will purchase a car
more than triples to 0.26 (column 6 in Table 4).

Table 4. Expected purchase probabilities computed for households with
various attributes that did not own a car in the previous period.

Attribute Values by Household Number

Attribute 1 2 3 4 H 6 7

No. of adults in house- 2 2 2 1 2 2 1
hold

Household income - - 1 1 - 1 1

Work status of head of SE SE EMP EMP SE EMP EMP
household

Occupation of head of AM AM BC BC AM BC BC
household :

Education of head of 15 15 10 10 15 10 10
household

Age of head of 45 45 45 55 45 45 55
household

Use of caron Saturday Yes Yes Yes Yes Yes Yes Yes

Travel time to work by 0 30 30 30 60 60 60
bus

Travel time to work by 0 10 10 10 20 20 20
car

Walking distance to bus 2 3 3 3 10 10 10
stop
Inclusive value 6 6 6 6 6 6 6

Purchase probability 0.14 022 0.08 0.02 0.54 026 0.07

Note: SE = self
BC = blue collar.

ed, AM = demic or rial, EMP = employee, and

Purchase Model for Households Already
Owning a Vehicle

The purchase model for households already owning a
vehicle describes the probability that a household
will replace its car during a certain year, given
the socioeconomic descriptors of the household and
attributes of the existing car. The estimation
results are given in Table 5.

An unexpected finding was that high income re-
duces the probability of replacing a car. This
result is strengthened by the negative coefficients
of other attributes that are correlated with income,
such as education, work status, and coverage of car
operating and maintenance costs.

Age of head of household has a negative effect on
the probability of replacing the car. So does being
a one-adult household, especially if this adult is a
woman. It is possible that women and older persons
face higher transaction costs. As expected, house-
holds that are exempt from taxes have a higher pur-
chase probability. The exemption is generally given
to disabled people who need a reliable vehicle and
therefore replace it often. Accessibility measures
were found to have no effect on the replacement
decision. This is expected, because replacing a car
will have only a small effect on accessibility.

The attributes that describe the previous car
have the expected effect on replacement choice. The
replacement probability increases with age and use




Table 5. Estimation results—a logit model of car purchase decision for
households with a vehicle.

Coefficient Asymptotic
Variable Estimates t-Statistic
One-adult househoid -1.52 -2.35
Woman head of household ~1.23 ~1.77
Income < 10,000 I.L., head of household 0.455 0.816
employed
Income >20,000 I.L., head of household -0.550 -2.00
employed
Income not reported, head of household -0.919 -2.15
employed
Head of household self-employed -0.0654 -0.14
Full car maintenance cost covered -0.150 -0.30
Exemption from car taxes 1.51 2.03
Education of head of household--more than 12 -0.494 -2.18
years
Age of head of household 35 years of younger 0.816 2.71
Age of head of househoid 50 years or older =0.721 -2.65
Monthly kilometerage exceeds 2000 km 0.960 2.37
Previous car characteristics
Year -0.0907 -2.55
Engine size smaller than 1300 cc 0.699 2.30
Engine size larger than 1800 cc -0.829 -~1.59
No. of years car was owned by household 0.076 1.49
Dummy for purchase alternative (corrected) 6.5 3.67
Expected maximum utility from car type choice -0.092 ~0.625

Note: Number of observations = 582,44 = ~267;and -2(Lg - L5)=271,d.1. 17.

of the vehicle and with duration of holding, and
decreases with engine size (a proxy for durability).
The positive effect of duration of holding on re-
placement reflects the decrease in relative utility
of the existing vehicle with time.

The coefficient of the expected maximum utility
in this model is negative but small. It is not
significantly different from zero. This means that
given the socioeconomic characteristics of the
household and the attributes of the existing car,
the utility from the car type choice was not found
to have an effect on the replacement decision. In
other words, the decision to replace a car is inde-
pendent of the type choice.

This result deserves an explanation because it is
expected that the replacement decision would be
dependent on the characteristics of available cars.
Two reasons may account for this effect, and both
reagons are related to the fact that this model is
based on cross-sectional data. First, exogenous
variables such as fuel costs and microeconomic con-
ditions do not vary across the sample. Thus any
possible effect of the variables is contained in the
transaction-specific constant. Second, technological
changes in the car industry are not so dramatic as
to cause a major shift in choice from one period to
another. Thus the expected maximum utility from all
car types is well represented by the attributes of
the existing car and household characteristics, and
those attributes are represented in the replacement
model.

Forecasting Results

The model developed in this study was used to eval-
uate the automobile-demand effects of the following
two scenarios:

1. A change in tax rates that will result in an
increase of 20 percent in the price of new large
cars with an engine size larger than 1900 cc, and a
decrease of 20 percent in the prices of new small
cars with an engine size smaller than 1300 cc (it is
assumed that the changes in the prices of new cars
will cause price changes of similar proportions in
the used car market), and

2. An increase of 100 percent in fuel prices.
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As expected, the price changes created a relative
advantage for small cars, which resulted in an in-
crease in purchases of these cars and a correspond-
ing decrease in purchases of larger cars. An inter-
esting finding is that the increase occurs mainly in
the purchases of new cars in the engine-size cate-
gory that benefited most from the tax changes,
namely, cars with engine sizes of 1100 to 1300 cc.
Apparently, for households that intended to buy a
small car, the price reduction enabled the purchase
of a newer or a bigger car within the same category.
On the other hand, the price changes caused some
potential buyers of intermediate or large cars to
choose a smaller car, and the savings thus gained
could be used to purchase a newer car. The net
effect of these shifts is an increase of 38 percent
in the category of new cars with engine sizes be-
tween 1100 and 1300 cc, and a 10 percent decrease in
the demand for cars with engine size larger than
1400 cc.

The assumed changes in car prices did not affect
the purchase decision. This result is obvious for
households that already own a car and consider
whether to replace it, because according to the
model the replacement decision is independent of the
car type decision. PFor households without cars, the
purchase decision is affected by the expected maxi-
mum utility from all car types. However, these
values are not changed much by the proposed price
changes, and the predicted aggregate effect is neg-
ligible.

The increase of 100 percent in fuel price in-
creased the demand for fuel-efficient vehicles (with
engine volumes of up to 1000 cc) by 16 percent and
caused a corresponding decrease in the demand for
bigger cars, especially for gas-guzzelers in the
1900 cc or larger category. The choice of a smaller
car enabled the buyer to purchase a newer car with
the same budget, so that the overall demand for new
cars increased by 7 percent.

The 100 percent increase in fuel price was found
to have a strong impact on the probability of buying
a first car, The estimated number of purchases
decreased by 47 percent as a result of the fuel
price hike. However, the implied assumption that
the car prices will remain unchanged in the face of
such changes in demand is unrealistic, and the real
effect of a large increase in fuel price on purchase
probabilities of first cars 1is expected to be
smaller.

SUMMARY AND CONCLUSIONS

In this work dynamic transaction models for car
ownership were defined and estimated. The main
advantage of these models is their dynamic struc-
ture-~-Markovian of the first order--which provides
for a direct account of transaction costs and char-
acteristics of the previous ownership level as well
as the attributes of cars in the choice set. The
nested structure of the logit model used in this
study provides for an efficient data-collection
effort and eases the estimation process.
Specification of the models includes policy-sen-
sitive variables such as characteristics of car

types, socioeconomic variables, and accessibility
variables.

The use of the models to support policy decisions
was demonstrated for two scenarios involving changes
in purchase and operating costs. For a more compre-
hensive policy analysis, the nodell.developed here
can be easily supplemented to include all the trans-
actions that are possible -in the car market (e.qg.,
transactions in multicar households and transactions
that result in a reduction in level of car owner-
ship). A full set of such models can be incorporated
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into a system of equations to represent equilibrium
conditions in a car market. A general structure of
such equations 1is described by Manski (l4). It is
believed that the use of the dynamic models devel-
oped in this work, in the framework of equilibrium
equations, can provide a useful system for the anal-
ysis of policies that affect the car market.
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Experiments with Optimal Sampling for Multinomial

Logit Models

YOSEF SHEFFI AND ZVI TAREM

In this paper a recently published method for optimizing the sample used in
estimating discrete-choice models is tested. The work is intended to identify
and explore the elements that influence the effectiveness of this methodology
in designing sampling procedures for estimating logit models. The investigs-
tion includes both analytical and numerical tests. The resuits indicate that
the sample optimization method can improve the accuracy of the resuiting
estimates, as compared with random sample.

Data collection is, in many cases, the major cost
item in studies that involve the estimation of econ-
ometric models. Techniques for sample design have
therefore been developed for many econometric and
statistical models (1l). 1In this paper discrete
choice models, which are extensively used in travel-
demand analysis, are examined, and, in particular,
the multinomial logit (MNL) model is discussed. The

focus here is on a method for optimizing the sample
used to estimate discrete-choice models. The ap-
plicability of this sample optimization approach to
the collection of the sample points (the data) used
to estimate MNL models is examined. Also examined
is the appropriate amount of effort that should be
invested in the sample optimization process.

‘The original development of the sample optimiza-
tion method, which is the subject of this paper, is
from Daganzo (2). Daganzo's method is a stratified
sampling technique. It assumes that the population
to be sampled from can be partitioned into separate
groups (or strata) and that obgervations can be sam-
pled independently from e&ach group. The objective
of the sampling method is to determine how many ob-
gservations should be drawn from each group so that



the total estimation error is minimized. The esti-
mation error is a composite measure of the error in
all the model parameters. Naturally, this minimiza-
tion is subject to a budget constraint. Thisg sam-
pling method attempts to determine the best alloca-
tion of the sampling budget. ‘(The companion
problem, that of determining the minimum budget re-
quired to achieve a certain accuracy, is somewhat
more difficult. 1Its solution, however, can be in-
ferred from the solution of the problem under con-
sideration.)

Three main points are discussed in this paper.
The first point is the applicability of the approach
in terms of potential. The question examined in
this context is the sensitivity of the sampling er-
ror to different sample designs. The second point
is that the solution of the sample optimization (SO)
problem requires prior estimates (or guesses) of the
values of the parameters of the model to be esti-
mated. The applicability of the whole concept de-
pends, naturally, on the required accuracy of these
prior estimates. The tests described in this paper
explore this point in some detail. The third point
is related to the first point. It has to do with
the question of the amount of effort that should -be
invested in obtaining these prior estimates. Such
an effort should be judged in comparison to the
level of effort of the entire study, which means
that the relevant question is the allocation of ef-
fort between obtaining the prior estimates and the
estimation itself.

This paper 1is organized as follows. First,
Daganzo's SO method is outlined. Then the applica-
tion of this method to the MNL model is reviewed.
Next, the question of the applicability of the SO
method is explored by looking at a simple one-param-
eter model and a two-parameter model. Then the afore-
mentioned issue of resource allocation in the frame-
work of a small case study is discussed, and finally
conclusions are given.

It should be noted that the conclusions of this
paper are based on numerical experiments, which
means that not all the results can be generalized in
all circumstances. The experiments are described in
further detail by Sheffi and Tarem (3).

SAMPLE OPTIMIZATION PROGRAM

Daganzo's SO method attempts to minimize the error
associated with the estimation of the parameters of
a discrete-choice model. The optimization problem
is formulated as a mathematical minimization pro-
gram, where a composite measure of the estimation
error serves as the objective function and the sam-
ple group sizes are the decision variables. This
approach assumes that the model under consideration
is estimated by using the maximum likelihood (ML)
method. It also assumes that the distribution of
explanatory variables in each group is known. [This
information may not be available, in which case the
methods discussed by Lerman and Manski (4) may be
used.]

The objective function of the SO program relates
the sampling error to the sample group sizes. This
expression can be derived from the Kramer-Rao lower
bound on the covariance matrix of ML estimators.
Letting x be a vector of explanatory variables, y be
the depeﬁaent variable, and 8 be the vector of param-
eters for some model, this bound (t;) is given by

2 = {-E(ViL@ly, I} ‘ )

where L(°t1°*,*) 1is the !log-likelihood of the sample
(y.x) evaluated at 8, veL(°) is the p-Hessian of
L(*), and E[*] denotes the expectation operator
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that, in Equation 1, is carried out with respect to
both y and x.
For stratified sampling, where all observations

are independent, the sample log-likelihood is given
by the sum

K Ng c ok
L@'Yd‘_)""kzl 21 L@ |yn, Xn) @)
=1 n=

where

L(guyﬁ,zg) - loq-litelihood of sample point n from
group k,
(yﬁ,gﬁ) = observed values at this point,
N, = number of observations in group k,
and

K = number of groups in the sample.

The Hessian of this function is
K Ny 2

ViL@ly,x) = kEl El Vo L8 lyk, x5) 3)
=1 a=

In stratified sampling it is assumed that all ob-
servations from a given group ik) are realizations of
some underlying distribution f ,x(¥:X) that charac-
terizes the group. Thus all thé&ke observations have
the same expectation. The expectation of Equation 3
is therefore

BV L@l 0l = 2 N E%) (% Ligly, x)] ®

where E(K) [¢] denotes the expectation taken over the
distribution k}(y,&), and the designations n and
k are omitted from the notation of the likelihood
function in order to clarify the presentation. The
final expression for the bound on the parameter co-
variance matrix is obtained by combining Bquation 4
with Equation 1, i.e.,

-1

K
L= | =T NE® [VILElY, )] ®)

To minimize the estimation error, a scalar mea-
sure of the size of the parameter covariance matrix
has to be defined., A family of such measures can be
defined by using a quadratic form of the covariance
matrix with a (column) vector of constants, z, i.e.,

F=2T%z ©

where F is the estimation error, £, is the true
parameter covariance matrix, and the superscript T
denotes the transposition operation. Because the
true covariance matrix is not known, the approxima-
tion in Equation S5, which holds asymptotically for
maximum likelihood estimators, is used instead. Thus
F(N) = zTzg(N)z, where N = (...,Ng,...). The form of
the error measure used in this paper uses a vector
z=(,1,...,1), i.e., P(N) is the sum of the ele-
ments of the parameter covariance matrix.

The optimal sample composition is derived v min-

imizing F(N) with respect to the N, 's. Th- .ncon-
strained solution to the minimization is, ot >usly,
to sample an infinitely large number of obse ations

from each group. The estimation error t -n ap-
proaches zero. The sample size, however, is -unded
by the budget available for sampling, and pcssibly

by some other physical size constraints. The total
budget constraint may be expressed by

« .

z Cyx Nk <B (7)

k=1



»
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where ¢ is the cost of sampling one unit from

group k, and B is the total budget available. Phys-
ical group size constraints may be expressed as
Ni < NP'?*  for some groups k 8)

In addition, the constraint set should always in-
clude nonnegativity of the group sizes.
The SO program can be summarized as follows:

K -1

L:‘in F=£T _k}:l N E(®) (ViL@ly, x)] z G2
x =

Subject to

K

k?] Ck Nk < B (gb)

0< Ng < NP*™  forallk (9¢)
Daganzo (5) indicates that this program has a unique
local minimum for any constant vector z and any form
of the 1log-likelihood function L(81y,x). This
means that the problem can be solved by using stan-
dard nonlinear, constrained optimization methods.
The algorithm used in this work is based on the gra-
dient projection (6) method.

The exact form of the objective function depends
on the specific model for which the sample is de-
signed. Sheffi and Tarem (3) formulate and solve
this program for several model forms. In the next
section the derivation of this expression for MNL
models is reviewed. The remainder of the paper is
aimed at evaluating the usefulness and applicability
of the approach.

SAMPLE OPTIMIZATION FOR LOGIT MODELS

The logit formula is the most widely used discrete-
choice model because of the simplicity of its form.
A detailed description of the model can be found in
Domeneich and McFadden (7).

The logit model can be used to quantify some as-
pects of individuals' choice among a set of alter-
natives. The model can be interpreted in the frame-
work of random utility maximization by assuming that
each decision maker attaches a measure of utility to
each alternative and chooses the one with the largest
utility. The utility of alternative j to an individ-
ual randomly drawn from the population (u;) is
modeled as the sum of a systematic utility term
(vs) and an error term that is assumed to be ran-
dofmly distributed across the population. The system-
atic utility captures the model specification in
terms of the relationships between the utility and
the explanatory variables; thus vy = Vj(g,l). The
specification of the random part  determines the
family of models to be used. If these random terms
dre assumed identically and independently Gumbel
distributed, the resulting model is the MNL mode.
The MNL model gives the probability that each avail-
able alternative is chosen (i.e., it has the highest
utility)--Pj(gji)-as

Pi6., x) = exp [v,'((i,a)]/_il exp [vi(@, x)] (10)

where I is the index set of the available alterna-
tives. In most cases the systematic utility is as-
sumed to be 1linear in the parameters, and thus
vy(e,x) = 8%x.

To develop the SO objective function for the MNL
model, the g-Hessian of the log~likelihood func-
tion has to be derived for such models. The likeli-
hood of a sample point n can be written as
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L*@lan, xn) = 1P, x,)* ni (11

where a, is an indicator variable vector that con-
tains the observed choice, {.e., a_, = 1 if alter-
native J is chosen by the nth decision maker in

the sample, and a,jy = 0 otherwise. The vector in-
cludes the explandtory variables for the nth ggset-

vation. The choice probabilities are given by Equa-
tion 10. The logarithm of Equation 11 is simply
L@lﬁm l‘.n) = 3 a4y log Pnj (12)
[{
where Pni -ozg(g,gn) for ease of notation., The sample
log-likelih includes the sum over n of L{81aneXy)
i.e., -
N
L@la,x)= I Z a,logPy; (13)

n=1 jel

where N is the total sample size.

The derivation of the ps-Hessian of the sample
log-likelihood function 1is simple but somewhat
lengthy (3). The final result of applying the
Hessian operator to the log-likelihood function is

ViL@la, x)=-WT QW (14)

where W is the matrix of attribute differences for
an individual randomly drawn from the population,
i.e., row j of W is the difference x4 - x1, where I
is the index of the last alternative (any other al-
ternative can be chosen as a base). (Q is a square
matrix with the elements,

[Ql;j =P, (6; -P) fori,j=1,2,...,1-1 (15)
where sij =1 {f { =3, and 0 otherwise, After
inserting” Equation 14 into the objective function of
the sample optimization program (Bquation 9a), this
function becomes

K -1

F=zT|-Z NE®[-WTQW]| 2z (16)
k=1

Computing the expectations of E(X){e] in Equation
16 requires prior knowledge of both the distribution
of the attributes in all groups and the values of
the unknown parameter vector (8). The latter is
required for computing the choice probabilities that
appear in the elements of Q. As previously men~
tioned, it is assumed in this paper that the attri-
bute distributions are known before sample optimiza-
tion. The main concern of this paper is with the
required accuracy of the initial parameter guesses,

Because the function under the expectation opera-
tor is complicated, a numerical Monte Carlo approach
for computing these expectations was adopted. with
this approach, M observations were drawn from the
distribution of the attributes and the average, where

(/M) %‘l [-Wh Qm Wm] an

was used as an approximation of the true expecta-
tions.

INACCURACIES IN INITIAL GUESSES: ONE~PARAMETER MODEL

In this section two of the issues that determine the
applicability of the SO approach are examined.
These questions are addressed in the context of a
simple logit model that includes only two alterna-

tives and a single parameter.
The usefulness of the SO method depends on two

separate questions. The first is whether SO actu-
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ally improves the accuracy of the resulting parame-
ter estimates. Although SO assures minimum error in
estimation, the improvement relative to other gample
designs may be insignificant. 1In this case the op-
timization process is not cost effective. The sec-
ond question is the dependence of the optimization

results on the accuracy of the initial parameter
guesses used in the optimization. If the optimiza-
tion process requires accurate parameter values to
yield satisfactory sample composition, its useful-
ness will be limited because having such accurate
parameter values obviates the need for the estima-
tion process.

Thus, for the SO method to be useful, it is nec-
essary that the estimation error will decrease when
an optimal sample is used, but also that this opti-
mal composition may be obtained without an accurate
initial parameter guess.

The tests described in the following sections are
designed to determine if and when these conditions
can be met for a simple logit model, where the issue
can be addressed analytically. The simple logit
model chosen for this analysis includes two alterna-
tives and one parameter. The systematic utilities of
these alternatives are x3;6 and x50, respectively. The
choice probabilities have the form

Py = exp [(x, - xz)G]/{ 1 +exp [(x; - x3) 9]}

exp (W)/[1 + exp(W8)); P, = 1 - P,
/{1 + exp (W6)] (18)

]

and the optimization objective function (Equation
16) for this model is given by

-

K K
F(N) = 1/kz NE®IW2Q) = 1/ T NE® {w2 exp(W)
=1 k=1

= [1 + exp (W0)]?} (19)

The minimization of F(N) in Equation 19 is equiva-
lent to the maximization of the reciprocal of F(N),
i.e.,

K
Min F(N) = Max F'(N) = £ N.E® [W2Q} 20)
Nk Nk k=1

For a problem with a simple budget constraint (such
as Equation 9b), the solution of this SO program is
to sample all observations from the group (k) with
the largest value of

a®) = B [W2Q] /ey (2))

The total sample size will, of course, be B/c,,
where ¢ is the group sampled. PFrom Equation 21 it
is clear that if the expectations elk [*] are similar
in all groups, the sample should include observa-
tions from the group with the lowest sampling cost.
If the expectations differ considerably, however, a
group with higher sampling cost may contribute more
to the estimation accuracy and should therefore be
chosen for sampling.

The accuracy of the initial parameter quess, de-
noted by ¢y, needed in computing the alk)eg ig impor ~
tant only {f it can cause the sampling from the
wrong group. In other words, as long as the values
of o(k) computed by using 93 suggest the same choice
of group as would happen with the true parameter (8),
the optimal sample composition is not affected by
inaccuracies in 0.

For example, assume that there are only two
groups, and that the samglinq costs are the same in
both. If the true E(l)[w Q] is 10 times larger than
the true 8(2)[W20]. computing a with even a bad
guess of ¢ will still probably suggest sampling
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from %foup 1. 1If, on the other hand, the trye
el (w g; is only 10 percent 1larger than the
true E(4) [w2Q), a slight inaccuracy in 00 may reverse
the choice initiated by Equation 21. In this case,
however, the contribution of both groups to the es-
timation accuracy is similar, and sampling from the
wrong group would not introduce a large increase in
the estimation error (P).

In summary, Equation 21 indicates that {f the
group attribute distributions (and hence the group
expectations) are considerably dissimilar, sampling
from the wrong group may cause a large estimation
error, but the correct group for sampling may be
relatively easy to determine., In cases when this
determination 1is more difficult (l.e., when the
groups are similar), the cost of an error is not
high. Thus this analysis leads to the conclusion
that SO should be useful in this case, even with
questionable prior estimates of a.

TWO-PARAMETER MODEL

A similar analysis can be applied to a slightly more
complicated model, which includes two alternatives
and two parameters. In this case the choice ptoba-
bilities have the form

Py

exp (W18, + Wy0,)/(1 + exp (W18, + W,0,)];

1/[1 + exp (W,8; + W18,)] (22)

P,

where W; and W, are the two elements of attribute
differences vector W = (W;,W,). The SO objective
fanction (Equation 16) in this case is given by

K -1
F=2" | 2 NEWQWIW] 2 (23)

" where the single element of the matrix Q is

Q1,1 = exp (W8, + W;0,)/[1 + exp (W,68, + W,8,)]? 24)

The general analysis of this case cannot be car-
ried out analytically because of the complexity of
Equation 24. The approach followed here was to ana-
lyze a specific sample design case with known true
parameters. The problem setup included two groups
with the following attribute distributions:

Wi = wi?) = 1; WD ~ N(0.5, 0.25); W) ~ N(-0.5, 0.25)

The true parameters (see Equation 22) were set to
6y = 63 = 1.0. The true group expectations can be
calculated by using the simulation method, explained
by Equation 17, as follows:

M 1owTw) = [ 0.1496 0.0549];,3(:) wTw] = [0-2234 -0-122]
EIeww) [0.0549 0.0545 [Qw™wl -0.122 0.1176

The budget constraint was set to N; + N, < 1, which
implies that c; = c, = 1 and that the N,'s can be
looked on as sample shares rather than number of ob-
servations., Because the budget constraint is always
binding in these problems, the sample composition
can be represented by the single variable N;, and
N3 can be replaced by 1 - Nj.

The dependence of the estimation error on the
sample composition was determined by evaluating the
objective function (Equation 23) at different values
of Nyj. The resulting curve is shown as the dotted
line on Pigure 1. The estimation error has a dis~
tinct minimum at N; = 0,908, which corresponds to
the value P* = 17.567. It rises sharply for values
of N; less than 0.69 (the 10 percent dJdeviation
mark) .

ELch sample composition is associated with a
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Figurs 1. Intervals F £ of plotted versus the analytical curve.

1
1
‘01
50
\
T\
\
\
\
\
401 \
\
\
\
A\
\
304
\
N 1
\
N
AN
\
N +
20 SN o
~ ~
0 T T T T y —» Ni
0.0 o3 0.5 o7 09 Lo

unique value of the objective function in Figure 1.
The sampling process, however, introduces a random-
ness that may cause the actual estimation error to
deviate from the one indicated in Figure 1, This is
because once the group size is determined, the ac-
tual observations are still randomly sampled within
each group. Thus different samples with the same
composition may result in different estimation er-
rors. To verify the relationships shown in Figure
1, a simulated data set was generated. Attribute
observations were generated from the previously men-~
tioned distribution of the explanatory variables
within each group. The chosen alternative was de-
termined by simulating the total utilities of the
alternatives to each individual and recording the
alternative with the largest utility as the chosen
one. This simulation was carried out by generating
a Gumbel-distributed random variable (by using the
cumulative distribution inversion method) and add-
ing it to the observed utility.

The logit estimation routine computes, apart from
the parameter estimates, an estimate of the parameter
covariance matrix based on the sample. An approxi-
mate estimation error may be computed by summing the
elements of this matrix (see Equation 6). Pive dif-
ferent samples were generated for each selected com-
position, and the estimation error was computed for
each one by using that procedure. An interval of
probable values for the estimation error was de-
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rived from the mean and standard deviation of the

five measurements (i.e., P =PF ¢ ops where F is the
average and o¢p is the standard deviation of the
five values). These intervals are also plotted in
Figure 1. As demonstrated in the figure, the sam-
pling results depict the same relation between the
estimation error and the sample composition as shown
by the analytical curve.

In the particular example solved here, Figure 1
demonstrates that the SO is worthwhile even when the
randomness of the sampling procedure is8 accounted
for. In general, however, this may not be the case
if the variance of the attribute distribution is
large. Such a case means that the groups are, sta-
tistically, quite similar. As in the one-parameter
case, this means that SO is not cost effective be-
cause the (expected) cost of an error in the groups'
compogition is not large.

The dependence of the optimal solution on the ac~
curacy of the initial guesses was determined by
solving the SO problem by using different values of
the initial parameter guesses (io) around the true
parameters (). Figure 2 shows contours of equal com-
position over a range of values of 8y around the true
value of § = (1.0,1.0). The figure shows that in
mogt of the region, except for the upper right cor-
ner, the optimal composition is within 10 percent of
the best composition. The best composition is given
by N; = 0.908, which was computed by using the
true parameter values.

Figure 3 demonstrates the same point from a dif-
ferent angle. The relationships between the estima-
tion error and the initial guesses used in the op-
timization process can be derived by reading, from
Figure 1, the values of P that correspond to the
sample compositions shown in Figure 2. These values
can then be transformed to peéercentage differences
from the minimum error, FP* = 17,567, Figure 3 de-
picts contours of equal percentage differences over
the same range of §, used in Pigure 2. As shown
in Figure 3, most of the region analyzed lies within
10 percent of the minimum error. In summary, it can
be concluded that although arbitrary sample composi-
tions may yield large estimation errors (as seen in
Figure 1), the use of SO, even with a wide range of
possible initial parameter guesses, limits the error
to small deviations from the minimum error obtained
by using the true parameter values.

Figure 2. Contours of equal Ny over the range of the initial psrameter
guesses 0.
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Figure 3. Contours of equal error (F) over the range of intital parameter
guesses 0.
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OPTIMAL BUDGET ALLOCATION

The initial parameter guesses used in the optimiza-
tion process may come from two distinct sources.
The first one is an external source, such as another
study or a set of studies conducted elsewhere or in
the past. The second one is an internal source,
such as a pilot study conducted on the current popu-~
lation. In this case a small presample may be ran-
domly drawn in order to estimate §,. The final
parameter estimation will be based on a combined
sample, including the observations of the presample
and the main sample. The relevant question here is
what is the appropriate relative investment in the
initial sample that will yield the best accuracy of
estimation when using the combined sample.

The procedure followed in this research for de-
termining the optimal allocation of the sampling
budget was to first allocate some prescribed amount
(B;) to an initial random sample. The parameter
estimates based on this sample were used as initial
guesses 1in determining the optimal sampling scheme
for the main sample, subject to the remaining budget
B,. The main sample was then drawn and combined
with the initial one and used to estimate the

model. The estimation error was computed from the
estimated parameter covariance matrix of this
model. The optimal allocation was determined by

parametrically varying the amount spent on the ini-
tial sample.

The existence of an optimal allocation stems from
the fact that when the budget (B;) spent on the
initial random sample is small, the resulting esti-
mates of the parameters are not accurate. Thus the
main sample will not be close to optimality, and the
estimation error can be expected to be large. On
the other hand, when most of the budget i{s spent on
the initial sample, the resulting initial estimates
will be accurate, and the small main sample is close
to being optimal. The combined sample, however,
will include primarily the random, nonoptimal sam-
ple, and the estimation error is again expected to
be larqe. Therefore, there may be some optimal al-
location of the budget such that the size of the
random sample is sufficient to provide relatively
accurate estimates, but the remaining optimized sam-
ple is sufficlently large to reduce the error mea-
sure.

" combined sample.
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This procedure was carried out by using a large
data set as a population. The data were extracted
from the 1977 National Personal Travel Study (NPTS)
data base. A simple model of automobile ownership
levels was used as an example model in these tests.
The model included three alternatives: owning two
or more cars, owning one car, and owning no car.
The systematic utilities of the alternatives were
specified as

u, =8, +8; - INCOME + 8, - HHSIZE
u; =82 + 653 - INCOME
u; = 0.0

where INCOME is measured in $10,000 units, and
HHSIZE is the number of members in the household.
The population data set contained 7,393 observations
partitioned into three groups along the income di-
mension, according to the following ranges:

Income
Group Range (§) Observations
1 0~7,500 2,565
2 7,500~20,000 3,331
3 >20,000 1,497
Total 7,393

The distributions of the attributes
HHSIZE) were estimated from the data.

A budget size of B;, varying between 40 and
200, was allocated to the initial random sample (as-
suming a cost of one unit for all observations).
The composition of the main sample was determined by
solving the optimization problem with the constraint
Ny + N; + N3 < By, where B; = 200 - B;. The two sam-
ples were then combined to yield a sample of size
200, and the estimation error was computed from the
This procedure was repeated five

times for each value of By. The interval Ft op of
the five measurements is plotted versus B in Pigure
4. A shallow minimum can be observed around By =
80, which means that 80 observations should be sam-
pled at random. The results of this estimation
should be used to optimize the composition of the
remaining 120 observations. The shape of the rela-
tionship shown in Figure 4 suggests, however, two
hypotheses.

(INCOME and

1. The optimal size of the {nitial sample is
fixed, probably because it corresponds to the mini-
mum sample size that yields reasonable initial esti-
mates for the optimization. In this case the opti-
mal initial sample size (By) is independent of the
total sample size (B).

2. Optimizing a larger sample requires more ac-
curate initial guesses, which implies a larger ini-
tial sample. In this case the optimal initial sam-
ple size (By) is a fixed proportion of the total
sample size (B).

To test these hypotheses in the context of the
examples analyzed in this section, the test proce-
dure used in this case study was repeated for total
sample sizes of B = 400 and 600 observations. The
means of the five estimation error measures computed
for each selected value of B; are plotted in Fig-
ure 5. The horizontal axis of the graph is the ra-
tio By/B, and the vertical axis represents the es-
timation error. The measurements obtained from each
value of B (i.e., 200, 400, and 600) were normalized
for comparison purposes. The fiqure shows that for
all total sample size values, the estimation error
does not have a distinct minimum but is flat over
the region up to BI/B = 0.5 and rises thereafter.

Thus it can only be concluded that the initial
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Figure 4. Estimation error intsrvals plottad versus the budget spent on the initial sample for total sample size of 200.
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sample size for this example should be less than
one-half of the total sample size. This appears to
suggest that, in general, the initial random sample
can be small, regardless of the total sample size.
The size of this sample may in fact be dictated by
the requirements on the estimation of the distribu-
tion of the explanatory variables in all the
groups. This point was not addressed in this paper,
which assumed that this distribution is known.

CONCLUSIONS

The two major conclusions from the work described
here may be stated as follows:

1. The SO procedure can introduce a significant
increase in parameter estimation accuracy, and

2. This optimization need not be based on accu-
rate initial parameter guesses; only a small pilot
sample is needed to produce sufficiently accurate
guesses.

It should be emphasized, however, that these con-
clusions result from a specific set of tests per-
formed on prespecified models. Even though these
models were chosen without any regard to the final
results, these results can be generalized only with
caution. The results are, however, encouraging in
that the SO procedure appears to be worthwhile in
cases where it can be applied. It requires nonlin-
ear optimization software, which may not be easily
uged in many environments.
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Procedure for Predicting Queues and Delays on
Expressways in Urban Core Areas

THOMAS E. LISCO

A procedurs that predicts morning inb d and ing outbound queuing de-
lays on express highway facilities in downtown areas is discussed. The proce-
dure is based on the relationships among hourly traffic capacities at bottleneck
points, daily volumes at those points, and associated queues and delays. The
need for such a procedure arose from difficulties in using traffic assignment or
other existing analysis techniques to predict queues and delays associated with
siternative highway plans. Empirical delay data for developing the procedure
came from nearly 600 speed runs conducted on the express highway system in
and near downtown Boston. Fourtesn queuing and potential queuing situa-
tions were analyzed. The relationships derived appear to be generalizable, and
the specific resuits from the Boston area shouid apply to other urban areas of
comparable size.

A procedure that predicts peak-period queuing and
delays on express highway facilities in downtown
areas is discussed. The procedure is based on the
relationships among hourly traffic capacities at
bottleneck points, daily volumes at those points,
and associated peak-period queues and delays. (In
this paper the term daily volume refers to average
weekday traffic.) The procedure was developed by
comparing observed bottleneck capacities with empir-
ical delay data for traffic upstream of the bottle-
necks., Capacities were derived from traffic counts
at bottleneck locations. The delay data were from

almost 600 speed runs conducted on express highway
facilities in and near downtown Boston, mostly dur-
ing 1978 and 1979. The procedure was developed for
use in detailed evaluations of potential traffic im-
pacts and benefits of alternative highway invest-
ments in downtown areas.

The need for such a procedure arises initially
from difficulties in using the output from traffic
assignment models to predict peak-period operating
conditions and cost-benefit statistics associated
with alternative highway plans. The basic problem
is that the regional traffic assignment process
derives speeds for individual links separately based
on their individual volume/capacity (v/c) ratios and
does not consider the queuing effects of bottleneck
locations. Thus in typical downtown area queuing
situations, where one bottleneck highway segment can
create queues stretching into many other segments,
traffic assignments cannot indicate the locations
and extents of queues or the delays associated with
them. Because queuing can be of major importance in
peak-period expressway operations in downtown areas,
the assignments can be grossly inaccurate in pre-
dicting peak-period operating speeds. Similarly,
the assuciated cost-benefit statistics can miss much
of the phenomenon they are intended to measure.
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A potential solution to this problem would be to
attempt a queuing analysis based on peak-perjod
traffic assignment results, Such an analysis would
fail for two reasons. Pirst, by its very nature a
traffic assignment is balanced, with all highway
links clearing all traffic assigned to them for the
time period of analysis. Thus there is no possibil-
ity of an assignment producing for a bottleneck link
the different vehicle arrival and service rates nec-
essary to perform a queuing analysis. Second, a
well-calibrated traffic assignment will indicate all
bottleneck links operating exactly at capacity dur-
ihg peak periods, with no indication of which are
major and minor bottlenecks. 1In some cases the as-
signments will indicate volumes greater than actual
capacities at bottlenecks, but the degree to which
such volumes are indicated is related more to the
ndture of the capacity constraint in the assignment
program ‘than to the queuing phenomenon. Therefore,
these greater-than-capacity volumes are not particu-
larly helpful in predicting the extents of potential
queues.

An alternative solution would be to perform a
queuing analysis based on daily traffic assignment
volumes with given fractions of daily traffic as-
signed to peak hours. The traffic assigned to peak
hours would be compared with capacities at bottle-
neck points. Again there would be severe problems.
One problem is that different bottlenecks process
different fractions of daily traffic during the peak
periods, with lower fractions being handled by se-
vere bottlenecks. Thus a given fraction applied to
all bottlenecks would underestimate the effects of
small bottlenecks and overestimate the effects of
large ones. A more important consideration is that
queues rarely contain more than several hundred ve-
hicles at one time. Thus any procedure that at-

tempts to predict queues through calculating dif-

ferences between arrival and service rates ‘must
project flows with a great deal of accuracy. Cer-
tainly, this cannot be done by allocating fractions
of daily traffic to hourly flows at bottleneck
points. As before, the delays calculated will re-
late far more to the assumptions used in the alloca-
tion than to the gueuing phenomenon.

Because of the difficulties involved in predict-
ing vehicle arrival and service rates from traffic
assignments and, more generally, the problems of ac-
curately predicting these rates by any method (1-3),
the procedure documented in this paper follows an
approach that predicts queuing delays directly with-
out calculating the difference between arrival and
service rates. Specifically, the analysis approach
assumes that there is a consistent relationship be-
tween daily traffic volume at a bottleneck point
compared with capacity, and typical peak-period de-
lays upstream of the bottleneck.

To search for such a relationship, an extensive
analysis was conducted of the complex expressway
queuing phenomenon in and near downtown Boston. De-
lay data were compared with volumes and capacities
at bottleneck points, and a set of rules was devel-
oped that operates in the formation of queues and
appears to explain the interrelationships among
them. Ultimately, a procedure was developed that
predicts morning inbound gqueues and evening outbound
queues for downtown area expressways. The procedure
is in two parts. In the first part the average max-
imum peak-period delays are predicted by using a
comparison of daily bottleneck volumes with hourly
capacities. In the second part gqueue speeds are
derived from hourly v/c ratios of queue sections,
and queue lengths are calculated from queue speeds
and delays.

In this analysis no attempt has been made to pre-
dict outbound morning delays or inbound evening de-
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lays, or delays on highways that are not downtown
oriented. Also, no consideration has been given to
predicting delays caused by heavy stop-and-go traf-
fic with no explicit bottleneck points. Such cir-
cumstances were not adequately represented in the
data, Purther, the procedure as presented does not
include any consideration of the variation of queue
lengths during the peak period. Patterns of within-
peak variations tend to be similar among queues and
can be adjusted as circumstances require.

BASIC RELATIONSHIPS GOVERNING MORNING AND EVENING
PEAK-PERIOD QUEUING DELAYS

The basic relationships between average maximum
peak-period delays and daily traffic related to
hourly bottleneck capacity are shown in Figures 1
and 2 for morning and evening peak periods. The
relationships shown are manually fitted curves from
the Boston speed-run data. Six data points are for
the morning peak period, and eight data points are
for the evening peak period. The data in the fig-
ures indicate that peak-period queues and delays be-
gin to materialize when daily traffic volumes reach
the vicinity of 8 to 10 times the hourly capacity at
bottleneck points. Evening peak-period delays are
greater than morning delays for any given daily vol-
ume relative to hourly bottleneck capacity because
evening peak-period traffic tends to be heavier than
morning peak~period traffic. Similarly, evening de-
lays increase more quickly than morning delays for
given increases in daily volumes relative to bottle-
neck capacities.

In evaluating the curves shown in Figures 1 and
2, it can be seen that their shapes are quite requ-
lar and sensible. Also, the relationships between
the fitted curves and the data points are close. 1In
no case does the predicted delay from the curves

Figure 1. Daily traffic volume as a multiple of hourly capacity at bottleneck
versus average maximum morning peak-period delay.
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differ from the experienced average delay of the
speed runs by more than 1 min. This difference rep-
resents less than 15 vehicles per lane in a typical
queue.

Of the 14 data points, only 2 are irregular in
their derivation. These data points are circled in
Figure 2. The circled point with the greater delay
is for travel from Logan Airport to downtown Boston
through the Sumner Tunnel, an inbound rather than an
outbound route. This data point was included in the
evening outbound statistics because Logan Airport is
a major traffic generator in the Boston core area,
and because evening peak-period traffic from Logan
Airport can be considered to be outbound, regardless
of its direction.

The second irregular data point, which shows less
delay, is the data point for I-93 and the Boston
Central Artery southbound during the evening peak
period. In the derivation of delay data, the seg-
ment of this route considered is assumed to have one
long queue, even though it has an intermediate sec-
tion that does not become solidly queued every even-
ing. Because this section is quite short, it was
not considered to substantially affect the validity
of the data point.

There is one major drawback in the data: there
are so few data points; i.e., a total of 14 to fit
two curves. Boston has only a few explicit bottle-
neck points on its express highway system in and

near the downtown area; thus data were taken for all
of them.

CALCULATING QUEUE LENGTHS PROM DELAYS

To calculate queue lengths from the delay curves
shown in Figures 1 and 2, it is necessary to compare
queue speeds on highway segments with speeds on the
same segments under uncongested conditions. When
the delay per unit distance that the difference be-
tween queue speed and congested speed implies |is
known, as well as the total delay in the queue,
queue length can be determined by calculating the
distance of travel necessary to accumulate the total
delay.

Information on queue speeds is shown in FPigure
3. The data in this figure relate queue speeds to
conventional hourly v/c ratios and alsc indicate
what is, in effect, a level-of-service F curve for
queues. The input speed data for the figure were
actual speeds from speed runs for all segments of
all morning and evening queues on the highway system
in the downtown Boston area., As the data in this
figure reveal, almost all of the observed speeds are

Figure 3. Relationship between hourly v/c ratio and queue speed: morning
and evening queuss.
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within 1 or 2 mph of what would be predicted by the
estimated curve.

Also shown in Figure 3 is the level-of-service F
curve from the 1965 Highway Capacity Manual (4, P
264). It is interesting to note that the estimated
curve for queues in the downtown Boston area has
speeds less than those of the curve in the Highway
Capacity Manual. Although the reason for this is
not clear, it appears that the level-of-service P
curve in the Highway Capacity Manual was derived
from statistics for stop-and-go conditions, with no
explicit bottleneck points and no explicit queues.
There is support for this notion because the only
three Boston data points that are near the curve in
the Highway Capacity Manual (the points circled in
Figure 3) are those for I-93 and the Central Artery
(southbound) in the evening. As noted previously,
this section of highway has a segment that is not
solidly gqueued every evening. Thus average speeds
are higher. 1In any case, the fitted Boston curve is
appropriate for estimating existing and future queue
speeds and lengths.

The following is a hypothetical delay and queue-
length calculation. Suppose an expressway has three
travel lanes inbound, each of which has a capacity
of 2,000 vehicles per hour. Total inbound capacity
of the highway is 6,000 vehicles per hour., At one
point there is the constriction of a lane being
dropped. Beyond this point two lanes remain with a
total capacity of 4,000 vehicles per hour. Suppose
also that the average weekday traffic inbound at the
bottleneck is 50,000 vehicles, or 12.5 times the
hourly capacity at that point. Finally, suppose
that the highway operates at 55 mph during uncon-
gested periods.

The questions to be answered are as follows: (a)
What will be the average maximum morning delay up-

~ stream of the bottleneck? and (b) How long will the

average maximum morning queue be in which that delay
will be experienced? The answer to the first ques-
tion comes directly from PFigure 1. With an average
daily traffic volume 12.5 times the hourly bottle-
neck capacity, the average maximum morning delay
will be about 5.7 min.

The calculation of gqueue length is a little more
complicated, In the queue area the v/c ratio is
0.67 (4,000 vehicles per hour traveling on three
lanes that could handle 6,000 vehicles if it were
not for the bottleneck)}., This corresponds with a
queue speed of 9.5 mph (as shown in Pigure 3). At
this speed it takes 6,316 min to travel a mile
(1/9.5 x 60). In uncongested conditions it takes
1.091 min to travel a mile {(1/55 x 60). Thus a ve-
hicle traveling 1 mile in the queue will incur 5.225
min of delay (6.316 - 1.091). Because the total de-
lay in the queue was calculated to be 5.7 min, the
average maximum gqueue length will be 1.091 miles
(5.700/5.225), or 5,760 ft.

Clearly, the procedure for calculating queue de-
lays and lengths is quite simple. A little more
work is required if there are on-ramps and off-ramps
or variations in capacity within the queued sec-
tion. In such cases v/c ratios and speeds must be
calculated separately by segments of the highway
section (moving upstream from the bottleneck} and
delays added up by segment until the total queue
delay is achieved.

One final note is appropriate concerning the ap-
plication of the model. 1In determining hourly bot-
tleneck capacity for the determination of delay, the
actual peak-period capacity of the bottleneck should
be used, including vehicle mix, weaves, and geomet-
rics. Alternatively, counts may be used. However,
for determining queue length, capacities should be
considered to be approximately 2,000 vehicles per
lane per hour because vehicle mix, weaves, and geo-
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metrics become largely irrelevant when vehicles are
waiting in line.

DETERMINING LOCATIONS OF BOTTLENECK POINTS

Before the procedure for predicting queue delays and
lengths can be carried out, the exact locations of
the bottleneck pointa relevant to the given queues
must be identified. This task can be more complex
than the application of the procedure. During the
course of the development of the basjic model in this
study, a number of methods of selecting bottleneck
points were tested in an attempt to develop consis-
tent relationships between peak-period delays and
daily volumes relative to hourly capacities at bot-
tlenecks. Ultimately, the best relationahips were
established by using data that resulted from defin-
ing and selecting bottlenecks according to the rules
set forth in the following sectiona. 1In performing
the queuing analysis, the same rules should be used
for determining the 1locations of the bottleneck
points.

Simple Queue

When a queue forms on an express highway with heavy
traffic, the location of the queue will be upstream
of the point with the highest daily volume relative
to capacity, which point i{s the bottleneck point.
Such a point may be at a constriction, such as a
bridge or a lane drop, or at a merge or diverge of a
major flow of traffic.

A simple queue is shown in Fiqure 4, which shows
a bottleneck point and the queue upstream of it.
Also shown in Fiqure 4 are areas upstream of the
queue and downstream from the bottleneck where free
flows of traffic are maintained.

Two Oueues in Succession

In some circumstances a highway may have two bottle-

Figure 4. Simple queue, DOWNSTREAM
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Figure 6. Two queues in suocession,

DOWNSTREAM ~ DOWNSTREAM

(11 BOTTLENECK B BOTTLENECK B
BOTTLENECK A BOTTLENECK A
L]
UPSTREAM UPSTREAM

BOTTLENECK A GREATER BOTTLENECK B GREATER

151

neck points in succession. Such a circumstance is
shown in Figure 5, which depicts an upstream bottle-
neck A and a downstream bottleneck B, Here queues
and delays depend primarily on which is the greater
bottleneck (higher daily volume relative to capac-
ity). If bottleneck A is the greater bottleneck, a
queue will develop upstream of bottleneck A but no
queue will develop at bottleneck B, because bottle-
neck A will meter traffic to bottleneck B, so that
no queue can develop there., Similarly, if bottle-
neck B is the greater bottleneck, a queue will form
there but none will form at bottleneck A, because
traffic will meter itself in anticipation of the
queue downstrean.

The only circumstance in which queues will de-
velop at both locations will be where the bottle-
necks are relatively far apart and substantial vol-
umes of traffic enter and leave the highway between
them, In this circumstance traffic at the two
bottlenecks is mostly composed of different vehi-
cles, and delays at the two bottlenecks should be
predicted separately by using the volume relative to
capacity at each.

Split at Head of Queue

Where a highway divides at the head of a queue,
three potential bottleneck points may be considered
for predicting queue length and delay. This circum-
stance is shown in Figure 6, which shows bottleneck
A before the diverge point and bottlenecks B and C
to the left and right after the diverge point.
Hypothetical queues predicted from the bottlenecks
are shown in the figure, where each queue is based
on the daily volume relative to capacity of the
given bottleneck.

In the case shown, bottleneck A would generate
the smallest queues and delays, bottleneck B would
generate the largest queues and delays, and bottle-
neck C would generate queues and delays of inter-
mediate length and duration. Because it produces
the largest queues and delays, bottleneck B should
be used for prediction. Potential queues formed by
bottlenecks A and C would simply be submerged in the
bottleneck B queue.

Split Near Head of Queue

A somewhat similar circumstance to that of a split
at the head of a queue is that of a major diverge
point near the head of a queue, with the diverging
traffic entering a bottleneck itself shortly after
the diverge point. This circumstance is shown in
Pigure 7, which again shows the potential bottle-
necks for use in queue and delay prediction. As
shown in the figure, bottleneck A is on the main
line just before the diverge point, bottleneck B is

DOWNSTREAM

BOTTLENECK B

BOTTLENECK A

UPSTREAM
SEPARATED BOTTLENECKS



Figure 6. Split at head of queus.
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Figure 7. Split near head of queue.
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on the main line downstream of the diverge point,
and bottleneck C is on the route used by the diverg-
ing traffic.

Also shown in Pigure 7 are hypothetical queue
lengths implied by the three bottlenecks individ-
ually. Bottleneck A would generate the shortest
queue, bottleneck B the longest queue, and bottle-
neck C a queue of intermediate length. In this case
it is the bottleneck that produces the queue that
stretches to the point farthest upstream that should
be used for prediction. In the example the relevant
queue is from bottleneck B. As before, potential
queues from the other bottlenecks would simply be
submerged in the bottleneck B queue.

Two Queues Joining at Bottleneck

Yet another circumstance is that of two major high-
way flows joining and encountering a bottleneck at
the merge point. Such a situation is shown in Pig-
ure 8. In this case the question is whether the
daily volume relative to capacity of the joined flow
at bottleneck A should be used to predict equivalent
queues and delays for the two merging flows of traf-
fic, or whether the two flows at bottlenecks B and C
should be considered separately. In this circum-
stance the flows should be considered separately.
The daily volumes to be used are those at bottle-
necks B and C. The capacities to be used, however,
are not those at bottlenecks B and C, but the frac-
tions of the capacity at bottleneck A available
through channelization to the traffic flows from
bottlenecks B and C.

BOTTLENECK B QUEUE

BOTTLENECK B QUEUE
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Queue Joining Queue Near Bottleneck

A final circumstance is that of two major highway
flows joining upstream of a bottleneck on one of
them. This circumstance is shown in Figure 9 by
three hypothetical cases. In all three cases a main
line queue is generated from bottleneck A. Three
different possible queues are illustrated from bot-
tleneck B, which is upstream from bottleneck A and

applies to the merging traffic where it enters the

main flow.

In case 1 bottleneck B creates a small queue for
the entering traffic. This is the circumstance in
which the entering traffic is a relatively small
fraction of the traffic on the main line and can
merge into the main flow without difficulty. Pre-
sumably, the relationship between daily traffic and
potential merge capacity at bottleneck B would
create only a minor queue. In case 2 a queue is
formed upstream of bottleneck B equal in length to
that on the main line. Here both flows are deter-
mined effectively by bottleneck A, and there is
really one queue with two equivalent tails. 1In case
3 bottleneck B creates a queue longer than that of
the main line upstream of the merge point. Here the
queues are probably separate in cause and operation.

Which of these three cases applies in any given
situation is difficult to determine because the gen-
eral circumstance is, in part, equivalent to two
queues in succession. The following guidelines,
however, may help determine which case applies. If
the traffic flows through bottlenecks A and B are
largely composed of different vehicles, the queuing

e
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Figure 8. Two gueues joining at bottieneck.
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Figure 9. Queue joining queue near bottieneck.
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prediction can probably be accomplished separately
for the two bottlenecks, as in cases 1 and 3. If
most vehicles from both routes are destined for bot-
tleneck A, however, the gqueuing should probably be
predicted by assuming one queue with equivalent
tails from bottleneck A, as in case 2.

Summary

The rules just discussed for bottlenecks would indi-
cate that

l. The relationship between gqueue delays and
daily volumes compared with hourly capacities per-
tains only to unbroken stretches of congested
traffic;

2., The ratio to apply is that of the point with
the highest daily volume compared with hourly capac-
ity, the point of which will be at the head of the
queue; and :

3. The delay to apply is that to the most dis-
tant end of the queue.

There are qualifications, and the rules need to
be applied with careful attention paid to actual
circumstances. But with adequate consideration of
geometrics and traffic flows, following the rules
previously described yields clear relationships be-
tween queue delays and daily volumes relative to
hourly capacities at bottleneck points.

STRENGTHS AND LIMITATIONS OF THE PROCEDURE

The procedure described in this paper has a number

BOTTLENECK B QUEUE
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of strengths. Primary among these are its ability
to use traffic assignment data as input, its sin-
plicity, and its generally reasonable and consistent
results. The procedure appears to solve success-
fully the extremely difficult problem of predicting
vehicle arrival and service rates. At the same
time, however, the relationships developed for the
procedure are based on data collected for only a few
queues. Only six data points for morning inbound
queues and eight data points for evening outbound
queues could be derived from observations of traffic
in the Boston core area. Further, some of these
data points are subject to question.

An additional limitation of the procedure is {its
narrow range of applicability: morning inbound and
evening outbound queues in the cores of urban areas
about the same size as Boston. No attempt was made
to calibrate procedures for queues in reverse flows
or in nondirectional flows (such as on circumferen-
tial routes), for temporary queues where construc-
tion projects are under way, or for queues in urban
areas of different sizes. Nevertheless, the basic
approach appears to be applicable to these circum-
stances, and analogous procedures could be derived
for them with further data collection and analysis.

Certainly, addressing problems of queuing is cen-
tral to improving the operations of many urban ex-
pressway systems. To the extent that the basic
approach can be applied to other cities and circum-~
stances, the prediction of queuing from relation-~
ships between daily traffic and bottleneck capaci-
ties may provide a powerful analysis tool. It could
enhance considerably the analyst's ability to pre~
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dict and evaluate the potential impacts of urban ex-
pressway projects.
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