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Development of Survey Instruments Suitable for

Determining Nonhome Activity Patterns

WERNER BROG,ARNIM H.MEYBURG,AND MAN FRED J.WERMUTH

Generation of travel behavior dats by means of empirical surveys is an impor-
tant element of transportation planning. At the same time, relatively Iitde
attention has been paid to the rules for collecting and determining the
methodological quality of the data. The methodological design of such
surveys is relatively oompiiaated beaauseof a number of influenae
fartors that may ultimet.dy be reflected in the validity of the results. The
issueof survey instrument design is discussedin detail. A number of msthod-
dogiczl tests are examined that wera intendad to improve one of the weak
points in surveys of tsaval behavior-tha design of suds instruments. Initially,
it was concluded that a diary-type instrument would haw to be used to en-
sure proper reaording of tiip dataiis. An ideal diary was davalopad that was
used in savaral survays. Sut it becems evident that this instrument design, in
spite of its high msthodokrgieel quality, was unsuitable for Iarge+oda surveys,
suah as those frequently used in transportation planning, becauseof Organira-
tiorsal and cost problams. Tharefore, an additional seriesof teats was deval-
oped to simplify these diaries and to transform them into a form suitable for
iarga+cale mail-back surveys. Each tast serieswas tested empiriadly with de-
taileddocumentationofraportirrgdafiaenaaa. Thus it was fmaible to present
in an undarstendabla manner tha development of a survey instrument of da-
sirable quality. The final varsion of the instrument design, wtsish was the
outgrowth of the empirisal tests, has been usad subsaquarstlyin numerous
large-male applications in several countrias. In the course of these applica-
tions the methodological quality of the desi~ was ronfirmed, vvhiah ulti-
mately justified the development rests.

The influence of measurement procedures and measure-
ment (survey) instruments on measurement results has
to be recognized at the outact of any empirical sur-
vey. Therefore, the survey procedure has to be in-
cluded as part of the overall research approach
(J). Typicallyr a measurement process (i.e., survey
procedure) is composed of a number of elements that
can be subsumed under the following categories (2,3):--

1. Problem formulation, theoretical reference
frame, analyais concept:

2. Base population, sampling unit, sampling pro-
cedure, weighting, population values;

3. Survey method and instrument(s);
4. Survey implementation,response rates; and
5. Data preparation, evaluation, and analysis.

The third and fourth categories are the subjects of

this paper. The development and use of survey in-
struments designed to meaaure actual nonhome activ-
ity patterns are described in this paper.

Empirically measured travel behavior is the most
important input to transportation planning decisions
becauae it constitutes the basis for explanation and
prediction of future travel activities. Methodolog-
ical deficiencies of this measure have direct conse-
quences for all aubaequent phases of the transporta-
tion planning process.

Meanwhile, the mail-back household survey, which
measures nonhome activity patterns, has become a
standard compnent of transportation planning. Gen-
erally, the survey instruments used in this process
are the result of years of developmental work. In
this paper such a developmental process ia retraced
in terms of content and chronology on the basis of
the KONTIV design (~).

Two aspects will be emphasized. First, the la-
borious path of such developmental work, including
its accompanying setbacks, is illustrated. Second,
it will be shown that basic methodological research
also can produce, as by-products, fundamental and
substantive analytical and theoretical insights.

1

EARLY DEVELOPMENTS

When preliminary developmental work toward the iae-
provement of methods for measuring nonhome activity
patterna started in Germany in 1972, the qenerally

accepted method for empirical surveys was the per-
sonal interview. For example, in an intensive per-
sonal interview survey (~), the course of the daily
trips to work or schml was investigated in addition
to various other aspects. Three main basee for
criticism arose out of such survey efforts:

1. The survey measured average rather than ac-
tual travel behavior;

2. Information (e.g., abOUt fXWSl time) was es-
timated by the interviewee)and

3. Only a segment of the individual’s mobility
was investigated.

Consequently, the results of such interview in-
formation were unsatisfactory when validated on the
basis of objectively measured values for travel
time, distance, and cost. For example, only three-
quarters of automobile drivers estimated their
travel time within a tolerance level of *25 per-
cent. (Admittedly,the generation of objective com-
parative data is difficult 1ss this instance.) On
averager travel time was underestimated by 11 per-
cent Q).

For the transit user the situation was quite dif-
ferent. Although the share of respondents with re-
ports of travel tiraewitbin the tolerance level of
*25 percent was greater (naaaely,79 percent), the
average error was substantially higher and in the

opposite direction, namely an average overestimation
of 36 percent [see Table 1 (~)1.

The strong distortions caused by these roisesti-
mates are describ+d in Table 2 (~), which gives a
breakdown of trips into their sccess, S9ress, and
travel-time components. Automobile drivers claim to
have spent, on average, only a total of 6 min on ac-
cess and egress, including the search for parking
spaces, whereas tranait users recorded 62 min for
accessr egress, waiting, and transfer times.

The methodologically oriented reader of such re-
sults could draw two significant conclusions.
Firstr the reported travel behavior and characteris-
tics deviated substantially from reality even though
these respondents experienced the real values of
these trip elements twice during each working

(school) day. Second, the biases are of a system-
atic nature and apparently are related to the user’s
attitude toward the respective travel mode. Hence,
in the caae of public transit, the particularly dis-
turbing access, egressr waiting, and transfer times
are overestimated drastically.

From a conceptual point of view, these resulta
[which were substantiated in several other studies
(~)1 indicated that the subjective perception of
nuch measures constitutes an important determinant
of travel modal choice. l%is concept has found
entry into the relevant models under the terms per-
ception and perceived values (~). The method0l09-
ical analysis of these findings leads to two conclu-
sions. First, data about travel behavior must not
be collected (inquired about) in a 9eneral form
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Table 1. Acrurscy of travel-tirns estimates for automobiles and transit (~).

Reported (interview) Travel
lime for

Item Automobde Public Transit

8ample size 800 520
Correct estimates (within t25 percent error) (%) 72 79
Incorrect estimates (> 25 percent error) (%) 28 21
Index of average demation from the correct travel ttme 89 136

(objective time = 100)

Table2.Reportedzstirnatasof travai-tints components for automobile and
transit users (~).

Travel

Item
T]me
(rein)

Automobile users (n = 800)
Walk from residence topwking; from parking to destination 6
In-vehicle travel time 41
Search for parking at destination 1—
Total 48

Transit users (n= 520 )
Walk from residence to boarding stop; from alighting stop to 28

destination
In-vehicle travel time 22
Total waiting and transfer time 34

TotaI 84

(i.e., not in terms of average values); they need to
have a concrete temporal reference. Second, activ-
ities cannot be viewed in isolation. Instead, can-
plete daily activity patterns are needed to consti-
tute the basis of analysis.

It could be shown, for example, that the record-
ing of beginning and termination times of a trip is
more accurate than the direct reporting of trip
lengths. The implicationsof this for further meth-

orological considerations are as follms. First,
the data about travel behavior need to be collected
for specific survey days. Second, a diary-type sur-

vey instrument should be used, which requires en-
tries about complete daily activity sequences.
Third, a written survey form is preferable to the
personal interview. However, this does not indicate
by what means the survey instrument should be de-
livered to the respondents, i.e., by mail or by
meana of an interviewer.

DEVEMPMENT OF AN ACTIVITIES DIARY

Based on the recognition that surveys about general
(or average) travel behavior and of estimated infor-
mation lead to invalid results, an activity diary
(Q) was developed in 1972, in which the target popu-
lation (sample) waa asked to record in writing its
complete daily activity set for specific survey
dates.

This diary (see Figures 1-4) was a brochure of
about 8 x 6 in. in size, the cover of which listed
the name of the target person, the day of the week,
and the date of the respective survey day. On the
inside cover were 12 numbered lines for trip en-
triesr where the odd-numbered trips were designated
by a different color in order to make this page of
the diary visually clearer and more appealing. On
this page the respondents were supposed to enter the

I Day of

I the Week
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most important aspects of their sequence of activ- fornrfor the accompanying person contained informa-
itiea during that day; i.e., location of the day’a
first activity (usually home), starting time of the
first trip, activity aaaociated with that trip
(e.g., work), and time of arrival at destination.

All subsequent tripa for that day were recorded
according to the same pattern on the inside cover.
Thus the temporal sequence of activities and the
reasons (trip purposes) for the diverse nonhome ac-
tivities were determined. At the same time, the
format and layout of the instrument ensured that
this rough record of daily activities could be out-

lined in the course of the day (i.e., en route,
cloee to the time of the occurrence of any partic-
ular activity). This constituted the basis for the
additional questions in the activities diary.

Separate survey sheets for each trip were afixed
to the top ,of the inside right cover. There were
two sheets for each trip; the first was to be used
by the target person who was completing the diary.
The second trip sheet referred to any possible ac-

~nyin9 traveler. These individual survey sheets
were equipped with a register that made it simple to
locste quickly the two sheets that belonged to any
one trip. A color code waa used for each trip that
corresponded to the color scheme of even- versus
odd-numbered trips recorded on the left inside cover.

The survey form for a specific trip performed by
the respondent contained the following information:

1. Accurate address of destination,
2. Specification of up to three accompanying

parsona (e.g., neighbor, son, uncle),
3. All travel modes used on a particular trip,

and
4. Detailed description of the destination ac-

tivity.

A window was cut in the space where the specifi-

cation of the accompanying person waa recorded so
that this specification appeared on both sheets (for
the respondent and the accompanying person) without
the need to record the same information twice. The

tion aa to whether that person had accompanied the
respondent from the start of the trip, whether the
person stayed with the respondent at the destina-
tion, and, if applicable, what the person did subse-
quently.

ORGANIZATIONAL PROCESS FOR USE OF ACTIVITY DIARY

The diary was intended to be completed by the re-
s~ndents, but the demands on the respondents both
in terms of time and contents comprehension were
substantial, especially for first-time use. The
necessary instructions could not be transmitted
easily in writing to the respondent. fiencethe use
of interviewers was necessary, but they played the
role of adviaora rather than interviewers.

The procedure went as follows. First, the inter-
viewer conducted a preinterview with the respondent,
collecting the relevant aociodemographic data. The
interviewer●xplained the structure of the diary and

helped fill in the sequence of activities for the
day before the interview. Then the diaries were
handed to the respondent for subsequent unassisted
re~rting of activities on the specified survey days.

Finally, a postinterview was arranged to discuss
the respondents” experiences with the diaries, to
review the completed diariesi to make any correc-
tions or additions that came to light at that time,
and to collect the completed diaries. By this tech-
nique it was possible to determine how well respon-
dents had fared with the diaries and how complete
the recorded information was.

The technique of a personal trip diary repre-
sented significant progress both in terms of content
and method. With respect to content, the diary,
which required the reporting of entire activity se-
quencee, by necessity alao provided information for
the transportation planner about walk and bicycle
tripa that had been ignored typically up to that
time. The high share of nonmotorized travel in
total individual mobility was registered with some
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AVS No. of MobilityIndex
my Trips (ri dKY. 100.0)

5.14
;

100.0
4.90 95.3

3 4.66 90.7
Visjtby ioterviewcr

S.02 97.7
5 4.66 90.7
6 4.76 92.6
7 4.43 86.2

VM by intrrviewxr
8 4.82 93.8
9 4.45 86.6
10 4.67 90.9
11 4.74 92.2

Vit byinterviewer
12 4.83 94.0
13 4.S2 87.9
14 4.48 87.2

surprise, at least in the ?aderal Republic of
Germany.

Pros ● methodological point of via9, progress was
achievad because trave1 behavior had not baan re-
corded in general ●nd ●verage terms, but rather w-
cording to actual ●ctivities, ●nd ●mtlmates had baan
replaced by ●ethodologically mperior teohniquos.
Navarthelesa, the problama ramalnad that one survey
day prwtded only ● sagmnt of ●n individualta mo-
bility behavior, ●nd that traval bahavior could vary
from day to day.

Baaed on these problems it was decided to inves-
tigate the travel ●ctivities of a population for two
consecutive waaka, with ●ach day re@ring the w
pletion of ● ●aparate diary. Bacauae it could be
•~tti that the motivation for completing these

diariaa would deoraasa with tima, tho Interviewers
took on the ●dditional tamk of viaitittgthe ●axple
houaaholds ●d providing tha raapondants with re-
nawad ●noauragaaant. Also, roqondenta wara handed
diarias for only 3 to 4 daya at ● tin, which were
then chaokad ●nd ●xchangad againat new onaa for the
next aet of daya. Only highly qualified ●nd aanmi-
tive interviewers aould ba uaad for this difficult
task. Tfmrefore tha sampla wam divided into several
aubaamplaa for which the survay waaka wara ●tag-
gerad. Hance the intorviawara did not have to con-
duct all preinterviawa ●nd pomtintarviawa on the
●ama days. :natoad, they racaivad a rathar ~li-
oated work plan (aaa Figura 5) aocording to which
they had to conduct tha preinterviawa, the rapaat
visits, ●nd tha poatinterviawa on ●paolfic daya for
SWCifiC houaaholda.

This forx of ●urvoy organisation parmits ● tima-
aariea investigation with diarioa. It ia alear,
however, that ●uoh ●urveya hava to M linlted in
tarma of. s~le sise bacauaa of organisational and
financial conatrainta.

Tho ●valuation of the data collected by xeana of
these diarie8 indicetoa that the ●xpmmiva ●dviwry
function parformad by the interviawera waa abso-
lutely necessary. Aa indicated by the data in Table
3 (g), the n-r of trips recorded fOr the firot
day was highest, with ●ll ●ubaaquent daym showing a
dacl ine. This continuity wa8 interrupted only for
the daya following ● visit by ●n interviewer, i.e.,
the number of raportad trips inoreaaad only to da-
creaae ●gain until tha naxt visit.

It boa- clear that, from ● methodological point of
view, this diary ●pproach constituted the beat in-
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strument in the early 1970s. However,
suitable for use in large-scale surveys
large geographical or time dimensions.

it wan not
that cover
The objec-

tives for further developmental work were the elitni-
nation of the interviewer (adviaor) and the simpli-
fication of the diary to such a degree that
self-administered, mail-back surveys would become
feaaible.

In the course of a new prete8t series, the dia-
riea were still delivered by interviewee. But the
interviewers would only hand out an instruction
sheet to the sample houeeholdm, rather than provid-
ing d’etailedverbal explanations. The completed di-
aries were returned by mail, thus eliminating the
poaaibility of checking the diaries for accuracy and
completeness.

The these reawna, this preteet wae subjected to
a systematic ●rror analysia of each diary, which re-
vealed the following reeultsr

1. About one-third of the diariee did not con-
tain any recognizableerrors,

2. About one-fifth contained mistakea that could
be corrected subsequently by taeanmof careful data
preparation (e.g., miesing return trips hams, inac-
curate destination addrese), and

3. Another fifth showed niatakes of such sever-
ity that the diary wae unueable or only partly u8-
able [eee Table 4 (~), Version 1].

A more detailed analysis of the miatakee indicated
that

1. Forty percent of the errors pertained to the
trip destination addrem, mst of which could be
corrected subsequently;

2. Approximately 25 percent of the errore oc-
curred in the trip-purpose specification, meet of
which could be corrected; and

3. A little less than one-quarter of the defi-
ciencies pertained to incomplete information, aontly
miaaing trips~ only 14 percent of these could be re-
constructed in the data preparation phame [ace Table
5 (~), Version 11.

Tzblo4.Rzqxwwquzli4vtmrecdvitvdizYv@.

Item Vzniorl1‘ Version 2b

8axnple tie 118 133
Usable diaries (%)

Without mistakaa 62 60
WithsmaUmiatakea 18 20— —
Total 80 ~o

Unuzableoronlyputlyu$ablediarica(%) 20 20

‘Evsry activityreprawm a trip. bzvary modswad comtituteas trip.

Tsb406.RzportinazrromforzzUVItYdlW(@.

Overall, about three-quarteraof the recognizable
errors could be corrected (Table 5). Thie result
waa considered ●atiafactory. In principle, it ap-
peared feaaible to conduct such aurveya with purely
written inatructiona accompanying the survey instru-
ment. The relatively high nuxber of unueable or
only partly usable survey reaponaea were attribut-
able to the c~lexity of the required recording
procedure that had not been altered up to this stage
in the development of the survey lnatrument.

Before tackling this particular iaaue, another
problen had to be ●ddreaaed, which pertained to the
contant of the survey inatrumentr namely the defini-
tion of the tern trip and the recording of travel
xodea. Up to this vemion of the diary, a trip was
understood aa the activity that links two geographi-
cally ●eperate placam where the respondent pursued
●ctivities. Therefore, it waa necea8ary to record
all modes of travel that were necessary to overcome
the spatial separation. This aa~t reeulted in the
follwing iasueac

1. It wa8 possible that respondents did not re-
cord walk trips that were necessary in conjunction
with the use of individual or public trana~rtation
modes\

2. If a travel mode had to be used repeatedly
(e.g., different subway, bus, or street car lines),
this mode could only be recorded once; and

3. The sequence of use for the different modes
waa not hsediately diacernable from the diary en-
tries.

The methodological solution that eliminated these
imsues completely could only lie in the definition
of trip aa cmprising each individualmode used on a
apacific travel eegment. ~io meant that a separate
survey sheet would have to be used for each change
of mode. The obvious diaadvantege was the increased
reporting effort required of the respondent.

tie reaulta of a teat with a diary that used the
trip definition just outlined were as follws.

1. The number of usable diaries did not change.
2. The nuxber of diaries with correctable minor

errora increaaed slightly (see Table 4, Version 2).
3. The number of recorded trips per diary in-

creased fra 4.21 to 4.79, as was to be expected.
of course, this increaae was directly related to the
change in trip definition. In fact, when the number
of tripa were compared on the basis of the same trip
definition, the second, more work-intensive version
of the diary led to a reduction in the number of
trips by about 10 percent.

4. The total number of errors per diary de-
creased from 3.41 in the pretest to 3.05, which was
attributable mainly to improvements in the reporting
of destination addresses. This is plausible because
this addresa now was the parking 9ara9e~ the bus
stop, and so forth.

Total(n=2,S22) Varsiorrl’(n=402) Vrraion2b(n=405)

Correctable @’rzctrble
[tern

Ckwrtwtable
Percent Errorr (%) Pzrcrnt ErYon (%) Percent Errors

Errorindeatixiation addrrss 60 46 40 36 26
)lrrorirrtrippurposc 20 16 28 24 52 ::
Error in mode used 4 2 3 1
Error in specification oftime 5 2 5 ;
Incomplete reporting 11 6 23 14 2; 8“

— — — — —

Total 100 72 G 77 101 72

‘Every ●CtMty rcpmsenta● trip. bEVUYmod?-d constltuta a trip.
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5. The number of uncorrectable
from 0.78 to 0.85 per daily diary.

errors increased
Nore than half

ol! the errors pertained to trip-purpose information
(see Table 5, Version 2).

These results suggested a return to the former trip
definition because the problems that gave rise to a
change in trip definition could be overcome by other
meana:

1. Walk trips as access and egress elements
could be supplemented at the time of data prepara-
tion (verification);

2. The sequence of travel mode used and multiple
use of a mode on a single trip could be constructed
easily on the basis of origin-destination informa-
tion, in case this is important information for a
specific study~ and

3. The majority of investigations that deal with
explanation and prediction of, and the ability to
influence, travel behavior are mainly directed to-
ward the main mode used on a trip.

FRQM ACTIVITY DIARY TO PERSONAL SURVEY POW

From a methodological and theoretical point of view,
it can be concluded that the diary met the require-
ments of methodological quality extremely WS1l.
Nevertheless, as stated previously, the use Of a
diary becomes problematic for large, possibly widely
dispersed, populations. The financial and organiza-
tional costs for the necessary interviewer advice
an~ for the instrument layout make it somewhat ques-
tionable.

This implied that a survey instrument had to be
developed for larqe-scale surveYs that maintained
high ,nethodologicalquality while at the same time
was technically simpler and more aultable for self-

FiWm6. Rowvsmionofqussdomnsha.

administration by the respondents. with the survey

content given (namely measurement of all trips dur-
ing a day characterize?iby times, purpose, destina-
tion, and travel mode used), the following aspects
gained importance in the further development of the

survey instrument: formulation of questions, ar-
rangement of questions, layout, and cowaunications
between respondents and survey administrators.

First Pretest Phase for Questionnaire Develoment

A multiphase pratest series was performed in order
to transform the activity diary ko a survey instru-
ment suitable for large-scale surveys (~). The main

effort during the first pretest concentrated on gen-
erating preferably a single-sheet questionnaire out
of an extensive diary, while still being able to re-
cord all trips of a survey day. This requirement

had several consequences: (a) the number of re-

corded trips had to be more limited~ (b) the brief
sumnary of the sequence of the dayls activities (in-
side front cover of diary) had to be deleted, and
(c) space for comments and open questions was to be-
come limited.

Tw questionnaires were developed for this first
pretest that differed with respect to tha formula-
tion and arrangement of the questions and the lay-
out. In the first questionnaire trips had to be re-
corded in rows. Trip purpose had to be entered in
longhand rather than checked off on a preprinted
listing. All trip characteristics could only be
listed once. Each trip row contained fields for
making longhand entries and square’s for checkoff
marka (Fi9ure 6).

In the second varsion of this questionnaire trips
had to be recorded in columns. Trip purpose had to

be recorded in longhand. For each block the moat
frequent and obvious categories of answers were

HInstructions II Date

—— —~ ~
First
Name HOestlnation

Address
I

Instructions

II I I

~ ModesUsed

I- —-

.
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given for eaay checkoff~ all other anawera had to be
provided in longhand (Figure 7).

The reaulta of this first pretest atage can be
sunnnarizedaa follows.

1. The percentage of usable forma for the column
version of the questionnaire waa higher (97 percent)
than the row version (92 percent) [ace Table 6 (~)].

2. Sixty-two percent of the reported trips con-
tained incorrect or hcomplete inforsaation$ 46.4
percent were correctable [see Table 7 (~,~, First
Pretest Phaae].

Fi~m7. Colurnnveraionofquassionstaire.

3. Moat deficiencies in reporting pertain to the
destination addreas (41.9 percent of all trips), but
most of them are minor problems because the majority

of the addreaaea can be located, given the geograph-
ical aggregation level typically used in transporta-
tion planning (see Table 7, First Pretest Phase).

4. In the row version an increasing number of
errors occurred with respect to trip purpose for the
return trip home. This ia attributable to the open
form of the question used in this version.

5. The average number of daily trips meaaured in
this pretest was 3.59 trips per person compared with

I Enroute Trip
Itinerary I

Destination/
Purpose M 4

Pracise r~Destination
Mdress

UaableQue8tioMzircs (%)
Unuaabk.or

Questionnaire Sample Wlthuut Comectable
Version Size

Partly Usable
Error Questionnaire Total Questionnaire (%)

COlumn layout 59 88 9 97 3
Row layout 58 89 3 92 8
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Tat407.lnoormct●d incomplete reporting (&~).

Incorrect Reports Per 100 Trips by Trip Characteristic

Timing of Departure
Destination Address Purpose Mode

Incomplete Reports
and Arrival

Pretest
per 100 Trips

Phsse Total NoncorrectableTotal Noncorrectable Total Noncorrectable Total Noncorrectsble Total Noncorrectable

Fust 41.9 2.9 4.4
Second

2.6 1.6 1.0 5.5
29.6

3.6
8.1 4.7

8.6 55
1,6 1.9 0.8 0.8 0,4 2.0 0.4

4.21 trips reported in the diary. The reasons for
this lie in the absence of an interviewer providing
additional motivation for respatding and in the lay-
out of the questionnaire.

Second Pretest Phase

The second pretest again made use of the row and
column versions of the questionnaire (see Figures 6
and 7). However, this time the layout was improved
substantially. Oual color printing made the ques-
tionnaire more readable and visually more appeal-
ing. In the column version the fields and squares
for recording answers and checkmarks, and in the row
veraion all odd-numbered trips, appeared in a dif-
ferent color from that used on the rest of the
form. Also, emphasis of certain important informa-
tion wss achieved through varying letter size and
thickness.

These changes in layout were supposed to improve
the results of the first pretest phase in two re-
spects. First, the clearer distinction between in-
dividual trips impresses more on the respondent that
all trips for a day were to be recorded. Second,
the visual emphasis was supposed to reduce the share
of unanswered questions because the respondent could
see i~iately where entries were expected to be
made.

The second pretest phase ia distinguishable from
the first one mainly because the questionnaires were
to be tested under the conditions of a mail-back
survey; i.e., respondents had to master the ques-
tionnaire responses exclusively on the basis of the
written instructions provided, and the respondents
had to be motivated in writing to participate in the
survey.

TWO variations of the column version, distin-
guished by their different spatial arrangements,
were developed for purposes of a mail-back survey.

Seth variations were printed on one sheet, one of
them a folded version where all trips could be re-
corded across that page. The other version was
printed on both sides of a smaller sheet, with the
implication that the sheet had to be turned over
after the first four trips had been recorded on the
front. l%is laat version, of course, had a postage
cost advantage.

The results of this second pretest phase were as
follows.

1. The number of reported trips increased from
3.59 during the first phase to 3.97 trips, which can
be attributed to the improved layout. The remaining
discrepancy with respect to the 4.20 trips per per-
son per day obtained in the diary is explainable be-
cause no control and immediate corrections function
can be provided in the mail-back questionnaires.

2. The row version contained the largest number
of incomplete answers (39.9 percent of all trips),
whereas the front and back column version contained
the fewest (37.9 percent). These differences are
not dramatic, but it should be emphasized that the
number of errors was successfully reduced for all
questionnaire versions compared with the first pre-
test phase [see Table 8 (~,~)].

3. The number of mistakes with respect to the
destination address decreased from 41.9 to 29.6 #sr-
cent. Unfortunately, the share of noncorrectable
errors increased from 2.9 to 8.1 percent (see Table
7, Second Pretest Phase). It is worth mentioning
that the first pretest phase was conducted in 14u-
nich, where a greater amount of professional deci-
phering of address information could lx provided by
the administering agencies (Socialdata GIsM3 and
Technical University Munich) than in the case of the
second pretest phase, which took Place in other
German cities. Of course, the three questionnaire
versions usad were identical; i.e., the destination
address had to be provided in longhand [see Table 9
(9,10)].
‘~ The row veraion had more errors in the trip
purposes, aa was the case in the first pretest
phase. Again, the reason was because of the open
answer format (Table 9).

5. The number of unusable questionnaires and
noncorrectableentries increased with the age of the
respondent. Older people had particular difficul-
ties with the accurate reporting of trip purposes.

6. For complicated trip sequences (i.e., those
that involve more than travel to and from a single
destination or involve several intermediate activi-
ties), the number of unusable responses was high.
Trip purpose and destination address aeeeared to
cause the most difficulties.

TrbloS.Inaormstandinaon@@tsrepotingoftripsitsmlathtodiffamntquastionnzimversioew(~~).

Incorrect and Incomplete Incorrect and Incomplete
Trip Reports Reports per 100 Trips

Reported
Questionnaire Version Trips Total Noncorrectable Total Noncorrectable

Columnversionwith foldout 1,384 540 146 39.0 10.6
Column version with front-to-back printing 1,148 436 138 37.9 12.1

Rowversion 1,253 Soo 144 39.9 11.5
—.

Total 3,785 1,476 428 39.0 11.3
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Table9. lncorr=t andinm~lem ttipm~m ~ttiphatidtic and@mti~ntim Wmim(~~).

Incorrect Reports per 100 Trips by Trip Characteristic

Timing of Departure incomplete Reports
Destination Address Purpose Mode and Arrival psr 100 Trips

Questmnnaue Versmrr Total Noncorrectable Total Noncorrectable Total Noncorrectable Total Noncorrectable Total Noncorrectable

Column version with foldout 29.7 7.8 4.0 0.9 1.9 1.1 1.4 0.8 2,0
Column version with front-to- 29.7 9.7 4.0

0.0
1.0 1.1 0.4 0.6 0.1 2.5 0,9

back printing
Row versmn 29.5 7.3 6.1 2.9 2.7 0.7
Total

0.2 1.4
29.6 8.1 4,7 1.6

0.4
1.9 0.8 ;:: 0.4 2.0 0.4

In summary It can be concluded that the column

version resulted in higher reporting accuracy. The
decisive impetus to use this version in future sur-
veys, however, was provided by a second criterion
that was investigated in this pretest phase--will-
ingness to respond.

The front-to-back variation on the column version
led to a better response rate: approximately 80
percent as compared with the row version of about 70
percent.

CommunicationBetween Survey Aqency and Respondent

In the previous sections a distinction was made be-
tween two forms of communication: personal delivery
and pickup of the survey forms (first pretest) and
self-administered mall-back surveys (second pre-
test). The impact of these two methods on response

accwacy was investigated. However, comrnunicat ion
still has two additional important implications:
response rate and survey cost per respondent.

These two aspects were investigated In another
pretest series. Eight different forms of communica-
tion were tested, including a mix of personal and
postal delivery and pickup. For the case of postal
service use, additional distinctions were made as to
whether prior notification by postcard was provided,
and whether the recipients of the survey instrument
received reminders by telephone on the actual pre-
scribed survey day.

The results of these methodological tests were
clear [Table 10 (Q)]. Even the simplest postal ser-
vice method (method 1) resulted In a better response
rate (73 percent) than the most costly personal at-
tention method (method 7) by meana of interviewera
(7o percent response rate). A response rate df 81
percent was achieved by means of the most expensive
postal method [i.e., Including notification and re-
minder by telephone (method 4)]. Even this method
is less expensive than the least-expensive personal
method (method 5).

On the basis of these results it waa decided to
conduct such surveys in writing by the mail-back
process and to ensure as good a response rate as
possible by written notification and remindep
notices (~).

Further Aspects of Survey Instrument Dealgn

Three additional aapecta of questionnaire design
that often are relevant In specific practical appli-
cations are as follows: (a) ease of coding for com-
puter analysis, (b) consistency of questionnaire
contents, and (c) surveys for foreign nationals.

Questionnaire Design for Computer Processing

Frequentlyt questionnaires were and are designed
such that they meet the demands of researchers In
the best possible manner. These demands and stan-
dards, however, often run counter to the needs of
the survey respondent. Outstanding examples for
this are the attempts to design the eurvey queetlon-
naires in machine-readable form. A comparison of
two substantially identical questionnaires, one in
machine-readable format and the other with a normal
layout, produced the following results (~:

1. The machine-readable form produced 10 percent
fewer activities,

2. The number of deficient questionnaires was
almost 3 times aa high,

3. The number of unusable questionnaires was al-
most 4 times as high, and

4. With identical strategies for irtcreaeingthe
response rate, the machine-readable form produced a
66 percent rate and the normal layout a 79 percent
rate.

Consistency of Questionnaire Content

In addition to the design and layout, the question-
naire content hae a significant ●ffect on the will-
ingness to respond. The logic of the questionnaire
content (as perceived by the respondent) rather than
the length la important. In thie context It can be
ahown that It Is feaeible to transmit to the respon-
dent the necessity of answering related and inter-
nally consistent eets of queotiona, but that the re-
spondents Comprehension and willingness to respond
is reduced markedly when this rule Is violated.

TableIO. Respa*ramsadsuwey~ttiafintiaofqutimntimtiti~tiarnddltia msdtods(~.

Response Cost-Index Sample Size

Distribution and Collection Method Rate (%) per Response (households)

Method l-postal distribution andretum 73 100 1,188

Method 2- not]ficatmn, postal distribution and return 78 101 1,196

Method 3-post al distribution, reminder on survey daY, postal return 77 104 1,193

Method 4-notification, postal distribution, reminder on survey day, postal return 81 113 1,191

Method 5- postal distribution, personal pickup 64 188 544

Method 6-personal delivery, post al return 63 215 517

Method 7-personal delivery. personal pickup 70 278 1,071
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Fi~N8. Columnvanionofqmrti0nmair8forforei~m.

11

lTrii)Number. I
Drawn in-Ti& of
Departure

~M

Mode u--k

I-4---&
I 111-

I 1

Destination / Time of
Address Departure

This point is illustrated in the following table.
on the basis of three surveys (~) with different
degrees of internally logical sets of questions:

Version
1: 2: 3:
Complete Partial NO
Internal Internal Internal

Item
Sample size

Logic Logic Logic
55,107 19,380 12,091

Response rate (8) 81 77 67

Version 1 contained queationa about demographic and
nonhoma activities (i.e., the internal logic was
fully recognizable). Version 2 included additional,
somewhat related queationa (i.e., a logical unit was
present, in part). Finally, in version 3 sets of
questions of entirely different content were added
(i.e., the logical unity wae lost). The data in the
table indicate that the response rate was affected
quite substantially.

Surveys for Foreign Nationals

In several countries with sizable groupa of foreign
nationals it is zometimes neceesary to survey this
population segment of a specific study area. TyPi-
cally, one of the following eurvey tachniquea ia
used. Either the foreigners receive the standard
local-language form aa it is dietributad to the do-
mestic population sample in the hopes that they have
acquired sufficient local-language facility, or they
receive a version prepared in their native language.

The second method obviously is the better ap-
proach, but it ie not sufficient to generate ade-
quate response in terms of numbers and quality. Be-
cause foreigner do not only differ in their native

language but alao in terms of mentality (e.g., ~r-
ception of time), forma of expreasione, and ~ni-
catione, a straight technical translation of the
survey instrument cannot suffice to prwide them
with a eurvey form adequate for their needm (ace
Figure 8). In order to generate a questionnaire of
equal content it was neceanary to conduct similar
types of pretemt series ae were described for the
develo~nt of the local-language questionnaire in
earlier aactionm of this paper. Different tech-
nique and presentation had to be teated.

Such a questionnaire waa developed for Turkish
and Yugoalav residents of Berlin, Germany, and it
was used in the context of a large-scale murvey in
that city (U). A meaningful ~riaon of the re-
mponme quality between the German and foreign-
language vereions of the questionnaire can be made
for the reporting of trip deetinationa because that
ampact was probably meet difficult for foreigner to
answer accurately. The reaultm indicated that the
difference in response accuracy was insignificant,
and it was certainly much better than had been ob-
served in other eurveye involving foreign remidents
[see ‘fable11 (12J].

Tsbloll. Exam@aof rwporma quality for Garrnsn and TurkishawlYusINIav
residsntsofSsrlin,Gsrnrmy(@

German TurkishandYugoslsv
Item Residents Residents

Sample size 19,000 2,000
Reporting quality ofdestination

address (%)
Directly usable 78 72
Usablewithextra effort 20 18
Not usable 2 10

Responserate (%) 77 71
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The questionnaire design for foreigners alao has
a direct impact on the response rate. A 13 percent
difference in response rates could be observed be-
tween a straight technical translation and a spe-
cially designed survey form. According to the data
in the following table (~, an additional increase
of 9 percent was possible by means of special
foreign-language telephone and written assistance
and information:

Sample Response

WJ!sY
Straight technical

Size Rate (%)

translation 3,000 49
Specially designed

survey form 1,084 62
Specially designed survey

form with special
assistance provided 2,712 71

The detaila of the developmental process involved in
generating a survey instrument that meets criteria
of high methodological quality, high expected re-
sponse rates, suitability for large-scale surveys
into travel behavior, and relatively low costs have
been described. Through a number of real-world
tests it waa demonstrated that a variety of design
aspects can have substantial influence on one or
more of the preceding criteria. Each test series

was tested empirically, with detailed documentation
of reporting deficiencies.

The tests revealed how important methodological
research into improved survey design can pay off in
terms of better and more complete survey results
and, hence, in terms of more reliable and valid in-
puts into travel modeling and transportation plan-
ning. Uncritical use of unproven survey instruments
can have a profound influence on the efforts by
transportationplanners and policy decision makers.

In this paper the evolution of better travel sur-
vey instruments based on diary-generated information
through research performed in Germany has been dis-
cussed. It should be made clear that many of the
methodological insights gained In the course of
these developments have been implemented in sophis-
ticated trsvel data-collection efforts in the United
States. Excellent examples of such efforts have
been presented in two recent papers (13,14).——
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Sequential, History-Dependent Approach to
Trip-Chaining Behavior

RYUICHI KITAMURA

The charerteristirs of trip-purpose chains ● re examined, ●nd ● gsquentisl
modeloftripchaining,whioh oonsistsof hhtorydependemt probabilities
of wtivity choice, is developed. Ststistial mmlyee$of the study indicste
thet there is ● consistent hierwohial order in eequenoingmotivitiesin ●

okminwhera less-flexible srtivitiss tend to be pursued first. The atalyees
deo indiozte that the at of motivitiespursued ins shsin tends to be
homogeneous. Thus activity trmssitionswe more organized snd systematic
than whet ● Msrkovian model wuld depict. Basedon these findings, a
sequantiel nsdel of ●ctivity ohoise is formulated that, in spite of its simpli-
fied representation of the history of ● olmin, satisfactorily represent$ tha
observed behavior. Althou@ the focus of the model is on direct linkages
between activities, the model is rapable of representing those charmterie-
tics ●ssociated with the entire set of activities in a chain. The results of the
study etrongly support the sequential modeling ●pproach ●nd indicata its
prsctial usefulness in tha analysis of trip-draining behavior.

The importance of understanding trip-chaining be-
havior has long been recognized in connection with
nonresidential trip generation (l_)or with urban
land use development (~). Underlying this is the
dissatisfaction with the way tripmaking has been
dealt with in the conventional transportation plan-
ning process or in location theory (~). As planning
emphases in transportation shifted from infrastruc-
ture construction toward systems management and pol-
icy development, it was recognized that there was an
increased need for a more fundamental understanding
of travel.behavior (4-6). The responses of urban
residents to the rece-nt-oil crises (7,8) have made
evident the importance of investigate-ng-trip-chain-
ing behavior. Its importance is clearly seen when
considering how the temporal and spatial distribu-
tion of trips in an urban area is affected by the
way people organize their daily schedule of activi-
ties and combine trips. Statistical analyaes have
been accumulated to form a substantial body of em-
pirical evidence [reviews of previous works on re-
lated subjects can be found in Hanson (~) and Damss
(2)1. Yet many questions that have arisen in model-
building efforts of trip-chaining behavior remain to
be answered.

In this study one of the criticsl issues in trip
chain modeling is addressed: representation of the
decision structure involved in trip chaining. Frcm
the viewpoint that pabple plan and schedule before-
hand a set of activities to be pursued in a trip
chain, the decision process can be best represented
as a simultaneous one that concerns the entire act.
However, only few studies (~ have taken this ap-
proach in the past becauae of enormous difficulties
involved in developing a practical simultaneous
model of trip chaining. Moat previous studies took
se9UentiSl modeling approached, which include the
Markovian approach that hss been traditionally used
in trip chain analysis (1,3,11-14). The validity of——
the Merkovian models, h-~ver, has not been thor-
oughly examined in the past, although several ●rmpir-
ical observations (15-18) have indicated thet trip——
chaining is not Nerkovlan.

The objective of this study is to demonstrate
that the inadequacy of previous sequential models is
caused by their failure to represent patterns of
activity sequencing and activity set formation in
trip chaining, and further to detaonstrstethat trip-
chaining behavior can be adequately deecrltasd by
sequential probabilities of activity choice that
incorporate the history dependence of the behavior

13

in a simple manner. The sequential approach has an
obvious advantage because it represents the behavior
by a simple model structure while avoiding combina-
torial and other problems that may otherwise arise.
At the same time, the approach may appear to be in-
consistent with the viewpoint that trip chains are
planned and scheduled beforehand while considering
the entire set of activities, and not the transi-
tions between activities. Nhether a sequential
analysis can adequately describe the behavior is,
therefore, a critical question to be examined, be-
cause if the sequential approach is proven to be
valid, it will lead to practical models of trip
chaining that can be developed for a wide range of
study objectives. This study is an effort to estab-

lish a basis for such development.
In examining the adequacy of the sequential ap-

proach, two aspects are discussed: sequencing of
activities in a trip chain, and tendencies or pref-
erences in formation of the set of activities to be
pursued in a trip chain. (This study is concerned
with types and sequences of activities in a chain,

but not with their spatial or temporal attributes.
A modeling effort that extends the present study

into the temporal dimension can be found in a paper
by Kitemura and Kermanshah presented elsewhere in
this Record.) How these two aspects affect sequen-
tial probabilities of activity choice is demon-
strated. Following this, empirical observationa are
made, and the nature of trip-chaining behavior is
characterized.

BACKGROUND

The equivalence of the sequential and simultaneous
approaches can be found in the following identity.
By letting ~ be the nth activity in a trip chain
for the case of three activities,

Pr(Xi =A,X2=B,X3= C)=Pr(X3=ClX,=A,X2=B)Pr@2‘91X1

=A)Pr(X,=A) (1)

The probability that a given set of activities is
chosen and pursued in a given order can be repre-
sented by a set of sequential and conditional proba-
bilities. (The same identity has been used in re-
lating simultaneous and sequential formulations of
discrete choice.) Nhen the conditionality in Equa-
tion 1 is appropriately represented in sequential
probabilities, then the sequential approach is
equivalent to the simultaneous approach to triP
chaining.

It may be argued that activity choice cannot be
adequately described by probabilities that are con-
ditioned only on the past; activity choice may also
be dependent on future activities because a set of
activities to be pursued may have been planned be-
forehand. Nevertheless, it can be seen that the
backward dependency on the PSat imPlies forward
dependency on the future-as well. By using Bayes’a

rule,

[ 1pr(XilX2)= [WX21X1)W%)l/ :lpr@21X1WXi)
(2)
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Pr(X1 [X2,X3)=[Pr(X31Xl,X2) WX21XI)MXI)1

[ 1+ Z Pr(X31Xt, X~)Pr(X21X1)Pr(X1)
xl

(3)

and so forth. A forward dependent probability can
be always exprea.aedas a function of backward depan-
dent probabilities. That a choice is conditioned on
the past implies that it is also conditioned on the
future.

The preceding discussion indicates that the prob-
lems of previous sequential analysea, many of which
used Markov chains, do not lie in their sequential
structure, but rather they lie in their inadequate
representation of the conditionality. In the fol-
lowing discussion it is assumed that there are pat-
terns in sequencing activities in a set, and also
that the choice probability of a given activity set
is predetermined. The intensity of direct linkages
between activities, or transition probabilities,
which have been the main focus of previous studies,
is viewed as a consequence of the patterns and pref-
erences in chmsing activity sets and sequencing
activities. It is then shown that these patterns
and preferences can be represented by the condi-
tional transition probability, whereas the two
Markovian assumptions--hLetory dependence and sta-
tionarity (or time homogeneity)--are inadequate.

Suppose the number of activities in the set (de-
noted by k) is fixed and the individual is com-
pletely indifferent to the sequence of activities.
Conaider an activity set (w) and two activity
types (A and B). Because the sequencing is com-
pletely random, all the sequences obtained by parmu-
tating the activities in w have the identical
probability. Accordingly, for all w,

Pr(Xn=A,Xn+l= Blti)=Pr(Xm=A,X~+,=Blo) (4)

and

Pr(Xn=Alw)=Pr(Xm =Alo) m,n=l,2, . . .. l-l (5)

Then, if A is included in at least one activity set,

Pr(Xn+l = BIX.
L

=A)= ZPr(Xn=A,Xn+l=B/ti)Pr(w) 1
[u 1+2Pr(Xn=Alti)Pr(ti)

=Pr[Xm,l =B\Xm = A] (6)

Namely, the pairwise activity transition probabili-
ties are stationary. Note that this conclusion is
not affected by the probability with which u is
chosen [Pr(w)], i.e., it does not depend on the
preferences in activity set choice.

Although the pairwise activity transition proba-
bilities are stationary, they are not history inde-
pendent even in this simplified case of random
activity sequencing. Suppose that the choice proba-
bilities of sets that include activities A, B, and D
are zero, while those of other sets are positive.
Then

Pr(Xn+l=B1....XQ=C, Xn=A)>=A)> O (7)

and

Pr(Xn+l =Bl, ... X*= D,. ... &= A)=O (8)

Therefore, pr(Xn+~lXl, X2, . . “J xn) # Pr(xn+llxn).
For the activity transitions to be Markovian, the
probabilities with which respective activity Sets
are chosen must conform with those depicted by the
transition matrix of a Markov chain, a condition
rather groundless to asauma.

The pattern of sequencing activities in a trip
chain ia another source of history dependence, which

also yields nonstationarity. Suppose activity A
tends to be pursued before B, but the individual is
indifferent to the sequencing of activity C. Then
for u that involves A, B, and C, the probability
Pr(X+l = BI .

{
... q-c,kr) variea depending on

whet er A has been pursued before C. Now suppose
both A and B tend to be pursued earlier in a chain,
but again C is equally likely to be pursued in any
order. Then, Pr(Xm+l =AI~=C, U) > Pr(Xn+l=
AIXn = c, w) ifm<n. The first example indicates
that sequencing patterns cause history dependence,
and the latter indicates that palrwise transitions
become nonstationary.

Any Markov chain exhibits certain patterns of
activity set formation and sequencing. But the re-
versal is not always true~ i.e., given patterns of
set formation and sequencing cannot always be repre-
sented by a Markov chain. The discussion in this
section also implies that sequencing and activity
set formation can be representad when the condi-
tional probabilities of activity transitions are
appropriately specified. The failure of Markov
chain models is caused by their invalid representa-
tion of the conditionality. In the following sec-
tions characteristics of trip chaining are first
observed, and then a sequential model is proposed.

DATA SETS

Empirical observations of this study are made by

using the 1965 Detroit area transpcmtation and land
use study (TALUS) data set, the 1977 Baltimore
travel demand data set, and published transition
frequency matrices from Chicago, Buffalo, and Pitts-
burgh [reported by Hemmens (~)]. The TALUS data
set is most extensively analyzed, whereas the other
sets are used to examine the generality of the re-
sults obtained. A significant advantage of the

TALUS data set--a conventional origin-destination
survey result--is its ample sample size, which is
crucial for the analysis carried out in this study.

The original TALUS data file, which contain~
records of 320,090 trips made by 82,050 individuals~
was screened to exclude those individuals who did
not have a closed series of trips that originated
and terminated at home (which may include intermedi-
ate returns to home)? who had no car available to
the household or did not hold a driver’s license,
who were younger than 18 years old, who used travel
modes other than car, and those who made work trips
on the survey day (walk triPS are ~t r~rd~ ‘n
the TALUS data unless they were work trips). The
last criterion is introduced because of the substan-
tial differences in travel and time use patterns
between those who worked and those who did not on
the survey day (20,21). As a result of this screen-
ing, the aemple<n~yzed includes 76,025 trips and
27,901 trip chains made by 16,520 individuals [.s
geographical subsample of this was usad in previous
studies (~,~~~)].

All screening criteria are also applied to the
Baltimore data set, and a sample of 1,789 trips and
697 trip chains made bY 435 individuals is o~
tained. The transition frequency matrices fr09 the
other three metropolitan areas include all observa-
tions without comparable screening. Aa is clear
from the screening criteria, the internal h_e-
neity of the sample is emphasised in this studY~
whereaa some aspects of travel behavior are placed
out of its scopes such as the effect of travel -e
on trip chaining. Individuals with tranait trips
are eliminated for this reason, and they are not
analyzed because their sample size is too small for
statistical analysis.

The 27,901 trip chains in the sample frm the
TALUS data set contain 48,124 sojourns with an aver-
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age chain length (average number of sojourns per
chain) of 1.725. Although 62.2 percent of the total
chains are single-eojourn chains, they account for
only 36.0 percent of the total sojourns, and approx-
imately two-thirds of the aojourne belong to multi-
aojourn chaina. The significance of multieojourn
chains ie evident. The average chain length of the
Baltimore sample ie 1.57, approximately 10 percent
leas than that of the TALOS sSMple. The average
number of chains per pergon is 1.60, which compares
with 1.689 of the TALUS sample.

The direct traneitione between activities in trip
chains in the TALUS and Baltimore samples were firot
analyzed by ueing a transition matrix, with the aa-
suakptionthat trip chaining can be represented by a
stationary and hietory-independent Markov chain.
These two eemplea are different from thoee of other
atudiee in that the individual who made work trips
are excluded. Nevertheless, this preliminary anal-
yaie of the pooled transition matrices indicated
that the present samples share many of the trip-
purpoae linkage patterna reported in the literature
(L,Q,E).

NONSTATIONARITYOF ACTIVITY TRANSITIONS

Although traditional Narkov chain analysis (which
uses the pooled transition matrix) offers a conve-
nient means of data sunnnarization,the implicit sta-
tionarity assumption that the same transition matrix
applies to all transitions in a trip chain is too
restrictive for rigorous analysis of the behavior.
In thie section the nature of trip chaining is ex-
plored by using a nonstationary Markov chain, where
each step of transition has ite own transition me-
trix that ie not necessarily identical to those of
other steps (the first step of transition refers to
the transition from the first purpose to the second,
the second step of transition is the one from the
second purpose to the third, and so forth).

Nonstationarity in Trip-PurposeChains

Nonstationarity in the observed trip-purpoee transi-
tions ie etatj.aticallyexamined by applying the
likelihood-ratio test (~. The result,sare e.uznaa-
rized in Table 1. TO eliminate empty cells in the
frequency matrices for as many steps as possible,

Tabh 1.Likelihood-ratio test of atztiotwfity in tfippufpoae trsmitiona.

Fors=l, ...,9 Fors= 2,...,9

Row column Row Column
Trip Purpose Totsla Totalb Tot d’ Totald

Home — 357.6’ 77.9=
Personal businesqf 337.6” 155.2’ 4;.@ 39.9
Socisl-recreationh 603.? 157.4’
Shopping 374.1’
Serve passengers m“

Totali

38.8 65.7’
36.5 93.0” 26.9

8787’ &2” &6e-
1,585.4eJ 1,585.4’J 310.oe’k310.oe’k

Note: in places Were dsgrest of freedom are imthted, the df for the column totat
cannot be definedIn theconventiorulmanner;thereforethe ratio ((total df) + (no.
of columns)1 ispresentedhere.

adf = 32.

bdf = 2S.6.

Cdf= 28.
‘df = 12.4.
~ignificsnt N a = 0.00S.
Includesschool.

‘Signifimnt ~ta = 0.0S.
h.Includesem.medtrips.
‘A definitionof the Ioa-likelihoodratio statisticu givenin hderwn and G.wdrnn
.(=).

‘df = 128.
‘df= 112,

two trip purposes with fewer observed frequencies
are merged with others, as indicated in the table.
The test is Conducted for the firet nine transition
metricee, and aleo for the eight matrices from steps
2-9. The null hypothesis is strongly rejected in
both ’casee.

Together with the overall chi-square values, the
data in Table 1 present chi-equare statistics for
the row and column of each trip purpose, where the
row total represents the nonstationarity in the
transition probabilities from the trip purpoee, and
the column total represent8 that to the trip pur-
pose. For the first caee (steps = 1, 2, . . ., 9),
all rowe and columns have significant statistics,
except the column total for shopping, which indi-
catee that shopping is pursued with a relatively
stationary probability throughout a chain. The
large chi-equare value associated with the transi-
tions to serve-passenger trips and that from social-
recreation tripe are also noted.

The second test excludes the transition matrix of
the first step. The drastic reduction in the over-
all chi-equare value from the first test indicates
the extreme distinctiveness of the matrix for the
first transition. Note that the firat transition
determines whether the individual pursues only one
or more than one sojourn in a trip chain. The data
in Table 1 also indicate that the variation in link-
ages with serve-pesaenger trips is a major source of
nonstationarity in the second step and thereafter.

The peirwise distinctiveness of two successive
transition matrices wae also tefated,and the first
four metricee were found to be significantly differ-
ent from each other (with chi-square values of 783.3
between the first and second stepe, 92.1 between
second and third, and 38.9 between third and fourth,
all with df = 16). NO significant difference was
found after the fourth step. This ia at least
pertly caused by the reduced sample size in the
transition frequency matrices of later stepe. At
the same time, the implication of the result that
the transition probabilities are stabilized in later
steps of a trip chain is intuitivelyagreeable.

Variation in Linkage Patterne

The nonetationarity in trip-purpose transitions im-
plies that a pair of activities my have strengthen-
ing or weakening linkages with each other, and that
sotaeactivities tend to be pursued earlier or later
in a chain. The data in Table 2 indicate by step of
transition those trip-purpoee pairs for which more
than expected transitions are observed in respective
steps. Neny of the diagonal cells are significant
in all steps, which indicates that activities of the
same type continue to have strong linkages among
themselves throughout the chain. There are also
several trip-purpoee combination that are signifi-
cant only in the first few steps or in later atepe.

category HOME PBNS SREC MEAL SHOP SCHL SVPS

PBNS 1,2,3,4 1
SREC 1 1,2,3,4 1,2,3
MSAL 1,2,3 3
SHOP 1,2 1,2,3,4
SCHL 1 2
SVPS 3 1. 1 1,2,3,4

Note: Steps i through 4 indkate the step of trmwition for whkh the celi hss ● chi-
muue value of 7.879 or meater with m ●xpected frsquency of s or ar-ta. Ab-
breviations for Irip-purposs mteaories me u follows! PBNS= Pmonal business,
SREC = social-recreation, MEAL = eatmed. SHOP= shopping,SCHL= -hool.
and SVPS=sewe p~uenger%
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Eaeecially noted is the transition from eerve-
passenger trips to home in the third step. The sig-
nificance of this trip-purpose _ination in this
particular step ia caused by the dominance of the
trip-purpose sequence: serve passengers to other
activity to serve passengers to home (a later sec-

tion indicates that this is a typical sequence when
a trip chain involves serve-paasenger trips). Thus
the result suggests that the observed nonstationar-
ity is partly caused by the sequencing by the triD-
maker of the activities within a trip chain.

The variations in trip-purpose linkages were fur-
ther characterized by ●valuating for respective
steps the mean first passage times (MFPTs)”;that ia,
the expected number of transitions from an origin
state until a destination state is visited for the
first time (~). The result indicated that the
linkages to personal business become weaker in later
steps of a chain. On the other hand, the MFPTs to
serve-passenger and social-recreation trips revealed
strengthening linkages between these activities and
others in later steps.

This analysis of nonstationsrity in trip-purpose
chains strongly suggests the existence of patterns
in sequencing activities. An earlier section indi-
cated that another possible source of the observed
nonststionarity is the dependence of activity choice
on the set of activities already pureued, which is
closely zelated with the preferences in the choice
of activity set. In the following sections these
two aspects are discussed, and the ressons why such
nonstationarity exists in trip-chaining behavior are
illuminated.

ACTIVITY SEQUENCING IN A TRIP CHAIN

Consider the transition frequency matrix presented
in Table 3, which gives direct transitions between
activities in 10,555 multisojourn trip chains in the
TALUS sample. The matrix is obviously not syfttmet-
ric, i.e., the frequency of (i,j) transitiona is not
always similar to that of (j,i) transitions. Exami-
nation of this asymmetric nature of the matrix leads
to inferences aa to the sequencing of activities
within a trip chain. ,Suppoee that three activities
(A, B, and C) are to be pursued,in a chain. If the
tripmaker is completely indifferent to the sequence
of these activities, all of the 3: possible sequences
would have the equal likelihood of occurrence, and
the occurrence of each one of the 6 (= 3C2 2) PoS-
sible direct transitions would have the identical
probability. Accordingly, the observed transition
frequency matrix must be sytmnatric. The asytmftetric
●atrix of Table 3, therefore, suggests that certain
activities tend to precede others in multisojourn
chains.

Tsbla3. Arymmstryofpaa16ritfztniUonffaq~m*ix.

category PBNS SREC MEAL SHOP SCHL SVPS

PBNS 1,527’ Slsb 212’J ; ,;~~b 27= S15C
SREC 462~ 1,563’ 285 ,yt 722
MEAL 114’4 277 ,& ’191 17 158
SHOP 844: 1,122 188 3,1O!Y 8~ 687d
SCHL 43b 27 ~~b 23’ s9f
SVPS 618= 737 140 1,030b 93s 1,564”

f’iote: AbbrcvlM&nsaredeflnedinTtble 2. l%efootnotesinthet~ble,excopt &cIve
the Wniftcsnceof theasymmetryhetwmen(1,j) tnd 0, I) ceUs.

‘Not partof the ex~minmmnof asymme fry.
bObservation greater than expectation; sisnifkant ●t a = 0.00S.

cObmrvatlon Ies than expectation; s@ifkant st a = 0.05.
d

Obae?vatkm lest than expectation; sirnlftcant at a = 0.005.
~nwation mester than expectatk.n; slrnificsnt ●t a = 0.05.

Observation Iett than expectation; dgnifkant at a = 0.01.

‘Observation treater thm ●xpectation; signiflcam at a = 0.01.

Tendencies in Activltv Set7uencinq

Examination of the pooled transition frequencyzta-
trix of Table 3 indicatea that the transition fre-
quenties that are statistically xost a~tric
involve personal business; for example, 815 transi-
tions from personal business to social-recreation
versus 462 transitions from social-recreation to
personal business; 212 transitions froa personal
business to eating meal versus 114 froa eating seal
to personal business; and so forth (the differences
are significant at a - 0.005). Obviously, per-
sonal business tenda to be pursued in a chain before
the other activities. School trips have a similar
tendency, and they precede personal business tripe
more frequently, and serve-passenger trips have a
tendency to precede school and personal business
trips.

There are also several pairs of trip purposes of
whose sequences the tripmeker is apparently indif-
ferent: 285 transition from social-recreation to
eating meal versus 277 from eating meal to aocial-
recreation; 1,091 from social-recreation to shopping
versus 1,122 from shopping to social-recreation;and
so forth. None of these differences ia statisti-
cally significant at any appropriate level.

Nine of the 15 (- 6C )
?

pairs of different
trip purposes have statist tally significant asym-
metry (a = 0.05). Based on these relationships, a
hierarchy diagram is constructed to show the tenden-
cies in sequencing activities within a trip chain
(Figure la). The perfect consistency in the hier-
archical relationship among the trip purposes is
shown in the figure; for ●xample, serving passen-
gers, which precedes school, also precedes those
trip purposes that school precedes. These consis-
tent tendencies in the observed direct transitions
are quite noteworthy.

Hierarchical relationships among activities are
evaluated in the same manner by using transition
frequency matrices from Chicago, Buffalo, and Pitts-
burgh; these are summarized in Figure lb. The re-
sult is in satisfactory agreement with the TALUS
result. This is also the case for Baltimore, but
the sample size is insufficient to be conclusive.

ActivitY Serruencingand Uncertainty

The hierarchical order of activities presented in
Figure la,b indicates that activities in the higher
order tend to be accompanied with spatial or ten-
poral fixity, or both. For example, serving a pas-
senger quite often implies that a person must be
chauffeured to a given location by a given timer
personal business such as banking must be pursued at
a predetermined location, and w forth. The result
indicates that activities of less flexibility tend
to be pursued in a trip chain lxnforemore flexible
activities, such as social-recreation and shopping.
Cullen and Godson (~ argued that an individual’s
itinerary for a day is foraiedby articulating activ-
ities with less fixity around those activities with
high spatial or temporal fixity or both, which act
aa pegs in daily activity achaduling. A previous
study (4) revealed that serve-passenger tripa
largely prescribe an individual’s daily travel pat-
tern because of their fixity. The present study
reveals another tendency in urban travel behavior:
a relationship betwean sequencing of ●ctivities and
their fixities.

The information available fra the data set doea
not allow statistical determination of the reason
why this sequencing pattern is observed. Neverthe-
less, the consistent observations from the four met-
ropolitan areas offer the basis for constructing
behavioral inferences on the subject. A rather
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Figurel.Himrchyinactivitya.quandngintsipchains:TALUS (Oatroit),Suffdo,Chizapo,mdpRMaur@.

a. TALUS (Oetroit) b. Buffalo, ChiCd.gO, and pittsburghl

SERVE PASSENGERS

I

:
UORK

I

kl$.$:?

1

‘ A solid arrow indicates that the hierarchical
relationship is observed in all three rnatro-
pol itan areas. A broken arrow indicates that

SHOPPING the relationship is observed in the area

I

Indicated by the initial (e. g., “B” for Buffalo).

‘Includes eating meals. Serving passengers is
excluded from the original tabulation

SHOPPING SOCIAL-RECREATION [AT MEAL SOCIAL-RECREATION* Note: Transit frequerscy tsbleaare reportad in Hammns {~.

straightforward conjecture postulated here is that
the sequencing pattern observed In this study is a
result of individuals consideration of uncertainty
in activity planning.

Consider the case where an individual is combin-
ing both fixed and flexible activities into a
chain. Quite typically, the exact amount of the
required to accomplish an activity is not known to
the individual beforehand. If a flexible activity
is pursued first, and if it takes longer than ini-
tially thought, then the individual may not be able
to attend the fixed activity in time. Note that an
activity with spatial and temporal fixity by defini-
tion demands the individual to be at a certain loca-
tion by a certain time. On the other hand, if the
flexible activity takes less time, an unexpected
block of time must be somehow spent. In either
case, if the individual recognizes this uncertainty,
it appears logical for him to pursue the fixed ac-
tivity first. The observed activity .sequencing
pattern thus suggests that uncertainty plays a sig-
nificant role in the activity planning of an indi-
vidual. The pattern is perhaps a result of an indi-
viduals effort to minimize risks because of the
uncertainty and to pursue a set of activities effi-
ciently in a trip chain.

HISTORY DEPENDENCE IN ACTIVITY CHOICE

An earlier section indicated that preferences in

activity set choice in general make activity transi-
tions history dependent. The sequencing pattern ob-

served in the previous section implies that activity
choice depends on the series of activities already
pursued in a trip chain. The strong direct linkages
among activities of the same type also suggest his-
tory dependence. However, little ●xploration of the
nature of history dependence in trip chaining has
been”made in the past, and most analyses were con-
cerned only with direct linkages between pairs of
activities. The analysis of this section, which
focuses on tbe entire series of activities in trip
chains, reveals additional characteristics of activ-
ity set forsaationand activity sequencing.

Although there are many possible ways of statis-
tically examining the history dependence in trip
chaining [e.g., triples used by Parkes and Wallies
(&S); also see Anderson and Goodman (~)1, ~st of
them encounter problems with sample size because of
the scarcity in the sample of chains with a large
number of sojourns. Accordingly, this study takes
on an approach of tabulating the frequency of chains

by the trip-purpose sequence and directly examining
the history-independence assumption by using a con-
tingency table analysis technique.

History Dependence of Three-SojournChains

Consider those trip chains with three sojourns,
namely, Xl, X2* and X3 $ home, and X4 = home. The
history-independence assumption can be stated for
these chains as

Pr(X3=klX,=i,X2=j)=Pr(X3=klX2=j) (9)

for all i, j, and k # hcme. Namely, the conditional
probability that the third activity is k given the
second activity (= j) is independent of the first
activity (= i). This null hypothesis can be tested
by tabulating, for given X2, the frequencies of
the third activity categories by the first catego-
ries, then by examining the independence of the re-
sulting two-way contingency table. This contingency
snalysis is equivalent to applying a nonstationary
Msrkov chain of the first order to test the history
itiepenslenceof three-sojourn chains. The results
for 2,760 three-sojourn chains found in the TALUS
swle are given in Table 4. To ensure a sufficient
number of observations for each sequence of trip
purposes, the original six trip-purpose categories
are collapsed into four, as in Table 1.

In part A og Table 4 the results for those three-
sojourn chains whose secondtrip purpose is personal
business (including school) are presented. The row
represents the first trip purpose, and the column
represents the third trip purpose. If the history-
independent assumption holds, then every row should
have the seseedistribution of cell frequencies. The
expected cell frequencies under this independence
assumption are shown in parentheses.

As expected, the four contingencytables (parts
A-D, Table 4) are all highly significant, which in-
dicates that the conditional probability that a cer-
tain activity is pursued as the third activitY#
given the second one, does depend on the firSt ac-
tivity pursued in the chain. Especially notable are
the much higher-than-expected frequencies of the
diagonal cells; tripmekers tend to repeat the sme
type of activity as the first and third activities
in a trip chain. ‘I%isrecurrence of the same activ-
ity type is particularly noticeable for serve-
pessenger trips when the eecond purpose is not SerV-
ing passengers (see parts A-C of Table 4). The
diagonal cell for serving passengers alone accounts
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Table4.Frequenciesof three-sojourn chains by sequenw of trip Purpms.

A X2 = PBNS——
x,,

xl PBNS SREC SHOP SVPS Tot al

PBNS 107 38 .37 13 245
(66.2) (42.5) (84.6)

SREC
(51.7) [50.7]

(2:.’3) (13?0) (25:9)
SHOP

(I5:) [513

O& (12
112

(3%
SVPS

(23.1) (31.51

(4:.;)
103 179

m’:) (6?i (37.8) [1$3.11

Total 165 211
[44.0] [:9%]

611
[28.51 [1;9?1 [280.9]

B X2 = SREC

X3
x, PBNS SREC SHOP SVPS Total

PBNS
(17rn6) (6%

167
(35?9)

SREC
(47*7) [85.31

183
(2;.?)

278
(109.5) (5;.1) (79?4)

SHOP
[87.8]

(12.?) (4:.’5)
118

(25*4) (33%
SVPS

[44.9]

(21.:)
2oa

(8:.;) (4;.!) (;8?2) [249.91

C X2=SHOP.—
X3

xl PBNS SREC SHOP SVPS Total

PBNS 163
(4::)

311
(66?1) (153.2) (4;.?) [65.21

SREC
(24.1) (3:.:)

m“
(90:6) (2%

SHOP
[73.91

(576) (889) (1:7?6) (6i:)
SVPS

[6%

(25.:)
114

(3;:) (9:!6) (30.0) [2;0%

Total 144 524 170
[61.91 [6% [59.51 [294.01 [4iR]

D X. = SVPS
xl,

x, PBNS SREC SHOP SVPS Total

PBNS

SREC

SHOP

SVPS

(:.’8)

(6.:)

(6.:)

(2;.’5)

(:.!) (10!)
(2 (9.%)

():9) (a

(311 (3:.2)

(2Y5)

(21’.’t)

(21:)
107
(80.3)

[4!:]
[7%
[14?1

[1%

Total 165 219
[80%]

767
[9%1 [47.4] [243.11 [467.81

Total 1k9
[3?1 [18?1

31s
[3% [15.61 [f40.7]

Personal business (PBNS) inrlude$ SCINWLand serial.recreatira (SRIK) includes eating meal. For other abbreviati~s, see Table 2.

( k Exper@d cell frequenry
t ]: Row, r-alumn, w grand total of chi-square values.

for 40.0 percent of the total chi-square value of
part A where the second purpose is personal busi-
ness. The corresponding values are 38.1 percent for
part B (X2 = social-recreation), and 48.8 Percent
for part C (3$ = shopping). The sequence of serve
passengers to other activity to serve passengers is
observed much more frequently than the expectation
under the history-independenceassumption, and it is
found in 12.2 percent of the all three-sojourn
chains, or in 36.6 percent of those three-sojourn
chains that involve serve-paesenger trips at all.
The corresponding statistics from the Baltimore sam-
ple are 14 and 36 percent, respectively. This se-
quence pattern is obviously cauaed by the typical
requirement that a person chauffeured and dropped
off at a place haa to be picked up later. The exam-
ination of individual cells of parts A-C also indi-
cates that the probability that the third purpose is
serving passengers is significantly smaller than the
-PeCtation when the first and eecond purposee are
not serving peeaengers.

The data in Table 4 also indicate that the activ-
ities pursued in a chain quite often all fall within
one trip-purpose category. For example, the se-
quences shopping to shopping to shopping And social-
recreation to social-recreation to social-recreation
are the most frequently observed sequences. Thie,
together with the recurring tendency previously dis-
cussed, indicates that the activities pursued in a
chain tend to be homogeneous. Of the 2,760 chains,
61.9 percent involve only one trip-purpose category,
23.6 percent involve two, and only 14.5 percent in-
volve three different trip-purpose categories as
defined here. These observations differ substan-
tially from the expected values obtained by assuming
coaplete independence in trip-purpose transitions
(i.e., Markov chain of the Oth order): 6.9, 56.8,
and 35.3 percent, respectively.
sample 72 percent of chains with
journs involve only one or tw
gories.

The sequences of activities

In the Baltimore
three or more so-
trip-purpose cate-

in these three-

aojourn chains showed exactly the same hierarchical
order as in Figure 1. Note that this analysia takea
into consideration the sequences of indirectly
linked activities. Thie can be seen in part by
examining the aaymmetry of the matrices presented in
Table 4.

Similar tabulations and analyses were done for
1,164 four-sojourn chains in the TALUS sample with
the aasseclassification of trip purposes into four
categories. However, of the 256 (= 4*) possible
sequences of trip purposes, 150 had observed fre-
quencies of 3 or less, which warranted only limited
statistical examination of these chaine. Even a
data set of 76,025 trip records appeare insufficient
for rigorous statistical investigation of history
dependence in trip chains. Nevertheless, available
statistic indicate that the inferences made for the
three-sojourn chains are likely to aeely to the
four-sojourn chains. For example, 547 (47 percent)
of the all four-sojourn chains involved only one or
t- trip-purpose categories. Again, trlpmakers tend
to pursue only a few types of activities in a
chian. Of the 292 chains that contain two or three
serve-passenger trips, 220 (75.3 percent) in~lve
the eequences of serve passengers to other activity
to serve passengers, or serve passengers tO other
activity to other activity to serve paesengera.

Possible Explanation of Homogeneity

Obviously, the temporal and spatial distribution of
opportunities are among the factors that contribute
to the hraaogeneityof activity types pursued in a
trip chain. For example, pureuing personal business
is not likely in the evening because businesses or
shops are typically closed, and chains made in the
evening tend to be social-recreation oriented. CcaS-
mercial corridor developsaentyrovidea many shopping
opportunities in close proximity, thus making shop-
ping trip chains convenient and economical.

It may also be hypothesized that the individual
has clear perception as to the compatibility of dif-
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ferent typa of activities in a chain [closely re-
lated is the Vhstpmht that individual perceive
different tixe periods of a day as suitable for dif-
ferent types of activities (~,~]. In some ex-
treme cases a set of activities may be viewed as a
full course of activities and pursued aa such; for
example, movie to late dimer to h-, or viait a
friend to bowling lane to a pizza house to drive the
friend home to home. The latter forms a four-
sojourn chain that involves saial-recreation and
serve-passenger trips. If a bundle of activities is
perceived as one integrated activity, introduction
of a heterogeneous activity into the chain may not
be acceptable to the individual. Even the way the
individual ia dressed may affect trip chaining. If
the individual leaves home to pursue a homogeneous
aet of activities and is dresamd suitably for this
set, he may feel uncomfortable to visit locations
for heterogeneous activities where he may be over-
dressed or underdressed. This may be especially the
case in the TALUS sample because of its survey date
and the conservative nature of the region.

SEQUENTIAL ~EL OF TRIP CHAINING

Sased on the results of the previous sections, which
examined the nature of trip-chaining behavior from
various viewpoints, a simple model of the behavior
is developed and tested. The key issue in the
xodeling ●ffort is how to represent the past history
of a chain in a simple and practical form.

Model Framework

The model development effort is based on the premise
that the observed characteristics of trip chaining
can be adequately represented by making the transi-
tion probabilities dependent on the past history of
the chain. The findings that activities in a chain
tend to be hcaogeneous and that inflexible activi-
ties tend to be pursued first suggest a rather sh-
ple and systematic structure of history dependence.
The probability of a given activity transition
strongly depends on the types of activities already
pursued, but may not depend on the number of times
these activities were engaged in or on the exact
order in which they were pursued. For example, the
sequencing pattern implies that once flexible activ-
ities have been pursued, the probability of an in-
flexible activity is small, but the number of the
previous flexible activities and their sequence may
have only a negligible ●ffect on the probability.
The exact representationof the history, as shown in
Equation 1, may not be necessary, and a simpler rep-
resentation my be adequate.

The conditional probability of activity choice is
formulated as follows:

M%+llxl, xz, . . ..)(n) =Pf&+il&. D,n, D2n, . .. DKm) (lo)

where D n is a binary (O-1) variable, which indi-
2cates w ether activity type j has been pursued in

the chain by the nth transition, and K is the number
of activity categories used to represent tlsehistory
of the chain. The model assumes that activity tran-
sition probabilities depend on direct linkages; thus
the probability of the next activity (Xn+l) is
conditioned on the current activity (Xn). History
of a chain, however, la not represented by the en-
tire series of activities pursued, but by a set of
binary variables (Din, . . .t DKn).

For example, suppose that activities are classi-
fied into four categories (serve passengers, per-
sonal business, social-recreation, and shoppizsq)~
and the Djn”s are defined for j = 1, z, 3 aS

‘ln =lif
n, O

‘2n -lif
n, O

serving passenger
otherwise;
personal business
Otherwise) and

Dam = 1 if social-recreation
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has bean pursued by

has been pursued by

or shopping has been
pursued by n, O otherwise.

Two activity categories (social-recreationand shop-
Ping) are grOUped together in defining the D ‘s

rn!?ng(note how they are tied in the activity seque
in Figure la). There are eight possible values of
vector Dn = (Din, D2n, D3n). Recall that ~ tran-
sitions are likely to occurwith the sequencingpat-
tern found earlier, whereas others are less likely
to occur. Naturally, the probabilities of the first
group will be larger than those of the second group
for given X + and Xn. The activity choice
probability oft?se model captures this variation be-
cause it is conditioned on Dn and thus replicates
the sequencing pattern. The preferences in activity
set choice are represented by the conditional prob-
ability in a similar manner.

The Process (Xl, X ,
i

. . .) depicted by the
history-dependentprobab lity Pr(~+lt~\ Din, D2n,

D3 ) can be represented ● s ● stationary, history-
inaependent Uarkov chain process if the states are
redefined and the state space is expanded appropri-
ately. The aet of states and the structure of the
transition matrix for this example are shown in Fig-
ure 2. The states are now defined in terms of both

Fiwu2. Ststiswmrytwmitionsmasrixafhiatorydepmsdaisf6i@aWi
Inodal.

“TO” STATE

SPSSSPSSSPSSSPS SSPSSH
“FROW STATE VBRHVBRHVBVRHBRH VBRHO

PNEOPNEOPNPEONE OPNEOM
on SSCPSSCPSSSCPSCP SSCPE

—.—.— —— .——— .—— -— ___ ___
(1,0,0) SVPS ● ‘ ● * ●

;: (0,1 ,0) PBNS ● * ● * ●

(0,0,1) SREC ● *** ●

:; (0,0,1) SHOP ● *** ●

5. (1,0,0) SVPS * ● ● ●
●

6. (0,1,0) PBNS ** ● * ●

(0,0,1) SREC ● *** ●

:: (0,0,1) SHOP ● *** ●

(1,1,0) SVPS ● * ● **
1:: (1,1,0) PENS ● * ● **

11. (1,0,1) y: ● ** ● *

12. (1,0,1) ● ** ● *

(1,0,1) p: ● ** ● *

ii (0,1.1) ● *** ●

15. (0,1,1) SREC ● *** ●

16. (0,1,1) SHOP **** ●

17. (1,1,1) SVPS ● *.**.*
18. (1,1,1) PBNS ● ****

(1,1,1) SREC *+***

;:: (1,1,1) SHOP ● ****

Note: States 1 through 4 are only for the first transition.
A “*” indicates that the transition probabil ity between
the states are positive; otherwise the probability is zero.

PBNS includes personal business and school, SREC includes
social-recreation and eating meals, SHOP represents shop-
ping, and SVPS represents serving passengers.

activity type and past history of the chain (i.e.,
vector Dn). Accordingly, the past history, as
expressed by Dn, ia au~tically specified when
the state of the process is designated, which i-
plies that

Pr&+, =jl&=i;D1.,Dz.,Dsnj=Pf(Xi+l‘jIXA=i)=Pu (11)

where X’n is the redefined nth state. NSQSIYI the

process (X’l, X’2, . . .) is a Markov chain pro_
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cess. ‘1’hisexpennion makea the analyais quite
straightforward, and atatiatical evaluation of the
model can be done as in a standard Markov chain
analyaia.

Estimation Result

Sequential aodela of activity linkage are estimated
by ueiingthe 27,901 trip chaina in the TALUS sample
with the classification of activities into four
types., as in the preceding example. Five models
with different transition structures are examined:

1. Stationary, history-independentmodel;
2. Nonstationary, history-independentmodel;
3. History4ependent mcdel with three elements

in Dn;
4. History-dependentmodel with four elements in

Dn; and
5. History-dependentmodel, a hybrid of models 3

and 4.

Models 1 and 2 are studied here aa references
againat which the history-dependentmodels are cosss-
pared. Based on the results presented earlier,
model 2 assumes a stationary transition matrix after
the fourth transition. h@del’3 ia the one described
in the previous example. The history indicator Dn
of model 4 is defined for the four activity types
without grouping shopping and social-recreation to-
gether, as in model 3. Model 5 uses the same Dn
as model 4. However, no further difference is as-

.Table5. Perfonstanoaof alternativemodelsofaotivitytransition.

smed in model 5 as to the history dependence of

activity transitions after serving passenger, per-
sonal business, and either one of social-recreation
or ahopping are all pursued in a chain.

Transition probabilities-of each model are esti-
mated by the maximum likelihood method. The good-
ness of fit in terms of the log-likelihood value and
square sum of errora in predicting the frequency of
each activity sequence ia given in Table 5. The
latter statiatic excludes chains with five or more
sojourns (about 4 percent of the entire sample) for
computational reasons. The improving goodness of
fit of the model found in the table as the number of
parameters increaaes is not surprising. Nore im-
portant, however, is that systematic prediction er-
rors diminish as more thorough treatment of history
dependence is made. The agreement between the ob-
served and predicted frequencies of respective ac-
tivity sequences ia shown in Figure 3 for models 1
and 5.

Model 1 (Figure 3a), a standard Markov chain
model, significantly underestimates the frequencies
of single-sojourn chains, overestimate most of two-
sojourn sequences, and makes extremely large errors
in. evaluating the frequencies of chains that involve
recurrence of activities, especially those involving
the following sequence: serve passengers to other
activities to serve passengers. The nonstationary
model (mcdel 2) almost perfectly replicates the dis-
tribution of chain lengths. Nevertheless, chains
starting with shopping are mostly undereatissated,
and sequences that involve serve-pasaenqer trlpa are
estimated with large errors.

-2(AL)
No.of

No. Model Parameters L C3ii-Square df SSE

1 Stationary, history independent 20 -58,403 723,648
2. Nonstationary, history independent 100 -57,668
3

1,4;1 .2 80 117,969
Niatory dependent, three-element

Dn 100
4

-S6,642 3,522.0 80 34,330
Nistory dependent, four-element

Dn 180 -56,336 4,133.4 160 8,689
5 History dependent, hybrid 150 -56,362 4,083.0 130 8,737

Note: L = log Ukelltmod;-2( AL) = -2[(L of model 1) -(L of the model)] ; and SSE = wuare 8umof errors.

F~m3, Oteamadmslesqseamdfmqtsanaiesoftrip-pssrpoeeaasfuenaee.
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The history-dependentmOdelS (models 3-5) largely
improve these defects. Wodel 3, however, still
shows significant errors for chains that involve
social-recreation or shopping trips, which Suggests
that grouping these two activity typea when repre-
senting the history of a chain is not adequate.
Examination of the log-likelihood value between this
model and models 4 and 5 also indicates this. The
performances of models 4 and 5 (Figure 3b) are sat-
isfactory, and only few activity sequences are pre-
dicted with significant errors. Note that model 5
performs almost as well as model 4, even though it
has 30 less parameters. The satisfactory agreement
between the observed and predicted frequencies im-
plies that the patterns in activity sequencing and
activity set formation are well represented by the
model, and also that the model adequately captures
the history of a chain. A simple representation of
the hietory of a trip chain by means of a set of
binary varjables makes ~aaible a satisfactory rep-

lication of trip-chaini~ behavior.

CONCLUSIONS

The atatfatfcal analyais of this study found that
there is a conaiatent hierarchical order in sequenc-
ing activities where less-flexible activities tend
to be pursued first. It was also found that the set
of activities pursued in a trip chain tends to he
homogeneous. Thus activity transitions are more
organized and systematic than what a Markovian pro-
cess would depict. The homogeneity of activity
types, patterns in sequencing activities, history
dependence, and nonatationarity in activity transi-
tions are all closely interrelated. Accordingly, it
was possible to develop a sequential, hiatory-
dependent model of activity transition that, in
spite Of ita simplified representation of the his-
tory of a chian, well replicated the observation.
Although the focus of the model was on direct tran-
sitions of activities, the model was capable of rep-
resenting those characteriatica found for the entire
chain (e.g., homogeneity and recurrence of activi-
ties and patterns in indirect tranaitiona). The
result strongly aupporta the sequential modeling
approach adopted in this study. The uaefulnesa of
the model can be ●nhanced when the history-dependent
probabilities are related to exogeneoua factors.
This ia another step that nuat be taken before the
sequential model can be applied to practical
problems.

Although the focus of this study waa on the basic
characteristics of trip chaining and ita representa-
tion by sequential probabilities, the study results
have aoma practical implication. The strong regu-
larity implied by the ~eneity of trip chains
suggeata that Peopless reaponaea to changea in the
travel ●nvironment may be limited, as far as trip
chaining ia concerned. People organize their trip
chaina while considering the typea of activities,
but they nay not necessarily minimize travel dis-
tance or coat. The importance of uncertainty in
activity scheduling suggested by the observed se-
quencing pattern also implies this. Thus travel
patterna may be less sensitive to travel cost than
what was expected. The rather eurprlaing result
that the peat-energy criaia Baltimore sample hae a
mean chain length that is 10 percent shorter than
that of the 1965 Oetroit sample also aupporta this
claim. This conjecture, however, ia subject to fur-
ther investigation. Additional subjects that can be
suggested for future investigation include examina-
tion of hierarchical relationahipa in time alloca-
tion and spatial choices for activities in a trip
chain, extension of the analysia to incorporate tem-
poral and spatial aspecta and verifying the present
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findings in that context, and investigation of the
characteristics of all trip chaina made by an indi-
vidual within the study period and of the interde-
pendence among these chaina.
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Identifying Time and History Dependencies of

Activity Choice
RYUICHI KITAMURA AND MOHAMMAO KERMANSHAH

Inthisstudyasequentialmodelofactivitypctrarnsisforrrwlctedthatcerr-
sistsoftires-andhistorvdapertdantmcdal$ofactivitycfroica.Thisanalytical
frameworkisusedtoidwrtifytime-cfdaywrdhistorydspendantchcractsris-
ticeofactivitychoicabystatisticallytestingaesriesofhypcthosss.There-
eultsindicatathatthasimplestexprassicnofthehistoryofactivityangage
mentsisanadsqrmtadsswiptor,●nd●lsothatnon-homeAcaadcotivitychcioa
isconditionallyindependentoftheactivitiesintheprsvissuschain%givwr the
activities pursusd inthecurrent trip chain. Interdqsendsnoiasof activity
types acrosstrip chcirw ● ra also characterized by aetimctsd model mafficiants.
The rasults of the study indissta thst tha dscisions aeeociatad with tha entire
activity pattarn can bsdsccmposed into interrelctsd activity choices whosa
conditional dapemdemciescan be statistically waluated.

The way individuals schedule their daily activities
and organize their itineraries has irrenediateimpacts
on the spatial and temporal distribution of tripa,
or needs for trips, in an urban area. Therefore,
representing how the choice and scheduling of activ-
ities are done and how travel patterns are formed
are critical elements in travel-demand forecasting
aa well as in baaic travel-behavior research (l-3).
This ia especially so when attempting to for~c<at
the impacts of novel changee in the travel environ-
ment or when seeking a transportation policy that
will accomplish given objectives moat effectively.

The mechanism by which trips as induced demand
are qenereted is complex. Even when only scheduling
ia considered (i.e., when and in what order a given
aet of locations ia visited and how these vieits are
arranged into trip chains), there are numerous
scheduling poaaibilities. Choice of activities and
their locations further complicates the problem.
Constrainta that govern the behavior are not limited
to monetary and time budgets as in the Claasical
utility maximization framework in economics, but

include spatial and temporal fixity constraints as-
sociated with the respective activities (~), inter-
paraonal linkage constraints (~), and other types of
constraint that portray the travel environment of
each individual (~). The interrelated activity
choices underlying an activity-travel pattern are
dependent on the time of day, as many previous etud-
ies on tiresuse have indicated (7,8). Previous em-
pirical evidence (~, and paper by-~itemura elsewhere
in this Record) at the aareetime indicatea that the
choices are dependent on history, i.e., the aet of
activities already pursued on that day.

These aspecte of daily activity and travel be-
havior are all of particular importance for the un-
derstanding and forecasting of the behavior. In
particular, the time-of-day and history dependencies
of activity choice may be viewed as the most funda-
mental elements, whose adequate representation will
lead to repreeentationof other important aspects of
the behavior as well. For example, the preferences
in forming a set of activities in a trip chain can
be described by sequential probabilities of activity

choice when their history dependencies are appropri-
ately incorporated (see paper by Kitamura elsewhere
in this Record). BY apectfying the structure of the
time-of-day and history dependencies and estimating
the model statistically, an important objective can
he accomplished: characteri~ation of activity and
travel patterna along the time dimension. When the
model includes exogenous factore that are related to
changes in the travel enviroiucentor in the popula-
tion characteristics, then the model serves as a
tool for forecasting possible changes in activitY
and travel behavior.
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An extension Of a previouS sequential analYsis of
activity linkagea is described in this study (see

P@sr by KitSMUra elsewhere in this Record), and an
attempt ia made to identify the structure of time
and history dependencies of activity choice. The
objective ia to demonstrate that the conditional
dependency of activity choice can be properly repre-
sented by a simple model structure that can be sta-
tistically estimated and conveniently applied to
practical problems. The dependency is examined by
testing a set of hypotheses and by inferring its
characteristics. Alternative model specifications
are examined, and home-based and non-home-baaed
activity-choicemodels are estimated.

The reaulta of hypotheaia testing and model esti-
mation indicate that a simple indicator of the his-
tory of the behavior--a aet of binary variables each
representing whether an activity of a given type haa
been pursued--beat explains the activity choice.
Iicme-basedchoice that determines the first activity
in a trip chain ia shown to be dependent on the pest
activity engagement, but non-home-baaed choice ia
conditionally independent of the activities in the
previous chaina, given the activities pursued in the
present chain. Strong time-of-day dependencies in
activity choice, whose temporal variations are well
captured by the model, are also shown in the study.
The results of the study consistently indicate that
the time and history dependencies of the behavior
can be represented by a simple model structure, and
suggest that a set of sequential activity-choice
models can be developed to represent and forecaat
the characteristics of daily activity and travel
behavior.

BACKGROUND

Becauae individuals develop their daily itineraries

while considering the set of activities to be pur-
sued during a certain period, activity choices (or
trsvel choices) cannot be analyzed individually, but
the interdependenciea among them must be adequately
accounted for. Such interdependencies have been
noted acrosa different time pericds of a day (~), or
among activity choices in a trip chain (see paper by
Kitamura elsewhere in this Record). Another aspect
of activity and travel behavior is the existence of
various types of constrsinta that govern behavior
(S,g,g). Many constraints are unobservable if typ-
ical survey data are the only information sources.
All these characteristic of tripmeking make causal
representationof the behavior quite complex.

A poaaible representation of activity- and
travel-choice behavior uses the concept of optimiza-
tion together with the assumption that the observed
activity-travel pattern is the one preferred the
most by the individual (n). Let ~ be the type
of nth activity, tn be its starting time, dn be
ita duration, and tn be the location where the
activity ia pursued. For simplicity, only these
four aapecta are considered here. By letting a =

~~~~i:~e$~;in~ndbe~~i$r~~ & f~~~~~. a~~
follows:

MaxindreU = U(a, t,d,l) (1)

Subjectto tn+i-(t. +d.)=s(%,%+i,tn+d.)

O<to, . . ..tn+l <T. tO=?N+, =homr

O<dn

~~C,~eE n=l, . . ..N

gi(a,t,d,Q)=Oi=l,...,G

where

s(i,j,a) = travel time between locations i and j
when the trip begins at time a,

N-

C=
E=
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total number of sojourns (including in-
termediate sojourns at home),
set of activity types, and
aet of opportunity locations.

The first constraint simply represents the temporal
continuity condition, the second repreaenta the con-
dition where the individual’s path nust originate
and terminate at home within time T, and the third
condition is the nonnegativity of activity dura-
tions. Additional conatrainta are represented in a
general form by function g in this formulation.
Function U, which may be called a utility function,
includes not only the t- and duration of each ac-
tivity but also its starting time. This ia because
the regularity and rhythms in time uae patterns
strongly auggeat that the utility of an activity of
a 9iven type iS a function of the time when it is
pursued.

Not quite obvious from this formulation is the
discrete nature of the optimization problem, i.e.,
resources are not always allocated to all activities
and srsmsactivities simply may not be pursued at all
during a given period. Accordingly, the classical
constrained optimization approach (12,13) la not——
applicable to this problem if this formulation is to
be applied to disaggregate data where behavior dur-
ing a relatively short period (e.g., 1 day) is re-
corded. The problem is also much more complex than
that of a traveling salesman. Not only the order of
visits, but also the number of visite, their loca-
tions, the way these visits are organized into trip
chaina, and their timing must be endogenously deter-
mined. When this complexity aa a mathematical pro-
graznoingproblem is combined with the additional
constraints, the task involved in representing the
behavior as an optimization problem and obtaining
its solution appaara to be prohibitive. Perhaps the
number of poasfble activity-travel patterns recog-
nized by the individual is relatively small (~) be-
cause of the constraints and limited information the
individual has, but this ia not the case for the
observer who attempts to analyze and predict the be-
havior without comparable knowledge on microscopic
factors that influence each individual.

[The approach taken by Mler and Ben-Akiva (~)
avoids these difficulties and at the same time re-
tains the simultaneous structure of analyaia by
modeling the behavior as a discrete choice among al-
ternative activity-travel patterna. The approach ia
quite effective in analyzing characteristics of
activity-travel choice. Determining the probability
with which a given pattern will be chosen, however,
requirea that all feasible patterns be enumerated.]

An alternative approach to the analymie of activ-
ity and travel petterna is a sequential one, which
is based on the following identityf

pr(a, t.d, ~)=n~opr[%+l, tn+l, ~+1, %+ll%),

t(n), d(n), f(n)] (2)

where a(n) is a vector of the firat (n + 1) elements
of a, i.e., a

and ‘$)
are sg\;r~;~$;;;Is~;i~Zp~&LI ~~~~

choic a are analyzed one by one in a sequence, repre-
sents the preferences in choosing patterns 9iven
that, if u(a,t,d,t) ~u(a’,t’,d’,t’), then pr(a,t~d~
L) ~pr(at,tt,do,t~). The approach has an advantage

in that it reducesthe size of the problemto a MM-
ageableone, and the preferences to the entire pat-
tern can be correctly represented if the conditional
dependencies of the sequential probabilities are
properly incorporated. A recent study indicated
that the sequence of activities in a trlP chain can
be adequately reereaented by a siwle seWential
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model, whereaa failure to capture the conditional

dependency leada to erroneous results (ace paper by
Kitamura elsewhere in this Record).

An interesting example of a sequential approach
can be found in Horowitz (lS), where the concept of
time-dependent utility in used. A similar concept
is used in the present etudy, but emphasis is on the
identification of time and history dependencies of
the behavior. The works by D- (~), Damo and Ler-
man (~), and Jacobson (~ are noted here because
certain facets of the complex behavior are carefully
selected in these studies zo that the size of the
problem can be reduced and the analysis can be car-
ried out meaningfully and effectively by using
econometric aaethoda.

There are two taaks involved in developing a
sequential model of activity and travel f?r fore-
casting purposes. The first is the identification
of the structure of the conditional dependency,
which ia a prerequisite for proper functioning of
the model. Because representing the history as in
Equation 2 will not serve practical purposes because
of its excessive information requirements, some sim-
ple yet accurate forma must be sought. The second
taak is to relate the aequentlal probabilities to
exogenous factors, ●specially those that clomely
represent plaming options and policies.

The time factor is of critical importance in de-
veloping sUch a probabillatic model of activity
choice becauae of the strong correlation between
time of day and activity, as noted earlier. Incor-
porating the time variable is aleo important because
it will make probabilistic representation of the
constraints that affect the behavior more meaningful
and accurate. In particular, the ●ffect of time
constraints cannot be appropriately represented
without the time variable [e.g., Iiageratrandgsprlam
1s approximat~ by time-dependent probabilities of
spatial choice (~]. A previous study (~ indi-
cated that married women who are not employed and
who are in the childbearing stage tend to return
hme early in the evening; this can be viewed aa
being a result of the constraint imposed by family
respnmibilitiem. The aaquentlal probabilities can
depict such constralnta when they are specified as
time-of-day dependent and when they include appro-
priate variablea that represent individuals’ at-
tributes.

APPRDACH

In this study the activity choice along the time
dimension ia analyzed, and the main focus of the
study is on the identification of the time- and
history-dependentnature of the choice. The spatial
aepect is suppressedin this study. The model spec-
ificationand estimationeffort is baaed on the fol-
lowing formulationof the sequential probability:

~[%+1 . tn+l Ia(n), t(n)l

=Pr[~+llt”+l;atn),t{n)] dpf[tn+ll~n). t(n)l

‘Pr[~+l ltn+l; a(”), Qn)l ~r[%+l

-tnl%,tn;a(n.l),t(n.l)l (3)

where alt . . .? ~) as before,
and ~+:(~)( ‘;~’called the sojourn duration in
the nth atate that, in this formulation, includes
the duration of the nth activity and trip time to
ita location (the activity duration and trip time
are treated separately in the empirical analysis
presented in later sections). The aequentlal prob-

ability is expressed aa a product of activity-choice
probability given the time of the choice and the
probability density of the duration of the nth eO-
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element: time- and history-dependent
choice probability.
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the first
activity-

The activity-choice probability is formulated aa
a function of time, history, and other factora.by
using the multinominallogit structure, i.e.,

Pr[%+l=jltn:l =t;qn),qn).yl

‘exP{vj [t. ~n)$ t(n)t Yl}/~ @xP{vk [t, a(n), t(n), Yl} (4)

where y 1s a vector of socioeconomic attributes of

the individual and t Is the the of day. The condi-
tional dependence in Equation 3 is now represented
in the model by its explanatory variables that rep-
resent the history of the’behavior and the time of
day. It is therefore aasumed that the random error
terms of the model poaseem all the desirable proper-
ties, including their statistical independence
across the choices in the sequence. Although it ia
poaelble to use more elaborate formulation of the
random elements (20,21), which may lead to an in-——
tereating examination of history dependence, this
study doea not extend its scope to analysis of the
dependence structure of the unobservable. [Note
that the validity of the error term specification
depends on mcdel apeclfication, and it ia an empiri-
cal issue in that sense (~).]

The time dependency of activity choice is repre-
sented by introducing time variables into the logit
function. For example, suppose that the effect of
time of day on relative activity-choice odds can be
errpreaaedby ganweafunctions, i.e.,

exp[Vj(t, . ..)exp[Vi(t .t) ]..)] ‘[iCtaeXP(-bt)l
+[t’exp(dt)] a,b,c,d~ >0 (5a)

(Note that neither the numerator nor the denominator
is necessarily a distribution function.) Then,

Vj(t,...Vi(t.t)=!2nK+(aKc)!Znt!Znt-(tr-d)t (5b)

Although it is not poeaible to determine these pa-
rameter values unlguely, the time effecte can be
represented simply by introducing t and kn(t) into
function V. The model specification effort in the
following sections aleo considers polynomial and
exponential functions of t.

By using this framework, varioua hypotheses re-
garding the nature of the conditional dependencies
can be examined statistically and the model can be
specified subaeguently. l%is study rejects without
examination the null hypothesis that activity choice
is independentof time of day. The critical hypoth-
eses that need to be examined statistically include
the following:

1. Activity choice is independent of the set of
activities pursued in the pastr

2. Activity choice is conditionally independent
of the met of activities pursued in Previous trie
chainm, given the activities pursued in the current
chain;

3. Given whether activities of respective types
have been pursued or not, activity choice ia condi-
tionally independent of the number of times the-ac-
tivitiea were Pureuedl

4. Given whether activiti~s of respective types
have been pursued or not, activity choice ia CO~i-
tionally independent of the amount of time apent in
the peat for each type of activity;

5. Activity choice ia independent of the number
of trip chains made in the peat; and

6. Activitychoice does not depend on the ti~
apent since the individual left home.
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An appropriate representation of the historY of an
activity pattern is sought through the examination
of these hypotheses, and the nature of history de-
pendency is inferred from the reeults.

DATA Sfm AND VARIABLEG

In this study the statistical analysis of a sample
from the 1977 Baltimore travel demand data eet is
used. Analysis of nonwork activities is the main
subject of this study, and only those individuals
who did not make work trips on the survey day are
analyzed. The records h the data set are screened,
and individuals who were younger than 18 years old,
who did not hold a driver’s license, and whose
households did not have a car available are elimi-
nated. A detailed description of the screening crl-
terfa used can be found in Kitamura (see papar else-
where in this Re@xd). The screened sample used in
this study includes 927 activity choices in 356 trip
chains made by 217 individuals.

Activities are defined in terms of the trip-
purpose categories in the data set, which are
grouped into four types: personal businese, social-
recreation, shopping, and serve passengers. fiome-
beaed activity-choice models are estimated with
these activity typea as alternative. TWO addi-
tional categories enter models of non-hcme-based
choice: temporary return to home and permanent re-
turn to home for the day [similar binary classifica-
tion of the home state can be found in Lerman
(Q) ]. Accordingly, the non-home-based models are
estimated with six alternatives.

As variables representing individuals’ attri-
butes, the age, sex, education, employment status,
household income, household size, number of chil-
dren, family life cycle, household role, and car
ownership are examined in this study. The house-
hold-role variable is defined in terms of the sex
and employment status of the individual. The life-
cycle-stage variable is defined in terms of the
marital status of the adult members,their ages, and
the age of the youngest child. The definitions of
those variables that appear in the ssodelapresented
in this paper are given in Table 1.

RCUE-BASED ACTIVITY-C~IC13MODEL

Because the examination of alternative hypotheses
regarding the structure of time and history depen-
dencies is an important concern of the study, a
series of. models, each being developed to test a
specific hypothesis, is presented in this section.
The first in the series involves only socioeconomic
attributes of the individual as its explanatory
variables (model 1 of Table 2). The mcdel as a
whole is significant with a = 0.005, but the
amount of variation explained by the model is rela-
tively emell (0: - 0.0256). Nevertheless, mean-
ingful relationships are found from the eatiaetion
result. The coefficient of the variable that repre-
sents the presence in the household of children aged
between 5 and 12 (SCHLAG) indicates a possitivecon-
tribution of this variable to the engagement of
serve-peesenger trips. The role variable (ROLE),
which has a value of 1 when the individual is female
and not employed, indicatea that these individuals
carry out shopping and serve-peasenger trips more
often than do the others. The coefficient of the
number of children (CELDRN) indicates the negative
effect that the presence of children ham on the en-
gagement in social-recreationby the adult members.

The fit of the model improves when time variablea
are introduced into the model with six additional
coefficients (model 2). The log-likelihood ratio
statistic has a value of ~z = 46.14, with degreea

TabieI.~lnitiondoxmti~vtiatiindv~ww~ls.

Variable and Abbreviation Oefmition

Schoolagedchifdren(SCHLAG)

Householdrole(ROLE)

No. of children (CHLDRN)

Household incnme(INCOME)

No. of cars (CARS)

Time of day (t)

Activity engagement in pretious chains in
Personal business (PBNSO1H)
social-recreation (SRECU 1H)
Shopping (SHOPO1H)
Serve pasaangers (SVPSO1H)

Activity engagementin the current chain in
PersonaJ business (PBNSO1C)
Social-recreation (SRECO1C)
Shopping (SHOPO1C)
Servepassengers(SVPSO1C)

Out*f-home time (OHTIME)

No.of chains (CHAINS)

Current activity
Peraonal business(PBNS)
Social-recreation (SREC)
Shopping ( SHOP)
Serve paaaengers (SVPS)

Birraryvariable: 1 iftheage
of the youngeat child in the
household is between 5 and
12,00therwiae

Binary variable: 1 if the in-
dividual ia a female and not
employed, Ootherwise

No. of household membens
who are 17yearsoldor
younger and not married

Median value of the houae-
hold’sannualg.msv income
category (S)
No,of cars available to the

household
Time of daya in hours; the

study period begins at 4:00
sm. when t = 4.0, and ends
at 4:00 a.m. the next day
when t = 28.0

Binary variable: 1 if activi-
ties of the indicated type
werepurauedinthe trip
chainsprevioualy made

Binary variable: 1 if activi-
ties of the indicated type
have been pursued in the
current trip chain

simulative amount of time
spent so far outside home
for both trips and activities

Cumulative number ofhome-
baaed trip chains made so
far

Binary variable: 1 if the
current activity is of the
indicated type

of freedom (df) = 6 for the six new coefficients.
Clearly the tine of day haa a substantial influence
on activity engagesaent. The nature of the time de-
pendency of activity choice ia presented later in
this section,by using a history-dependentmodel.

Examination of the history dependence of home-
besed choice uses the following variables to repre-
sent the past history of activities: O-1 binary
variables, each representing whether an activity of
a given type has been pursued in the past; the num-
ber of sojourns made for each activity type; and the
cusmalativeamount of time spent for each activity
type. These variables are used because of their
conciseness as e~ry variables of the history.
The possible effects on activity choice of the exact
sequence of the past activities, their respective
durations, and their occurrence times are considered
to be negligible.

Each set of history variablea ia tested, and on
the basis of its aigniflcance the nature of history
dependence ia inferrti. The results indicate that
the simplest representation of the history--the set
of binary indicators of activity engagement--
explains the choice better than any other aeta ex-
amin&i here (saodel3). Although the other sets of
variables are all significant, they do not explain
as large a portion of variations as doee the set of
binary variablee. Whether the individual has pur-
sued an activity of a given type or not doaeeaffect
the home-based activity choice, but how many times
and how long the activities were engaged in do not
have aa decisive an effect. This rather unexpected
reeult ia encouraging because of ita implication

that the history of behavior can be exeressed in
quite a simple manner in representing the condi-
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Tabla 2. Horns-bMwJ activity~ie models.

Activity Type

personal Business Social-Remeation Shopping Ser9e Passengers

Variable Coefficient t-Statistic Coefficient t-Statistic COefficient t-Stat istic Coefficient t-Statiatic

Model l‘

Constant
SCHLAG

+.5797 -0.86 -43.0485 A3.08 0.0698 0.11

ROLE
0.8583 2.76

0.4968 1.99 0.5702
CHLDRN

1.92
4.1895 -2.02

!hr(INCOME) 0.2877 1.23 0.5893 2.37 0.2801 1.23

Model 2b

Constant -3.3830
SCHLAG

-5.s5 -10.984 -2.01 S.0561 1.01

ROLE
0.8585 2.76

CHLDRN
0.4787 1.89

-0.2469
0.s743 1.93

-2.52
QrI(INCOME) 0.3299 1.37 0.5063 2.02 0.2136 0.92
t -0.4240 -1.57
!Ar(t)

43.2050 -0.76 -0.7928 -2.85
4.1127 1.21 0.4227 1.18 10.498 2.90

Model 3C

constant -3.7499 -0.65 -11.876 -2.10 4.8241
SCHLAG

5.25

ROLE
0.6289 1.89

0.3895 1.44 0.6413 1.96
CHLDRN J3.2086 -2.07
hr(INCOME) 0.3542 1.42 0.5169 1.97 0.2093
t

0.87
-0.3S22 -1.22 -0.1310 -0.46 -0.7315

!ln (t )
-2.56

3.7260 1.04 4.0236 1.08 10.634 2.89
PBNSOIH -0.8605 -1.98 -1.6576 -3.34
SRECO1H

-1.0187 -1.90
0.6166 0.91 0.8793

SHOPO1H
1.25 1.5780 2.20

+.2300 4.47 -0.5662
SVPSOIH

-1.09 +.2014 4.36
0.3252 0.52 0.9638 1.67 1.8125 3.14

Note: ti@e=3S6home.bMd actltitychokex L@)=log4ikelfiood tihthemdd cmfflcients, L(C) =log4kelfiwd Wthoutexpkmtow whMes
(contiant terms done), L(O)= log41kelfiood Mthout."y coeK~ients,.nd g2=1-L@)/L(C). lltechi-qumev atuesprerenteda redefineda s-2[L(C)-

W)l.

:UO) = 493.52, L(C)= -490.27, L(J)= -477.70, X2= 2S.14 (df = 7), and P2 = 0.02S6.

L(#)= A54.63, x2=71 .29(df= 13), P2=0.0727, andx2f0r thewtOfthe Whbl-=46.l4(df=6).
CL(8) =434.36,X2= 111.81 (df=25), #2=0.114, andx2for theset of activity indicators =40. S4(df= 12).

tional dependency of activity choice. Another his-
tory descriptor--the number of chains ccaopletedin
the past--was found to be insignificant.

These models aredeveloped primarily to examine
alternative hypotheses; thus the selections of ex-
planatory variables are not necessarily finalized as
they are presented in Table 2. A similar model is
estimated sfter eliminating some of the insignifi-
cant variables of model 3, and its coefficients for
the binary variables are given in Table 3 to indi-
cate how the past engagement in an activity of one
type affects the choice of another activity type.
In the table the estimated set of coefficients is
adjusted by adding a constant to the coefficients
for each activity type. The value of the constant
is arbitrary, and that value that ntakesthe row sum
of the adjusted coefficients zero is used in devel-
oping the table.

The result indicates that engagement in personal

Tabla3. Effaotaofaativhyangegzmentainpfaviousahainaonhoma-bawd
activi2yohoiw.

First Activity of Current Chain

Activity Engagement Personal sOcial- Serw
inpreviouschains’ Buainesa Recreation Shopping Pa.wngers

Personal business 0.8278 0.0602 4.7S64 4.1317
Social-recreation -0.4109 -0.4109 0,0612 0.7606
Shopping 0.1024 0.1024 -0.3072 0.1024
Serve passengers -0.6059 -0.6059 0.1782 1,0336

‘1 ifenaaged, Ootherwlae.

business in the past has a positive influence on the
choice of the same activity type later. The same
tendency can be found for serving passengers;
choices of personal business or serve-peseenger
trips are positively correlated acroas trip chains.
The negative diagonal value for shopping indicates
that people tend not to pursue shopping in two or
attoretrip chains; it suggests that people have been
consolidating their shopping trips into fewer trip
chains. A negative coefficient of social-recreation
on personal business indicates that there are pat-
terns in sequencing activities across trip chains,
arqipareonal business tends not to be pursued if the
previous chains included social-recreation trips.
The pattern found here is quite similar to that
found ●arlier as to the sequencing of activities
within a trip chain (see paper by Kitafauraelsewhere
in this Record).

The time-dependent nature of home-based activity
choice can be seen in Figure 1, which presents
against the time axis both the observed relative
frequencies of chosen activity types and the choice
probabilities depicted by the ❑odel. The observed
shopping frequency coincides naturally with the typ-
ical stores’ hours, and it peaks in the ●arly after-
noon. Personal business tends to be Pureued in the
morning, whereas the relative frequency of eocial-
reoreation increases toward the end of the day. The
serve-passenger activity has a rather irregular pet-
tern with peaks in the early morning (chauffeuring
children or workers, perhaps)? ,earlY after~n~ and
late evening.

The data in the figure indicate that the observed
tendencies are well replicated by the estimted
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●independent variable values used are: INCOME = 20000, CHLORN = 4, ROLE = O,
SCHLAG = 1, PBNSOIH = O, SRECOIH = O, SHOPOIH = O, and SVPSOIH = O.

activity-choice model. The activity-choice proba-
bilities are evaluated by aasuming the independent
variable valuea, aa shown in the figurel therefore,
they are not readily comparable with the observed
relative freguenciea that represent the ●ntire aem-
ple. Nevertheless, aatiafactory agreement ia shown
in the figure between the observation and the pre-
diction by the model. The irregularities in the
probability of serve-paasenger trips are not well
represented by the model, although the overall ten-
dency ia captured. If it is shown that the observed
irregularities are not caused by the small sample
size, then the model apacification must be altered
to reflect them.

~N-NOME-BASED ACTIVITY CKOICE

Non-home-baaed activity choice is studied in a man-
ner similar to home-based activity choice by ●xemin-
ing hypotheses of history and time dependencies of
the choice. Mditlonal hypotheses that are included
here are concerned with the relative magnitudes of
the dependencies on the activities in the previous
trip chainm and on those in the current chain. Also
of interest are the effects of elapsed time mince
the beginning of the chain and the total out-of-haze
tine on the decision to return home. The variables
used to represent the history of the behavior in-
clude O-1 activity engagement indicators definedfor
the current chain and for the chains previously
made, total activity time by activity type in the
current chain and in the previous chains, number of
aojourna made by activity type in the current chain
and in the previous chains, number of chains made in
the paat, elapsed time since the individual left
hoaoe,and the cumulative out-f-home time spent.

The models tested end their goodness of fit are
given in Table 4 without presenting the ●stimated
coefficients of the respective mdela. The conclu-
sions of this hypothesis testing are sumerized aa
followsx

1. Given the history of the current chain, ac-
tivity choice is conditionally independent of the
activityengagementin the previouschaine~

2. The number of eojournm made and the time
spent for each activity type in the current chain
are correlated with the obmerved activity choice,
but the O-1 activity engage~nt indicator best ex-
plain the choicet

3. The elapmed time since the beginning of the
chain is not a significant factor influencing the
deoiaion to return has;

4. The non-home-based choice is moat clomely
correlated with the time of day, whereas activity
history and aociomoomomic attribute of the individ-
ual have leaa effects on choice;,and

5. The choice of the next activity ia affected
by the type of current activity.

Perhaps the momt significant finding is that non-
home-baeed activity choice is conditionally itiapan-
dent of the history of activitY en9a9emant in the
previous chains. (No setm of history variables for
the previous chains were statistically mignifi-t
when they were included in the model togetherwith a
set of himtory variables for the current chain.)
This may appear to indicate”that activity choioe ra-
paatm itself and that all chains made by an individ-
ual are probabilistic replicaa of each other. H-
ever, this is not the case because the home-based
choice that determines the first activity of a chain
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individual pursue ●ither very few or very many ac-
tivities on a given day. This may be a result of
activity scheduling over a longer time span, e.g., a
week.

In summary, the hypothesis testing and model
specification efforts presented in these two sac-
tions have indicated that the activity choice is
dependent on both the time of day and the history of
the activity. But the structure of!the history de-
pendency is rather simple. The binary history indi-
cators that represent whether activities of respec-
tive types have been pursued in the past or not are
correlated with the activity choice more strongly
than is the number of sojourns or the time spent for
each activity type in the past. Furthermore, non-
home-based activity choice is found to be condition-
ally independentof the activity history in the pre-
vious chains, given the history in the current
chain. It appears that activity choice is dependent
more strongly on nsxe recent activities. The sig-
nificance of the variables that represent the direct
linkages also indicates this.

DISCUSSION OF RESULTS

Identifying the dependencies across a series of ac-
tivity choices is critically important for the de-
velopment of a practical tool for analyzing and
forecasting daily activity and travel behavior. In
this study the structural form of a sequential model
of activity patterns was formulated, and conditional
probabilities of activity choice that used the mul-
tinominal logit structure were specified. This
framework was then used to examine the nature of
time and history dependencies in activity choice
with the assumption that time of day and the history
of the behavior are the most fundamental factors
that influence activity choice.

The examination of a series of hypotheses indi-
cated that the simplest representation of the his-
tory of the behavior--a set of binary activity en-
gagement indicators—is an adequate descriptor and
best explains activity choice. Non-home-based ac-
tivity choice is strongly affected by time of day
and also by current activity type, but socioeconomic
attributes of the individual and history variables
have less influence on non-home-based choice than on
home-based choice. Non-home-based activity choice
was also found to be conditionally independent of
the activity history in the previous chains, given
the activity history in the current chain, whereas
home-based activity choice had interdependencies in
the activity types across trip chains. The results
of the study are encouraging and indicate that a set
of simple models that can be conveniently estimated
is capable of representing individuals’ “daily ac-
tivity and travel behavior together with the inter-
dependencies acrossthe choices involved. The study
has indicated that the decisions associated with the
entire activity pattern can be decomposed into in-
terrelated activity choices whose conditional de-
pendencies can be statisticallyevaluated.

The models presented in this study, however, are
not immediately applicable to practical problems be-
cause the types of ●xogenous variables included are
lialited. This limitation is mainly caused by the
aspetial nature of the study. The models must be
extended to spatial activity-choice models with land
use and transportation network variables introduced
as explanatory variables. Note that the land use
variables in this context must be defined in terms
of &th the spatial distribution of opportunities
and their availabilities along the time dimension.
When land use variables are defined in this manner,
then the activity choice can be related to the

availabilities of various
time periods of a day.

opportunities

29

in different

Such effort of modeling the activity choice in
the spatial dimension will encounter a new problem:
representation of the attractiveness of an oppor-
tunity, or a group of opportunities such as a zone.
This is not a trivial task when the assumption of
the conventional approach that a travel choice can
be separated from the rest and can be analyzed inde-
pendently is discarded, and when the interdependen-
cies across the choices are acknowledged. The
interdependencies imply that a choice of an oppor-
tunity ie influenced by both the past and intended
future behavior. The conventional formulation of
the attractiveness of a zone that uses the attri-
butes of that zone alone is not adequate when the
individual has in mind additional activities to be
pursued elsewhere. In other worde, when trip chain-
ing is considered, the traditional definition of the
attraction becomes inadequate, and the attractive-
ness of a zone as an origin from which the next ac-
tivity site will be reached must be evaluated and
incorporated into the attraction measure. This can
be done by ueing the concept of expected utility, in
which the attractiveness of a zone is a function of
not only its own attributes but also those of other
zones. Another aspect, which was not emphasized in
this study, is the structural relationship between
the activity duration and actiivitychoice. It may
be the case that the relationship varies depending
on the time of day or on the past history of the be-
havior. Examination of the interdependence struc-
ture of the unobservable also remains as a subject
of future research.
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Equilibrium Traffic Assignment on an Aggregated Highway
Network for Sketch Planning
R.W. EASH, K.S. CHON-,Y.J. LEE, AND D.E. BOYCE

An●ppllzstionofth.Squilibdumtrafficswi@mmntdgorlthmon● dmplifizd
highwaynetwork,woh asmi@rtbzwadforskstdrplanning,h dzsoribzd.
Ansly8i:rone9inth.swi~rnentus zlsautmtsntldiyIsrgzrthq inmo8t
ronventionsltrafficsw@wnsnls.7hsalgorithmfor qullibfiumtrafficz9-
slgmnsntisintroduced,foilewvdbysdboumlon01ttwproblsnwwithqui-
Iibriumtrzfficsssigrwnsmtinssks@@snningsppliastion.Noxt,thznetwork
walingproasdurzs for the ssm study wz wwmirwd. Raultr of tlw skotsh-
phnning zwigrwnent W9 than svdustzd againsts zompsrablo regional msiiwr-
ment of the sznm trips. Finally, thzrz is a dbzussion of how this rwssroh fits
into the Programs of a trsnspwtztion pimrning ●gsnoy.

An application of equilibrium traffic assignment to
sketch planning ia presented in this paper. Trips
are assigned onto an aggregated network with a
1imited number of links, nodes, and zone centroids.
One arterial link in the sketch-planning network is
equivalent to a number of links in a conventionally
coded ragional highway network, and one sketch-plan-
ning zone is substantially larger than a zone in the
ragiona1 assignment at the aema location. The
traffic assignment algorithm US- in the study
converges to approximately equal path travel times
for multiple paths between origin-destination zone
pairs. The algorithm is available to most transpor-
tation planning agencies.

A major
parison of

portion of the paper
this sketch-Dlannin9

ia spent on a com-
assignmant with a

regional traffic assign&t of- a larw trip table
onto s detailed coded highway netwrk. This comperi-
aon ia complicated by the different number of intra-
zonal tripe in the two traffic assignments1 there-
fore, a procedure waa developad to determine the
aignificance of the additional intrazonal trips in
the sketch-planning assignment. Vehicle miles of
capacity and travel, vehicle hours# and avera9e
speeds predicted by the tw assignments are susmte-
rized at the regional and zonal levels.

In the introductory sections of the paper the
equilibrium traffic assignment algorithm and the
netwrk coding procedures for the sketch-plann~n9
netwrk are documented. A simple method for aggre-
gating linka and summing regional link capacities
into sketch-planning link capacities is then de-
scribed. The question of the beat network a99re9a-
tion procedure is not considered. Moreover, a eolu-
tion of this netwr k aggregation problem was not an
objective of the research, but rather a data re-
quirement. The PCincipel concern of this paper is
to demonstrate a satisfactory correspondence between
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traffic assignments on the sketch plan and regional
networka. Finally, a few implications of this re-
search for work programs of transportation planning
agenciea are diecuased.

MSTHOOOLGGICAL APPROAC?I

The equilibrium concept was first formulated for
minimum time-path traffic assignment by Wardrop
(&). Given that travel times on a network link
increaae with traffic, a highway network is in
equilibrium if the travel times along all patha that
are used between esch origin-destination are equal,
and no unused path has a lower time. In other words,
no driver has an incentive to change paths.

Several algorithms were developed in the early
1970s to determine the equilibrium traffic flows,
and one version of the algorithm is now available in
the Urban Transportation Planning system (UTPs)
computer ero9rema for transportation planning SUp-

pOK@d by UMTA and FHWA Q). The formulation of the
algorithm discussed here follows the work of Wguyen
(~) and LeBlanc et al. (~) and is consistent with
the algorithm available in the UTPS program OROAD.

For a given trip table, the equilibrium aeaign-
ment of traffic MSy be found by solving a nonlinear
mathematical programming problem. The solution to
thie problem is that set of traffic flows on network
links that minimizes a nonlinear convex mathematical
function (called an objective function), the value
of which depends on the traffic flows. These flows
muet alao satisfy a second set of linear equations
called constraints. In general terms, the con-
straints on the objective function ensure that all
solutions are feasible trip aasignmenta; that is,
all trips in the trip table are assigned to the
network, and negative link flows are prohibited.

The objective function is to minimize the aum of
the areas under each link’s travel-time and traffic
volume congestion function from zero to the assigned
flow. To understand the interest in minimizing the
aum of these areas requires some mathematical analy-
sis beyond the scope of this paper. It is only
important to understand that the link flows that
correspond to the minimum value of this objective
function are those that satisfy the equilibrium
conditions.

Summery of Equilibrium Traffic Assignment Algorithm

The algorithm to solve the equilibrium traffic as-
signment problem is based on a nonlinoar optimiza-
tion techn@ue developed by Frank ●nd Wolfe (5).
Theirs is an iterative ●pproaah that starta with ●n
initial feaaible aolutfon that ●atisfias the con-
straints, determines a feasible direction to mova
that improves the objective function, and then cal-
culates how far to move in this direction. This
results in a new feasible solution, and the proce-
dure itaratea until the objective function cannot be
improved.

A network composed of links with congestion func-
tions, a trip table for aasignmant, snd a first
eolution that is a feasible saaigmment of trips to
the network are given. The equilibrium conditions
are normally not met by this firet trip assignment.
Application of the method by Frank and Wolfe then
involves the following steps.

1. Compute the travel time on each link by using
volumes in the current solution.

2. Trace minimum time-path trees from each
origin to all destinations by using the link times
computed in step 1.

3. Assign all trips for each origin to each
destination to the minimum psthe computed in step 2
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this produces an all-or-nothing trip assignment).
4. Linearly combine the current link volumes

Vs) of the solution
ink volumes (wa) of

new current solution
objective function;

and the new all-or-nothing
the ,assignment to obtain a

(va) that minimizes the

where

v; = (l-A)Va + iwa = new current
solution volume on link a,

Sa(x) = link congestion function for
A = constant between O and 1.

5. If the solution haa converged
stop; otherwise return to step 1.

The sequence of program steps is shown
chart in Figure 1.
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Equilibrium Traffic Assignment and Sketch Planninq

The obvious probleme in applying equilibrium traffic
assignment to sketch plenning are how to slmplifY
the traffic assignment network and analysia zones
and the nature of the travel-time and traffic volume
congestion function for Su-ch a network. Previously

researchers have constructed sketch-planning net-
works either by eliminating minor and lightly

traveled links (~) or by aggregating links in a
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detailed network into summary links (~). The sketch-
planning network for this project combines these two

approaches and includes all freeway and expressway
links with a grid network of aggregate llnka for
arterial streets.

A number of time and volume relationships have
been developed for traffic assignment when the coded
network resembles an actual highway network (~).
The most wjdely used is the Bureau of Public Roads
(BPR) formula available in the program UROAP:

T=TO [1+0.15(v/c)4] (2)

where

To = uncontested (zero traffic flow) travel
time on the link,

T - estimated link travel time, and
v/c - ratio of link traffic volume to link

capacity.

In a conventionally coded highway assignment
network, each link is a street or highway segment,
the attributes of which can be observed. TO illus-
trate the detail coded into these networks, only
local streets and rural roads used principally for
land access are omitted in the regional network used
by the Chicago Area Transportation Study (CATS). It
is reasonable, therefore, to assert that the coded
network built from all these individual links re-
flects the supply characteristics of the regional
highway network.

If the regional network links to be combined in a
sketch-planning link can be identified and accept-
able regional network link congestion functions
exist, then two methods for developing aggregate
congestion functions appear plausible. First, the
regional time and volume relationships can be mathe-
matically combined to form an aggregate congestion
function. Alternatively, a general link congestion
function can be applied to a surmnarylink, the at-
tributes of which are aggregate quantities. Both
methods were attempted in this project.

Further problems in using equilibrium assignment
for sketch planning are caused by the larger analy-
sis zones and the corresponding smaller trip table.
For a conventional regional assignment, an analyst
might have a trip table with a thousand or more
zones. By comparison, no more than a few hundred
zones can be used in a sketch-planningapplication.

More trips occur within a zone when larger zones
are used in a traffic assignment. Because intrazonal
trips are not assigned to the highway network, this
means that estimated traffic is reduced. This under-
assignment of trips, in turn, affects congestion in
the highway network and the travel times predicted
by the link congestion functions. The effect of
this larger number of intrazonal trips on the
sketch-planning assignment was evaluated in this
projact.

The smaller trip table causes cell values to
increase, and more trips are loaded onto the network
at zone centroids. The links immediately adjacent
to centroids are then loaded with all the traffic
from the larger area covered by the sketch-planning
zone. These links tend to be overassigned, which
also affects the travel times predicted by the link
congestion functions. Fortunately, this problem is
mitigated by running more iterations of the equilib-
rium algorithm to load more paths in the sketch-
planning network.

Coding the Sketch-PlanningNetwork

The first step in coding the sketch-planning network
was selection of the system of analysis zones. The

zone system usqd in the project was developed by
combining the CATS regional zones into a suitable
number of areal units. Each sketch-planning zone
usually includes four to nine regional zones. The
resulting zone system covers the eight-county north-
eastern Illinois (six counties) and northwestern
Indiana (two counties) region; it iS shown in Figure
2. There are 317 sketch-planning zones compared to
the 1,797 zones used in the CATS regional traffic
assignments.

Fiwme2.Skstch+Asnningzonesystem.

The basic areal unit in the region is the survey
townehip, a roughly 6-mile2 land unit originally
surveyed in the mid-1800s. All of the CATS zone
systems, including the sketch-planning zones, make
use of these survey townships. A majority of the
sketch-planning zones are quarter-townships (approx-
imately 9 mileaz), with full townships as the next
largest group of zones. At the state line between
Indiana and Illinois, a few zones are slightly
larger than full townships, and several s~ller
odd-sized zones are along the lakefront.

zonee are covered by a network of bidirectional
arterial and freeway links (~). Each ZOne’s centroid
is located at,the center of a zone and is connected
by two to four arterial street links to Produce a
fairly regular grid network over the region. Freeway
and expressway links are then coded on top of this
regular grid of arterial street links, with inter-
changes placed approximately at their actual loca-
tions. A portion of the sketch-planning netmrk is
ahown in Figure 3.

Links are coded as either arterials or freeways
(expressways). Attributes coded for each sketch-
planning link include beginning and ending n~e
numbers, link length, type of area where link iS
located, link free speed, and link CaPacitY. The
type of area where the link is located is coded by
using municipal boundaries and zone populations.
Link free speed is then estimated for each link by
using the area and facility t~e. All ceding was
done in the usual lJTPSformat, except that the traf-
fic count field waa used for link capacity and uROAD
waa altered to accept link capacities in this field.

Arterial Link Capacity and Congestion Functions

The original approach in the Project to develoe
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Figurs3. Exampleofgketi@~ingm~~~ng.
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sketch-planning arterial street. network congestion
functions was to aggregate mathematically the BPR
formula congestion functions used in the regional
network, as described by Norlok (3&). This approach
can straightforwardly be applied for two or more
consecutive links, or for two parallel links between

the same two nodes. The intent was to construct the
sketch plan arterial network congestion functions
from~the regional network congestion functions by
repeated aggregation using these two relationships.
This approach proved far too time consuming to be

c-leted MnuallY~ and it waa believed that prepar-
ing suitable software to accomplish the work re-
quired substantial efforts beyond the scope of the
project.

Given the gaometry of the sketch-planning network
and the arrangement of zones (two regular grid pat-
terns offset so that each zone boundary is usually
crossed by only one summary arterial street link),

an obvious method for estimating
arterial link capacities was to sum

33

sketch-planninq
reqional arte-

rial network capacities along the edge of a sketch-

Planning zone. This was accomplished by firat over-
laying the sketch-planning zones on the regional
highway network to identify the regional arterial
street links crossing a zone boundary, and then
WzmIing the appropriate regional link capacities.
This procedure is shown in Figure 4. Note that in
this example the capacity of the first regional link
is shared with the adjacent zone.

EVALUATION OF SIU2’2CN-PUING ASSIGNMENT

Because there are separate zone systems in the re-
qional traffic assignment and in the sketch-planning
traffic assignment, intrazonal tripa in the two
assignments are different. This makes it difficult
to compare the tm sssignmente because fewer tripz
are assigned onto the sketch-planning network and
fewer vehicle miles of travel are produced. To
remove this biae from the comparison of the regional
and sketch-planning assignments, an estimate of
these added intrazonal trips and missing vehicle
miles was needed.

A second aeeignment of trips onto the reqional
highway network was performed with a trip table that
contsined only the additional intrazonal trips in
the sketch-planning assignment, i.e., the trips that
became intrazonal when the reqional zones were ag-
gregated. This partial trip table was created by
scanning the regional trip table and eliminating all
entries that would be intrazonal in the eketch-plan-
ning zone eystem. The resulting intrazonal trip
table was then assigned onto the same minimum time
paths used in the regional traffic assignment. The
proportion-of the intrazonal trip table assigned to
each minimum time path was the same as the propor-
tion of the full trip table aasigned to that minimum
the path. Link volumes from the intrazonal trip
assignment were then aubtractad from the original
link volumes of the regional assignment to produce a
revised vehicle mile estimate.

Another difference between the two assignments is
the number of iterations of the equilibrium algo-
rithm. In the regional traffic assignment, five
separate all-or-nothing assignments are completed,

Fiwwz4.Estitimofsbti@mningatifidlink~W
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which correspond to four Iteration of the equilib-
rium algorithm. For tbe sketch-plannlng asaigruktent,
10 all-or-nothing aaaignments are prepared (9 itera-
tions of the equilibrium algorithm): therefore, each
interchange has the opportunity to travel 5 added
paths. However, the sketch-planning assignment is
still less expensive in computer costs. This points
out the trade-off between detail in the assignment
network and the number of paths that can be practi-
cally loaded in the equilibrium algorithm. As the
network becoroeamore detailed, the cost of building
minimum time patha increaaea, thereby restricting
the number of iterations of the equilibrium algo-
rithm that can be completed.

The CATS regional and sketch-plannlng assignments
in the project are given in Table 1. Both assign-
ments are for a l-hr 1975 trip table in the morning
peak period. The sketch-planning network is less
than one-tenth the size of the regional network,
even allowing for the fact that tbe regional network
extends slightly beyond the eiqht-county area
covered by the sketch-planningnetwork. The data in
Table 1 indicate that the number of trips In the two
assignments is slightly different because of round-
ing during the allocation of the regional trip table
into sketch-planning zones. There are an additional
137,000 intrazonal trips in the sketch-planning
assignment.

Tdhl. Summzsyofr@ondrndsketah-pfmni~nztwosirzssipwrsants.

Sketch-Planning
Item

Regional
Network Net works

Analysis zones
Network nodes
One-way Iinka
Awignedirrterzonal trips
Unassigned intrazonal trips
Number of iterations (all-or-nothing aaaign-

ments)
Computing timeb (CPU)

Memoryrequiredb (maximum bytes)

317
820
2,422
1,016,900
192,800
10

3min,45sec

600K

1,797

12,040
37,065
1,140,400
55,800
5

163 min.
7 aec

540K

%eredonalnetwmrk coversaslightly luger mMthsntheeight.co.nty Clricaroregion.

bISM 3033, Operating System VS2.

The laat two items in Table 1 give the relative
computer coata of the two assignments. The aketch-
planning assignment was accomplished with the OTPS
“program UROAD (slightly modified to use link capac-
ities from the network link file and an efficient
line-search procedure), whereas the regional assign-
ment made use of the PLANPAC programs originally
prepared in the nid-1960s by the FRWA (n), with a
separate program for the equilibrium algorithm (~.
Different programs are required because of the size
of the regional network, which is too large for the
version of the UROAD program used in the project.
Identical functions (path building, assignment, line
search between all-or-nothing assignments, and cal-
culation of link times) are carried out in both
cases.

Computer memory requirements for the two assign-
ments are atroutequal becauee UROAD allocates memory
space according to the largest node number (more
than 6,000 in this caae) instead of the number of
nodes in the network, and also because the individ-
ual PLAWPAC programs can be written more efficiently
for memory use because each program performs only a
single function. The computer time required to run
the sketch-planning aaaignsnentis almost insignifi-
cant compared with the regional assignment, even

though twice as many iterations are performed for
the sketch-planningassignment.

RSgiOtIal Travel Comparison

The results of the regional and sketch-planning
assignments within the eight counties are given in
Tables 2-5. Becauae the sketch-planning network
does not include any rempe between freeways or be-
tween freeways and arterials, ramps are not included
in the regional vehicle miles of capacity (Table
2). Even without rempa, slightly more capacity is
available in the regional network than in the
sketch-planning network. Total arterial capacity in
the two networka ia surprisingly close, however,
considering the crude method used to estimate the
capacity of the sketch-planning arterial
links.

street

Several reasons can be cited for the discrepancy
between the freeway capacities in the two networks.
A few short freeway segments, most only a mile or so
in length, are omitted from the sketch-planning
network. Another reason is that the sketch-planning
freeway links are coded somewhat abstractly as
straight links between freeway interchanges. This
tends to understate the actual length of these links.

The data in Table 3 give vehicle miles of travel
for the two netmrks. Vehicle miles on ramps are
included in the regional assignments, even though
their capacity was omitted. Although rampe are not
coded in the sketch-planning network, the vehicle
miles of travel that would occur on rempe are ap-
proximated by additional travel to reach the single
interchange node. Vehicle miles on rampe that con-
nect freeways are included in the freeway category,
and vehicle miles on ramps between freeways and
arterials are split evenly between both route typea

in the regional assignment figures. Only vehicle
miles within the eight countiee are tabulated.

The data in Table 3 also describe the impact of
the intrazonal trips in a comparison of the two
assignments. When the sketch-planning and regional
assignments are first compared, there is a differ-
ence of 4 percent in the division of vehicle miles
between freeways and arterials. ltsenty-ninepercent
of the unadjusted regional vehicle miles are as-
signed to freeways, whereas 31 Percent of the
sketch-planning vehicle miles occur on freeways.
When the regional assignment is adjusted for the
different number of intrazonal tripsr part of this
difference is explained. The great majority of
trips in the intrazonal trip table is assigned onto
arterials because these trips are short and are not
likely to uee a freeway.

The difference between the total vehicle miles in
the sketch-planning assignment and the adjusted

regional assignment is about 5 percent, and the
extra vehicle miles on sketch-planning network free-
ways account for nearly all of the difference.
After reviewing the coding of the two networks, it
is clear that freeways in the sketch-planning net-
work have some advantages that freeways in the re-
gional network do not have. In addition to the
slight undercoding of distance along sketch-planning
freeway links noted earlier, the onlY radial linke
included in the sketch-planning network are freeway
linke, so paths made up only of arterial links muet
be longer than comparable paths in the regional
assignment network.

Vehicle houre of travel for the assignment are
given in Table 4. These estimatee follow the pattern
established in Table 3. Although total vehicle
houre in the sketch-planning assignment and in the
adjueted regional assignment are nearly equal, the
distribution of the vehicle hours between freeways
and arterlals is somewhat different. rn the sketch-
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Tzbk2. VohidcdlmOf~WfWsi@twnW@~.

Vehicle hfklesof CapaatY (000s)

Regional law
Highway Sketch Plan

Sketch Plan/
Regionala Intrazonal Intraronal Regional

Freeway 3,870 4,241 NA NA 0.91
Arterial 14,286 14,584 NA NA 0.98

Total 18,156 18,825 NA NA 0.96

Note: NA=notspplicable.
%rampCapacities not included.

Tab103. Vzhido dlsa of trzvsl ftw ●ight~nty rejon.

Vehicle Miles of Travel (000s)
Sketch Plan/

Regional Less Regional Less
Highway Sketch Plan Regionzk Irrtrazonal Intrazorral Intrzzonal

Freeway 3,476 2,98S 3 2,982 1.17
Arterisf 7,001 7,315 289 7,026 1.00

Total 10,477 10,300 G 10,008 1.05

Table4. Vzhidaham oftrzvzlforsi~t~ty rsglon.

Vehicle Hours of Travel
Sketch Plan/

Regional Less Regional Less
Hkghway Sketch Plsrr Regional Intrazorml Intrazonal lntrazOnal

Freeway 104,962 81,549 103 81,446 1.29
Artarial 261,048 298,704 12,040 286,664 0.91

Totsl 366,010 380,253 12,143 368,110 0.99

TsIAo6. Awaw travd spszdfor Zidtt-nty region.

Avg TravelSpeed (mph)
Sketch Plan/

Regional Less Regional Less
HLghway Sketch Plan Regional hrtrazonal Intrazonal Intrazonzl

Freeway 33.1 36.6 33.3 36.6 0.90
ktrrid 26.8 24.5 24.0 24.5 1.09
Overall 28.6 27.1 24.1 27.2 1.05

planning assignment 29 percent of the vehicle hours
are on freeways, whereas in the adjusted regional
assignment only 22 percent of the vehicle hours are
on freeways.

The data in Table 5 give the average network

speeds c-ted as the ratio of vehicle miles to
vehicle hours. Arterial links have higher average
aPSeda in the sketch-plannin9assignment than in the
regional aaaignment. Freeway average speeds in the
sketch-planning assignment are slower than freewaY
apeeda in the regional assignment because of the
added freeway travel.

Travel at the Zone Level

Vehicle miles and average ●peedm frm the two aa-
aignmenta were summarized and compared at the level
of sketch-planning zones. Standard mtatiatics were
calculated for the distribution of these quantities
among zonea aa well as the correlation between re-
gional and sketch-planning valuee. All regional
quantities used in this phaee of the evaluation are

actually adjusted quantities without the intrazonal
trips added in the sketch-plannittgassignment.

Figures 5 and 6 are zcattergram plots of the
vehicle miles per sketch-planning zone and average
sketch-planning zone speeds produced by the two as-
sigrtaents.Meanm and etandard deviations for the ve-
hicle mile and zpeed variablee, and the equare of the
correlation coefficient between sketch-planning and
regional variablee, are aleo abown in each figure.

IMPLICATIONS FOR PLANNING AGENCIES

The question ariaes whether the work deeorlbed in
this paper ia relevant for other tranapbrtation
planning agenciea. TO a large extent, the sketoh-
planning zones and the geaetry of the sketch_plan-
ning network used for this project are the result of
the geography and townehip murvey of the northeast-
ern Illinoie region. SeOauae other metropolitan
areas are apetially organized quite differently, it
would be inappropriate to uee the gridlike pettern
of zonee and arterial street links dezcribed here.
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Sketch-PlanningCapabilitIes

In spite of the parochial nature of the zone pattern
and network geometry of the example, some general
conclusions can be drawn concerning the characteris-
tics of equilibrium traffic assignment by using
larger zonea and simpler network coding. The most
surprialng result wan that the different intrazonal
trips in the two ●mmignmentm did not S19nlfiCant2Y
affectassignment reaulta. For ●xample, even though
zones were 4 to 9 timem larger in the sketch-plan-
ning aasignmant, tho error introduced in the re-
gional vehicle milee wam leas than 3 percent. It iS
apparent that even larger sones could be used with-
out aerioualy biasing the traffic eetimates.

The aemignment of traffic ie wre merioualy af-
fected by the coding of the underlying arterial
etreet network. In this case etudy the grid network
of arterial ●treets increamed arterial travel die-
tances; as a result, the loadings on sketch-plan
freeway links exceed the regional assignment valuea.
The method uead to eetimate capacity in the mketch-
plan ●rterial ●treet network ●ppeareadequate,given
the vehicle milee ●nd ●veragespeedmthat resulted.

Overall results from the sketch-planning aeaign-
mant compared reasonably well with the reqional
amaignment, ●nd zone level aamignment quantities
were well correlated with regional assignment coun-
terpart. Results from the sketch-planning ae8ign-
ment ●re, therefore, probably ●dequate for estimat-

ion, at regional

Transportation Rezearch Record 9’44

travel characteriatica, including
●miasiona, and gasoline cona~-
and subregional levels.

Sketch Planning in Work Programs of
Planning Agencies

Given these sketch-planning attribute relative to

those of a conventional regional assignment, the
sketch-planning methodology appears most applicable

to long-range ayetems planninq and strategic plan-

ning that deala with dramatic changez in transporta-
tion supply or demand characteristic. Project-1evel
and corridor planning will almoat always require
more detailed network ceding and smaller analysis
zones. Nevertheless, the zone system and network in
this sketch-planning example may be used to repre-
sent the balance of a region outside the corridor of
interest.

Long-range systems planning concentrates on
projected traffic or patronaqe for evaluation of
alternative regional netwrrrkawith different combi-
nation of new major highway and transit invest-
ments. Unfortunately, the number of alternativea
investigated is often limited because of the re-
sources needed to support the conventional forecast-
ing procedures. Less expensive approaches, such as
the sketch-planning methcds discussed here, will
allow more alternatives to be tested and still pro-
vide reasonable estimates of traffic on major high-
way facilities.

There is also a trend in long-range transporta-
tion planning away from the evaluation of alterna-
tive networks of major facilities. In many metro-
politan areas prospects for new major investments
are limited, and future planning will emphasize more
general transportation investment strategies for
different energy, demographic, social, and economic
reaource scenarios. Sketch-planning approaches

appear mre suited for strategic planning than con-
ventional techniques because more scenarios can be
investigated and enough detail remains to accurately
predict regional and subarea transportationimpacts.

Ac~

The research described in this paper is part of a
larger project to develop a family of sketch-plan-
ning models that analyze general urban transporta-
tion and location issues. This project ia a cooper-
ative effort between the University of Illinois at
Urbana-Champaign and CATS, with university staff
primarily responsible for theoretical and software
development. The resulting prototype versiona of
the sketch-planningmodels are being used in several
projects in the CATS work program. The work at the
university ia supported by grants from the National
Science Foundation and UMTA.
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Network Design Application of an Extraction
Algorithm for Network Aggregation

ALI E. HAGHANI AND MARK S. DASKIN

llre ~rformanra of a network extreation algorithm is described, and the algo.
rithm is tested by using the network design problem. A network is chosen as
the original natwork and is aggregated at differant Ievals. l%e results of the op-
timal dsasion making under a mmmon aat of alternative actions are than aom-
parsd against tha original and the aggregatednetworks. The rasulta suggestthat
the natwork a~sgation algorithm is a useful tool in simplifying networks to
redura the computational burden associated with the network design problem,
and to allow a breeder mnga of poliay options to be tested in a fixad amount
of computer time than would be allowad by usingtha original diasggregated
natwrsk.

Network aggregation is the art and science of con-

densing a given network into another one that (a) is

small enough to be managed efficiently and effec-
tively, and (b) preserves some desired characteris-
tics or satisfies certain objectives or both (~).
The usefulness of network aggregation schemes ia
particularly evident in instances when similar prob-
lems are to be solved on a network, or sensitivity
analyses of various types are to be performed.
Dealing with the detailed network In solving such
problems ●ntails high costs in terms of computer
storage and time.

There are two main approaches to the network

a99re9ation Problems network element (link or node)
extraction and network element abstraction. 13xtrac-
tion of network elements means deletion of the ele-
ments of the network that are identified as being
insignificant based on a prespecified criterion..
Abstraction of the elemente collapsee the insignifi-
cant ones into pseudo or dummy elements. Network
element extraction has the disadvantage of causing

network disconnection (because of the removal of
1inks). As a result, the remaining links of the
network will be overloaded if the origin-destination
(O-D) trip matrix is not adjusted appropriately.
Network element abstraction is more difficult to
perform. It is hard to transform the original net-
work into an aggregate one, and moreover, it is even
harder to translate the actions taken on the aggre-
gate network into actions on the detailed network
because of drastic changes in t~ topology of the
network that occur during the aggregation process.

The primary objective in developing a network

a99re9ation scheme should be to find an aggregation
process that, when applied to a detailed network,
results in an aggregate network that retains the
physical appearance of the original one as much as
possible. Thus when solving a decision-making prob-
lem, such as the network design problem on the ag-
gregate network, the results should be easily trans-
ferable to the original one. With this in mind, and
becauae the abstraction process changes the topology
of the network and cannot effectively serve the
process, it is proposed that an aggregation algo-
rithm, which focuses primarily on link extraction,
be used. Node extraction is a process that follows
link extraction; when all links incident to a node
are extracted, the node will be extracted. The
algorithm is presented in the next section.

NETWORK EXTRACTION ALGORITSM

Let N(V,A) be a network, where V is the set of ver-
tices or nodes and A is the aet of arcs or links.
Let T be the set of destinations and S be the set of
origins, Sand TCV. Let xl be the flow over
link i destined to t, X? be the flow over link
i originated from a, and x~t be the flow over
link i that originates from s and ia destined to t,
icA, m~S, and tcT. Also, let xi denote the
flow over link i,

xi= ~ x!= X X/= ~ ~ x~, icA, seS, andtcT (1)
ses teT scS WT

Moreover, let D = (d~ep;~se:~e O-D trip matrix.
Finally, let Ci (xi) the average cost
of travel on link i at flow xi that is continuous,
differentiable, Riemann integrable, convex. and

strictly increasing.
It is assumed that the distribution of flow over

a transportation network is based on Wardrop’s first
principle (~)--user equilibrium Q). There are some
links in the network that, after the distribution of
the flow haa taken place, will not carry a signifi-
cant amount of traffic. These links are the ones
that will be focused on in the aggregation process
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to be described. The criterion used for the identi-
fication of Insignificant 1inks is defined as
follows.

A link in a network Is Inalgnificant if the cor-
responding equilibrium flow IS below a percent of
the maximum equlllbrlum link flow in the network.
The level of network aggregation changes, depending
on the value of a; as a increaaea, the network
becomes more aggregated and vice versa.

The reason for choosing the level of flow in the
llnks as a criterion for identifying the insignifi-
cant llnks la that many transportation problems deal
with the equllibriw flow levels in the network
links. It has already been proved (~) that the
equilibrium flow level in the significant or nonex-
tracted links remains unchanged when the aggregation
scheme Is used. By preserving the level of equilib-
rium flow in the nonextracted links, the aggregation
scheme should produce an aggregate network that is
more representative of the detailed network than Is
an aggregation process that failed to preserve these
flow levels. This should be particularly important
In solving problems In which the objective function
la baaed on the level of equilibrium flow in the
links. The network design problem is one such
problem.

Thus the network extraction algorithms as it has
been coded, Is presented. A more rlgoroua presenta-
tion is included elsewhere (~). The inputa to the
algorithm are the specification of the original
network N(V,A), the average link coat functions
Ci(xi), ieA, and the O-D trip matrix D. Either
the maximum number of llnka to be extracted or the
maximum a percentile denoting the cutoff point
between the insignificant and significant link flats
should also be given. Through this process certain
prespecified links in the aggregate network can be
maintained; also, specificlinks can be extracted.
Furthermore, the algorithm extracts the llnka one by
one and provides the reaulta after each iteration.
As a result, several different aggregate networks
are obtained. The principle la to extract insignifi-
cant links and to update the trip matrix such that
the flow level in the remaining llnka of the aggre-
gate network remains unchanged. The algorithm Is as
follows.

Step 1: Specify a or the maximum number of
links that may be extracted (M). Solve the equilib-
rium flow problem. Let xi, itA be the equilibrium
flow on link i.

Step 2: Identify the unextracted link k with the
minimum flow. Let t(k) and h(k) denote the tall and
head nodes of link k. Compute

(2)

Ifak>a ZiS specified In step 1, or if the number
of extracted links la greater than the maximumnum-
ber of links that may be extracted (aPecifi* in
step 1), atop. Otherwise disaggregate the flow on
link k by specifying the origin and destination of
all flow on the link, which is done by solving the
aqullibrlum flow problam on the most aggregate net-
work generated. [An outline of how the O-D specific
link flow (xft) maY be obtained from the solution
procedure to the equilibrium flow problem, and the
problems associated with the nonuniqueness of this
quantity, are discussed elsewhere (~).] Go to step
3.

Step 3: Discard link k. Declare t(k) a destina-
tion (if it is not already such a node) and h(k) an
origin (if it la not already such a node).

Step 4: Update the trip matrix as follows: (a)
type I entry, where t(k) Is a deatlnation, i.e.,

,&k)=d:(k)+x{ (3)

where d:(k) IS the original O-D matrix element and

Is taken to be zero If the t(k) is a new destination,
.

and ~t(k) Is the updated O-D trip matrix element;
(b) type II entry, where h(k) la an origin, i.e.,

(4)

where ~(k
k

la the original O-D trip matrix element
and is ta en to be zero if h(k) is a new origin, and
.
dfik ie the updated O-D trip ma:rix element; and
(cl ~ypa III ●ntriea, where all remaining entries of

.
are substituted by d~ -

~ ‘(~ll~t?act~n~i~r~?l~ the part of the demand
from s to t that is now deetined to a new destina-
tion and that will reoriginate from a new origin).

Certain properties of the algorlthm are worth

mentioning. First, as previously noted, the algo-
rithm preservea the level of equllbrlum flow In the

llnks of the network that are not ●xtracted. Second,
In casea In which all of the nodes of the network
ara not both origins and destinations, the algorithm
will Increase the number of origins and destinations
in the aggregate network. This In turn might have
adverse effects on tha computation time of the net-
work design problem by increasing the number of
origins and the asaoclated time for computation of
the minimum patha in the network. This situation
has not been examined In this paper. However, this
increase in computation tlake should be offset
through other meana.

Third, the result of the ●xtraction process may
be a set of disconnected subnetworka. If this oc-
curs, the analysis of the aggregate network, now a
set of subnetworks, will be much easier to under-
take. In fact, In cases in which link extraction
will increase the number of origins and destinations
(and thereby increase the computation time for the

network design problem), specification of the links
to be extracted can force the aggregate network to

be a aet of dlaconnected subnetworka. In this way
the computational savings obtainable by having dis-
connected aubnetworks may be used to offset the
Increaaed time that results from additional origins
and destinations.

Finally, in the network design problem It is
shown thst for a given budget level? the total cost
to the usera of the network, aa measured on the
detailed network, la overestimated by the solution
to the network design problem that uses the aggre-,.
gate network (~).

In the next section this algorithm is applied to
an original network, and the network design problem
Is solved on the original detailed network and on a
series of aggregatenetworka.

.
APPLICATIONS OF NBTUORR EXTRACTION ALGQRITNN TO
NB’lWRK DESI@l PROB_

Problem Description

The network design problem is that of finding a set
of feaaible actiona or projects from =n9 a Collec-
tion of aucb actions that, when implemented oPti-
mise the objective function(s) beiw considered.
The feasibility of a aet of actions is determined by
resource, physical, and environmental constraints
(~). Traditionally, the objective function in the
network design problem has been formulated as the
minimization of the total number of vehicle hours of
travel on the network, with flows and travel times
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computed based on user equilibrium. This is repre-
sented as

Subject to budget constraint on the cost of implemented projects p

where X* is the user equilibrium flow on link i,
and P !s a set of projects (p) under consideration
for implementation. In solving the network design
problem, a ssodifiedobjective function, which was
suggested by Poorzahedy (~) in his algorithm I, has
been used. This form is as follows:

.
M% Z ~i Ci(Vi~Vi

irA
(6)

Subject to budget constraint on the cost of implemented projects p

where x; is the user equilibrium &w on link i.
The modified form of the problem was selected

because of the availability of a computer code to
solve this problem. Also, solving this form of the
problem has been found to be more efficient than
solving the traditional formulation and generally
resulte in similar actions being taken on the net-
work (~).

Thus the results of a set of experiments designed
to test the effectiveness of the proposed NA algo-

rithm in solving the modified network design problem
can be presented. For the detailed network, the
Sioux Falla, South Dakota, network is used in the
experiments because it ie a well-documented network
and has been used by other researchers (4,6,7) in
analyzing network design problems.

.-

The detailed network, which consists of 24 nodes
and 76 links (or 38 link pairs, allowing two-way
traffic movements), is ehown in Figure 1 (~). The
link travel costs [c~(xi)l are given by func-
tions of the form

G (XI)=q +b Cd’ (7)

The conetants ai and bi for each of the existing
links in the network, aa well aa for the aix candi-
date links, are given in Table 1 (~). Also provided
in the table Is the cost of implementingeach of the
candidate links. The first five projects represent
Improvements on existing links, whereas the sixth
project is an entirely new link. Two different sets
of experbenta were considered. In the first, only
the five improvement projects are used; in the sec-
ond, all six candidate projects are used. The O-D
matrix for this network is given in Poorzahedy (~).

Five aggregate networks are developed, which
result from the extraction of 6, 12, 18, 24, and 30
links. The aggregate networks are shown in Figures

F@srsl.Osiginzlnstwerk(~). 2

Legend:

o i Node i

+$, Link Pair

~*Candidate

~ti Candidata

@ Project Numbe.

j,j+l

Project on Existing

Project,New Lirdc

Links
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Tdie 1.Linkpemme~ oftestnmwqrkIll(~).

ink

1,2 I 5.96 0.00023 1

=l=m=l
3S,36 2.98

I
O.00011

d=bi
3,4 4.34 0.00011

5,6 5.17 0.12408

7,8 4.31 0.00069 I

9,10 4.14 0.00016

*

I21,22 9.61 0.23064

*

EEE=

2+
29,30 8.04 0.19296

31,32 6.46 0.15504

33,34 4.42 0.10608

39,40 3.50
I

o. 00L04

II 43,44 1.67 I 0.04008

W49,S0 4.46 0.00017

51,!32 3.99 0.09576

53,54 5.72 0.13728

IEEE55,56 4.71 0.11304

57,58 L.67 0.0400~

I61,62 4;00 O.0960(

a(xU3-2b(x10-4)

9,70 2.17 0.05206

1,72 3.72 0.08928

3,74 2.s0 O.ol.lss

177,78 - -

l-FF--
~67,66 I 1.60 10.00037

cost $625.x103

I 69>70 1.30 0.01562

I cost $650.ti03

I 71,72 2.20 0.02678

‘-kl.xkw

Note: I parameters are given in hours, and b pmameten are riven In hours + (1 ,000 vehicles per do’)4

2-6; the reaultinq O-D matrices are given in Ilaghani
(J).

Results for the A9!lregation Uodel

The five aggregatenetwrks shown in Figures2-6 and
the detailednetwork shown in Figure 1, along with
their corresponding O-D matrices, constitute the
baais for the experiments. On each of these six
networks, two nettmrk design problems were solved:
one with the first five candidate projects, and the
second with all six projects. The initial budget
was set at $2,000,000 in all cases, and a complete
sensitivity analysis (with respect to increases in
the budget) was performed for all six networks and
both design probleme.

Results of the Five-Project Experiment

The results of the five-project experiment are eum-

merized in Table 2. Nore detailed resulte are given
in Haghani (~). The data in the table repcmt (a)

the percentage error in the total number of vehicle
hours on the aggregate networke as compared with the
detailed network, and (b) the number Of PKojecte
that are selected differently when the network de-
sign problem is solved on the detailed and aggregate
networks. Note that there are 18 unique bud9et
levels that must be considered in performing the
sensitivity analyses, be9innin9 with a bud9et of
$2,000,000 and ending with a bud9et of $4,325,000,
which allows the implementation of all five pKoj-
ects. Of the 18 budget levels, 5 result in differ-
ent solutions for the network design problem on the
original and aggregate networks in the worstcase.

The data in Table 2 indicate that with six links
deleted frcm the original network, the solutions to
the network design problem on the original network
and the aggregate network are identical for all
budget levels. For higher. levels of a99re9ation#
discrepancies occur between the solution using the
aggregate network and that found using the original
network. Aleo note that most of the errors occur
when the ratio of the budget level to the total cost
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Tablc2, Pwwentagmel vshido hour ● rrum md numbsr of miaehcted ~ for fivqmject ~.

No. of Extracted Links

6 12 18 24 30

Budget No. of Vehicle No. of Vehicle No. of Vehicle No. of Vehicle
Lxels Budget

No. of Vehicle
Hoor hfissclected Hour Missclected Hour

No. of

($000s) Levels
MisselectedHour Miasclected Hour

Error (%) Rojecta Error (%) Projects
Mimelected

Error (%) Rejects Error (%) Projects Error (%) Rejects

B=2,000 1 0 0 3.11 1 3.11 1 0 0
B=2,050 1 0 0

3.11 I
6.73 6.73 6.73 1

2J25<B 3 0 0 0 i
6.73

0 i o 0 0 :
<2,475

2,475< B 2 0 0 3.82 1 3.82 1 3.82 1 3.82 1
< 2,675

B = 2,675 1 0 0 7.95 7.95 7.95 1 7.95
2,700< B 5 0 0 0 : 0 ; o 0 0 ;

< 3,325
3,325< B 4 0 0 0 0 0 0 0 0 0 0

<4,325
B=4,325 I o 0 0 0 0 0 0 0 0 0

of all candidate links ie low. In all cases in
which the eolution on the aggregate netwozk differed
from the solution on the detailed network, the num-
ber of misselected links was. only one. By using
vehicle hours as the measure of effectiveness, the
maximum percentage error is 7.95 percent. The iden-
tity of the errors, the equality of their severity,
and the similarity of their frequency acroee the
varioue levels of aggregation euggest that the size
of the network may be reduced significantly without
increasing the magnitude of the errors. This phenom-
enon ie also apparent in the case of six projects.

{Note that the maximum percentage error of 7.95
percent is computed as follows. At a given budget
level, let ~a and ~. be the optimal solutions to the

network design problem for the aggregate and original

networks, respectively,where z = (Yi) and Yi = (0~1)
if project i (is not, is) chosen to be In the optiBsl
set. Aleo, let V(x) represent the deoreaee in the to-
tal number of vehicle hour. in the original network
that results from implementing project set~. The
percentage error is defined as [V(= - V(~)/V(~]
Q 100.}

Note also that the total travel time on the net-

work 1s werestimated by the solution to the design
problem on the aggregate networke as Cc9PSred witi

the total time found when using the detailed net-
work. This is also shown in the six-projectexperi-
ment and, ae noted at the end of the section on
Network Extraction Algorithm, may be shown to be a
general property of the aggregation process.
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Results of the Six-Project Experiment

The results of the six-project experiment are given
in Table 3. Again, the data in the table report two
aeta of atatiatica: (a) the percentage ●rror in the
total number of vehicle hours on the aggregate net-
works aa compared with the number on the detailed
network, and (b) the number of projects that are
selected differently when the network design problem
ia solved on the detailed and aggregatenetworks.
[More detailed results are given in Haghani (~).]
There are now 40 unique budget levels that mat be
considered in performing the budget menaitivity
analysia. Of the 40 budget levels, 9 result in
different solutions for the network design problem
on the detailed network and the aggregate networka
in the worst case.

Again, when only aix links are extracted from the
netwrk, the reaulta on the detailed network and on
the aggregate network are identical. As the level
of network aggregation ia increaaad, the number of
budget levels at which diacrepenciea occur between
the aolutiona on the two networka increasea: when 12
or 18 links are extracted, errors occur at 5 of the
40 budget levels, or 12.5 percent of the time; with
24 links extracted, errors occur 20 percent of the
the (in 8 caaea); and with 30 links extracted,
errorsoccur 22.5 percentof the time (in 9 caaea).
Again,the maximumnumberof miaselectedprojectsia
1, and the maximum difference in vehicle hours is
7.95 percent.

The relatively aharp increaae in the number of
budget levels at which errors occur, as the level of
aggregation ia increaaed from 18 ●xtracted links to

24, auggeata that a trade-off must be made between
the expected accuracy of the results and the level

of detail preserved in the network. The desired
point on this trade-off curve depends on the use to
which the analyaia will be put; this ia a decision
best left to the analyst in ●ach case.

Finally, there appear to be patterna to the mia-
aelected linka. In both sets of experiments the
aggregate network solution replaced project 2 or
project 5 with project 3; in the six-project experi-
ment, the aggregate solution also replaced project 6
with project 4. These replacement appear to be
related to the degree of network aggregation in the
neighborhood of the candidate projectm. Also, be-
cauae the errors occur at the aama budget levels in
all three cases, there appaara to be a relationship
between the errors and the specified budget levels.

A core Complete exploration of the relationship
between these errors and (a) the degree Of network
aggregation in the neighborhood of the candidate
projects and (b) the specific budget levels would be
an interesting area for future research. The nature
of the errors found in this analysia are diacuaeed
in greater detail later in the paper.

Computation Times

One of the major reaaons for implementing a network

a99re9ation Process is, aa already noted, the aav-
inga in coaputer time that should result from solv-
ing problems on smaller, less-detailed net~rka.
The central proceaslng unit (CPU) times requiredfor
the solution of the two network design problems,
with all the budget sensitivity analyaes on each of
the aix networks, are given In Table 4. All CPU
tiMaS are for the Univac 1100, unless otherwise
noted.

The network design problem for the five-project
case may be solved 6 timaa faater on the moat aggre-
gate network considered in this analyais than on the
original detailed network. In the aix-projact case,
the ratio of CPU time on the detailed network to
that on the xost aggregate netmrk ia 4.4. iIowever,
these aavinga must be offset by the CPU time re-
quired to performthe aggregation prcsceasbefore the
network design- problem ia solved. In some cases
this may be of the same order of raagnitudeas the
saving that reaulta from using the aggregate network
to solve the network design problem.

Nevertheless, several points are worth mention-
ing. First, the aggregation algorithm provides the
analyat with one aggregate network for each link
extracted from the detailed network. Thus the aggre-
gate network that beat auita the analyaia purposes
can be selected. Second, it ia not likely that only
a single network design problem will be solved)
rather,a seriesof problems will be solved, ●ach of
which might be solved on a different aggregate net-
work. ?or example, the analyst might elect to screen
a large number of candidate projects by using a
highly aggregated network. The most promising proj-
ects, along with others that might be of interest
for nontechnical reaaona,would be retained in more
detailed analyaea conducted on more detailed net-
works.

Third, with a given aggregatenetwork, a large
number of sensitivity analysea can be performed. Aa
already indicated,it ia likely that budget ●enai-

TabloS. ~dw~~ahmr~tim~dd~~~tiw~~.

No.ofExtracted Links

6 12 18 24 30

Budget NO.of Vehicle No.of Vehicle No.of Vehicle No. of Vehicle No. of Vehicle No. of
Levels Budget Hour Misselected Hour Misselected Hour Missrlected Hour Misselected Hour
(4000s) Lavels

Missclected
Error (%) Projects &rOr (%) Projects Error (%) Projects Brror (%) Projects Srror (%) mje~~

B = 2,000 1 0 0 3.11 1 3.11 1 0 0 3.11 1

B = 2,050 1 0 0 6.73 1 6.73 6.73 1 6.73
2,125<B 5 0 0 0 0 0 A o 0 0 :

< 2,475
2,475< B 2 0 0 3.82 1 3.82 1 3.82 1 3.82 1

< 2,67S
B= 2,675 0 0 7.95 1 7.95 7.9s 7.95 1
2,700< B ; o 0 0 0 0 i o A o 0

< 3J25
3,325< B 12 0 0 0 0 0 0 0 0 0 0

<4325
4>25< B 4 0 0 0 0 0 0 0 0 0 0

<4,825
4,825<B 4 0 0 0 0 0 0 6.18 1 6.18 1
< 5,82S
B=S,825 1 0 0 0 0 0 0 0 0 0 0



Transportation Research Record 944 45

CFUTree’(see)

ND.of Five six
~@On Extracted Candidate Candidate

Links Prolects PrOiects

o Ob 50’
0

79~
Ob 3]4.384 514.598

0.2797 6 246.280
0.3352

398.487
12 249.677 409.988

0.3413 18 249.002 417.027
0.3564 24 207.315 378.481
0.3780 30 51.496 124.228

●AM figures, except those noted in footnote c, are from t UNIVAC
1100.

bWCInal network.

cFkures ●re from ~ CDC 66oo, u reported by Poorzahedy @,

tivity analyses will be performed. In addition, the
sensitivity of the eolution to additional con-
straints that require eelacted projects to be in-
cluded in (or excluded frc@ the optimal solution
may need to be analyzed. In all of theee cases the
network aggregation algorithm needs to be solved
only once. Thue the CPU time for the networkaggre-
gationalgorithm ie best viewed as a fixed coet that
may be distributed over a large number of analyses.

Finally, note that the CPU time involved in solv-
ing the network deeign problem dacreasea signifi-
cantly ae a result of extracting six links from the
network in both the five- snd six-project experi-
ments. The CPU times for the casea of 6, 12, and 18
extracted links are comparable. A elight decrease
in CPO time is experienced aa a result of extracting
24 link=, and a significant dacrea8e is found when
30 linke are extracted. This result, combined with
the resulte outlined in the section Resultefor the
Aggregation Model, which deecribes the accuracy of
the results at varioun levels of aggregation,
clearly auggeetn that there ia an important trade-
off to be made between decreased computation coats
(and greater network aggregation) on one hand and
improved eolution accuracy on the other hand.

In the aemple probleme previously discunsed, it
appears that desirable aggregation levels would
correspond to either the extraction of 6 links (re-
sulting in a moderatedecreasein computertime and
a high level of accuracy) or the extractionof 30
linke (resulting in a large decrease in computer
tine at the expense of decreaaedsolution accuracy).
Intermediate levels of ●ggregation appesr to result
in relatively large eolution errors without large
comperk8ationain termsof solutiontimes. An inter-
●sting ●rea of future research would be to determine
whether or not the network aggregation algorithm
results in such identifiable choices tktween aggre-
gation and solution accuracy in other net~rk design
problem, and more generally, in other network prob-
lems.

SOURCES OF DISCRSPAIKY BETWSRf AGGREGATS NslWXtK
ANO DSTAILSD ~RS RSSULTS

The results preeented in the previous sectione on
the application of the propoeed network aggregation
algorithm to the network deeign problem are gener-
ally promising. In no case ia the difference in the
improvement in vehicle hours between the aolutiona
on the detailed and the aggregatenetworks greater
than 7.95 percent. Also, the two aolutiona differ
by at mat one candidate link in all caaes. Never-

theleaa, there are several differewea that warrant
furtherexplanation. As indicated in the following
paragrapha, the teat caee eelactad is likely to
exaggerate the extent of the differences that are
likely to result in a more realiatic planning con-
text.

Two characterlatica of the teat problem will tend
to reeult in an Overemtination of the errors that
result from using the network aggregation scheme.
?irat, the Sioux ?alla network being used ia already
a highly aggregate representation of the actual road
network. This ia ●violentwhen the range in equilib-
rium flowe on the original network under the do-
nothing option is examinedt i.e., the maximum link
flat is leaa than 4 times the minim link flow.
The average link flow Is 12,989 vehicles and the
maximum flow is 24,901 vehiclee. The flow in the
30th link extracted frox the network ia 9,839 vehi-
cles, or almoet 40 percent of the maximum link flow.
A real network is likely to exhibit a much qreater
range in equilibrium flows. If the extracted links
truly carry an insignificant level of flow compared
with the flow on the maximum flow link, the solu-
tions to design problems on the aggregate networks
are likely to be much better than they were in the
teat problem in which the flow levels on the ex-
tracted links were actually quite large and sig-
nificant.

Second, the number of candidete links in the
design problem waa large relative to the total num-
ber of linke in the detailed network. There are 6
two-way candidate links on a network with only 38
links. In the aggregate networka the situation is
even mre dramatic. Nhen 30 (one-way) links are
extracted, 26 percent of the links are being con-
sidered aa candidate links. Thus the changea under
consideration for the network are quite radical when
compared with more reallatic situations in which
only 1 or 2 percent of the links are likely to be
considered candidate links. Again, if the ratio of
the nuaber of candidate links to the number of links
in the detailed network is small, the solution to
the design problem on an aggregate network ia mre
likely to replicate the solution on the .detailad
network than waa found in the teat problem, in which
almost 16 percent of the links in the detailed net-
work were candidate links.

In a~ry, the teet network chosen for study is
already a highly aggregate network that exhibits a
relatively small range in equilibrium link flows.
Also, the number of candidate links ia extremely
large relative to the total number of links in the
network. It ia expected that, if a more realiatic
detailed network is used, the solution to the net-
work design problem using an aggregate network will
more closely approximate the solution using the
detailed network than waa found in the small test
network.

Finally, note that the aggregation process ex-
tracta links sequentially, thereby propagating com-
putational errors and accumulating them in the final
aggregate network. The reeuiting O-D trip matrix
carries these errors to the decision-making mdel--
in this case the network design model. Had a simul-
taneoua ●xtraction process been developed, this
xource of error would have been eliminated. TO
date, however, a simultaneous extraction process
that circumvents the multiple counting danger has
not been impleaentad.

CONCLUSIONS ANO RX@9WNDATIONS FOR FUTURE ~RK

A network●xtractionalgorithm for the network ag-
gregationproblem haa been presented. The algorithm

is based on the extraction of those links in a de-
tailed network whose equilibrium link flows are less
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than a user-apecifiad fraction of the IIIaXiIUnn equi-
librium link flow. The algorithm ia sufficiently
flexible to allow the analyst either to force cer-
tain links out of the detailed network or to retain
particular links in the resulting aggregate network.
Links are sequentially extracted from the network
and, after each ●xtraction, a modified O-D matrix is
derived. The revision in the O-D trip matrix pre-
serves the level of equilibrium flow in the nonex-
tracted links. By extracting links sequentially,
the a190rithm provides the analyst with multiple
a99re9ate networks--one after each link extraction.

The network aggregation algorithm was tested by
examining the performance of a network design algo-
rithm (~) on both a detailed network and five aggre-

gate networks derived from the detailed network.
The results are quite encouraging. The maximum
percentage error,in the improvement in vehicle hours
of travel between a solution using the detailed
network and a solution using an aggregate network
was 7.95 percent. In most cases the same projects
were selected for implementationwhen using both the
detailed and the aggregate networks; when the solu-
tions differed, at most one link was misselected
when using the aggregate network. As suggested in
the previous section, it ia anticipated that even
better results will occur when the algorithm is

applied to networks that are larger and more realis-
tic than is the 76-link, 24-node test network pre-
sented here.

Several promising areas for future research are
suggested by this study. First, links are extracted
from the network in increasing order of the ratio of
the equilibrium flow in the link to be extractedto
the maximum equilibrium link flow. Other criteria
should also be investigated. For example, in cer-
tain contexts it may be desirable to extract links
based on the ratio of the equilibrium flow in the
link to the capacity of the- link.
hybrid criteria might be developed.
the traditional formulation of the
problem, the objective function is

MinimireZ= z x;c,(x;)
alllinks

I
which may be rewritten as

Alternatively,
For example, in
network design

(8)

matrices on the aggregate networks and on the uses
to which those aggregate networks are put ia worthy
of additional research.

Third, to avoid multiple counting problems, a
sequential link extraction procedure has been imple-
mented. Research should be devoted to the develop-
ment of a simultaneous link extraction procedure.
Such a procedure would probably be faster than the

sequential Pr@edure that has been used and would be
less prone to accumulating and propagating round-off
errors from one aggregate network to the next.

Fourth, based on the network design experiments,
it it suspected that the quality of the network
design solution that uses an aggregate network is
related to the degree of network aggregation in the
neighborhood of the candidate links and to the ratio
of the available budget to the budget required to
implement all candidate links. Additional research
should explore these relationships.

Finally, the algorithm should be tested on net-
works that have a limited number of origins and
destination to determine whether or not the in-
crease in the size of the O-D matrix that results
frcm the extraction algorithm increases the computa-
tion time more than the time is reduced because of
the deletion of links. Recall that this did not
occur in the network used in the set of experiments
because all nodes were origins and destinations. If
this does occur, it might limit the usefulness of
the proposed approach to cases in which the increase
in the size of the O-D matrix can be predicted to be
small.

We would like to acknowledge ?IoussainPoorzahedy,
whose ideaa and assistance contributed significantly
to this research. We would also like to acknowledge
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Isfahan University of Technology in Iran for their
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partly provided by a National Science Foundation
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Minimi2eZ= z x; Ci(*’)+ Z ~“Ci(X:) (9)
links ii“~ggreg.te deleted

net work links i

In solving a network design problem on an aggre-
gate network, it is hoped that changes in the net-
work caused by the actions taken will not signifi-
cantly affect the second term of the objective
function and that it may, therefore, be treated as a
constant and omitted from the calculations. This
suggests that the rate of change in the objective
function from a change in the flow on link i can be
computed, and that links for which changes in the
flow will only marginally change the objective func-
tion can be deleted. Specifically, the rate of
change in the objective function because of a change
in the flow of link (which is denoted Wi) is

aziaxi = Wi = Ci (x;) + %“C; (N”) (10)

where,C~(x~) is the derivative of C (x) evaluated at
x = xi. kA hybrid strategy would be o compute Wi for
all links and to delete
less than a ~x (Wi).

those links for which Wi is

Second, the O-D trip matrix that is derived after
each link iz extracted is not unique because it is
based on the O-D specific flows in the extracted
link, which are not unique. The effect of other O-D
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The dwdopmsnt of ● quidwwpcrrssmsthcd to forsrast traffic wolumw
zt projast sites loomed on ths rursl highway network is disoussed. By using
trwd dsta from Now York Stats’s continuous count ststicns in rural bos-
tion$ wrd various stzte., county., andtown-lwrddemographicdzta,aw of
.Iasticity-bwsdmodelsi$derived.Thwsmodolsan forsoenfutureysar
wrnudsv.ragzdailytrzffic(AADT)n afunstionofbwzyewAADT modi-
fiid by various dzmogrsphic faotora. Thws moddsarswtimstzd basedon
thz typs of ssrvirz the roadway carriw: interurban, urbsn to rural, wtd
rural to rural. NoM~phs ●nd a user’s manual that dworibw ● simple
seven-stepproozm to U$Zthe model werz dwebpzd wrd distributed to re-
gional offkzs throughout Now York Stste.

For highway improvements, the gap between available
funds and potential projects is becoming wider as
revenues from various sources ( including gasoline
sales taxes, vehicle registration fees, and driver’s
license fees) fall becauae of economic pressure or
government-enforced conservation (although the $0.05
gasoline tax increaae will ease some of the pres-
sure). Costs of labor and materials are escalating
faster than the national rate of inflation. At the
same time, compounding the problem, increasing
travel demands are placing an even greater burden on
the U.S. highway system than in the past, thus wcrs-
ening an already difficult situation.

These trends mean that the need for construction,
rehabilitation,and regular maintenance of the high-
way network is greater than ever. Each year a large
number of such projects, ranging from simple inter-
section improvements to large-scale facility con-
struction,.are identified as candidates for the lim-
ited financial resources available. Even in the
best of times, not all projects can be funded; now,
with reduced mnies to fund projects, it is even
more imperative that programming decisions be made
in the most effective and efficient manner possible.

The selection of projects to be implemented is
generally based on some evaluation process in which
the costs and benefits of each project are ccm-
pared. The various evaluation processes consider
many factors in weighing each alternative, including
safety, noise, air pollution, and energy. Each of
these factors is, in turn, based on an estimate of
the traffic volume that will use the facility under
consideration. Thus the volume estimate determines,
to a significant degree, which of the many projects
will be implemented.

Travel forecasting methodology is highly advanced
at the urban area level. Most large metropolitan
areas have developed and implemented a fairly so-
phisticated set of computer-based travel simulation
models based on the traditional four-step process.
In a nonurban context, however, this process is not
nearly so advanced. With many of the projects com-
peting for the scarce funds coming from nonurhn
areas, it is important to improve and streamline
forecasting procedures for rural travel needs. In
this way it would be possible to evaluate many rural
projects quickly and accurately, thus providing gov-
ernment officials with better inforraationon which
to base their programming decisions.

TO fulfill this need, research waa initiated by
the Transportation Statistics and Analysis Bection
of the New York State Department of Transportation
(NYSDDT) to develop a quick-respcnae procedure to
forecast traffic volumes on rural roads. The pri-
mary focus of this effort was the design and testing
of a simple, fast method to forecast rural traffic
volumes. In this paper previous efforts aimed at

forecasting rural traffic are examined, the chosen
methodology is described, and the results of the
analyaia are presented. Finally, acme of the limi-
tation of the procedure are discussed, and scae
possible solutions to the limitationsare provided.

PAST BXPERIBNCE

Little attention has been focused on the topic of
forecasting volumes on rural roada. Much of the re-
search that deals with the rural highway system has
been in the area of design and construction of lcw-
voluma roada, travel to recreation facilities, or
rural public transportation. An extensive litera-
ture review uncovered only two studies specifically
concerned with forecasts of rural traffic volumes.

In 195S Mcrf and Houska (~) examined the varia-
tion of traffic growth patterns on rural highways.
They hypothesized that four factors were responsible
for the variations in growth patterns observed on
the Illinois rural highway network: geographic lc-
cation, type and width of pavement, proximity to an
urban area, and type of service provided by the
roadway. This last factor was subdivided into four
categories: interurban, interregional, urban to
rural, and rural to rural.

The authora noted that the growthtrends in sites
close to urban areas were primarily a function of
the expansion of the city. Therefore, the remaining
analysis focused on rural highways outside the in-
fluence of an urban area.

A co~arizcn by geographic location indicated
minor differences in grwth petterns. Slightly
greater traffic increases were noted in northern
rather than southern Illinois. Roadways with wider
widths had correspondingly greater increaeea in
traffic, but the authors believed that the wider
roads were an effect of the volume increaaes, not a
cause of tham.

The only factor that had an appreciable effect on
traffic growth rates was the characteristic of type
of service. Highways with the greatest percentage
of interurban or interregional service generally had
the largest increases in travel. Roads that served
largely urban-to-rural or rural-to-urban travel had
the smallest increasea. Based on these results, the
authors projected volume trends on the rural highway
network in Illinois for the different road types
separately.

The study by Tennant (~) used the land use and
traffic generation principle to outline a procedure
to estimate rural road traffic in developing ccun-
ties. By using various eccncdc# social, land use,
and travel data from the Mgunt Kenya rqion in
Kenya, several trip-generation equations were esti-
mated for both urban and rural zones in the study
region. The results are almost identical in both
cases employment is a hatter predictor of trip gen-
eration than is vehicle ownership. The correlation
coefficients that uae either variable in the ~a-
tion are all in the range of 0.5 to 0.9. Thus even

vehicle. ownership does a fair job of Predicting
trips per person. Examining traffic generation from
different land uses revealed that 75 percent of the
tripa were generated by one of three land use
typesz retail and c~rcial; government adminis-
tration, and road transport. Agricultural and resi-
dential land uae areas did not generate many triPs
in this region. The author concluded that, obvi-
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ouely, more detailed research waa needed, andt as a

first-cut analyaia, either vehicle ownership or em-
ployment could be used to forecast future rural trip
generation.

DEVELOPING TSE METHODOLOGY

Current practice at NYSDOT to forecaat travel on
rural highway links aaaumea that travel, represented
aa vehicle miles of travel (VMT), is directly pro-
portional to population (note that theee data are
fr~ an internal memo from W.S. Caawell to J.
Shafer, ‘V?4TGrowth Factora for Minor Civil Divi-
s ione,8 January 14, 1975).’ Travel forecaate for
urbanized areaa are obtained from the network aa-
aignmenta for each area. In areaa outside those
geographic boundaries, a different procedure was
developed. By using V14T per capita estimates by
area from the 1972 National T~anaportation Study and
population eathetea for each town and county in the
state from the New York State Department of Com-
merce, annual V?4T growth ratea by town were derived

for the years 1972-1990. These rates were developed
by first estimating total VMT for each area by using
the VMT per capita data and the population esti-
mates, then calculating the annual growth rates for
each area.

Several problems surfaced as these VMT growth
ratee were ueed by the Department. Firet, it wae
recognized in the beginning that there Is not necee-
aarily a correlation between W4T and population.
Inaccurate eatimatea of VMT may result from large
amounts of nonresident travel drawn into or through
the area. This is especially true in popular recre-
ation areas. Second, although the population in New
York atate may decline (and did ao between 1970 and
1980), the number of households may (and did) rise;
thus thie procedure would fdrecaet a decline in VNT
from 1970 to 1980 when, in actuality, travel waa
still increasing. Finally, there wae no sensitivity
to energy price or supply in this method.

Because of these shortcomings, the NYSDOT Trans-
portation Statietice and Analysia Section initiated
a research project to develop a procedure sensitive
to these factors to forecast rural traffic to be
used in the development and evaluation of highway-
related projects. This new methodology was designed
to meet several criteria. First, the procedure must
be simple enough to be used on simple desk-top or
hand-held calculators, which are generally available
in most planning organization offices. It was be-
lieved that a large, cumberaane computer model would
be inappropriate in this study. Second, the data
used in the procedure must be easily available to
the local or regional planner. This includes both
historical trenda and future predictions. Finally,
it wae believed that to be of maximum use to the
project development staff, the procedure would fore-
cast annual average daily traffic (MDT) at the
project site, rather than WIT as waa done previously.

An elasticity model formulation was selected as
the appropriate 8odel. In this model future year
AADT is related to present year AADT and modified by
changes in any number of background factors. The
general form of the model is as follows:

A4DTf=AADTP{l.0+el[(Xl,~- X,,P)/Xl,P]+...} (1)

where

AADTf * AADT in the future year,
A% = AADT in the present year,
Xl,f = value of variable X1 in the future year,
Xl,p = value of variable Xl in the present

year,
el = elasticity of AADT with respect to Xl.

The elasticity model was selected for several

reasona. Secauee it was believed that the range of
volumes over which the model would be applied would
be much greater than that available in the calibra-
tion data set, a simple linear regression model that
relates AADT to the background factora directly was
deemed inappropriate. second, the use of present
year AAOT to eetimete future year M (ae a sort of
pivot point) would reduce the problem of nonresident
travel. Finally, the ●lasticity portion of the
model calculate a growth factor directly, so the
procedure can be easily transformed into a set of
nomography, thus further simplifying the work re-
quired by the user.

The elaaticitiea and the appropriate background
factors are derived from a linear equation that re-
lates AADT to s variety of local, county, and etate-
wide factora. It can be ahown mathematically that
given an equation of the form

Y=a+a1x1+a2x2+... (2)

elasticity measuree can be estimated by

ei = ai(Zi/V) (3)

Thus the background factore that best estimate AADT
and their respective elasticities can be derived by
ueing multiple linear regreeaion.

Data for the estimation of the background factors
and elasticities came from a variety of sources.
The AADT values were obtained from the continuous
count program at NYSDOT. Only thoee stations clas-
sified aa rural in nature were selected for use in
the study. This yielded a total of 32 stations
throughout the state (Figure 1). By using the town
and county in which the station ia located, the var-
ious background factora were collected. Information
at the atate, county, or town level waa obtained
from a variety of demographic factora, including
population, households, automobile ownership, and
employment. Some of these data were collected at
more than one level of detail. A summary of the
background factors collected at each level is aa
follows:

1. Town level--population, housing units, and
houaeholdal

2. County level--population, housing units,
households, automobile registrations, employment,
labor force, personal income, and income per capita;
and

3. State level--gaaolinesales.

These data wera collected for several years (1974-
1978) and yielded a total of 5 observations for each
station and 160 observationsoverall. These years

were chosen to avoid any cazplicationa introduced by
the energy emergency situation experienced during
the pact decade. Although the first energy crisis
did encompeaa the ●arly months of 1974, it was be-
lieved that the emergency had eaaed enough ao that
yearly totals for the variables would not be signif-
icantly affected.

The equationa developed to uncover the moat im-
portant background factors and to estimate their
elasticities related each year’a AADT for ●ach eta-
tion to the corresponding year’s data for the back-
ground variablea for that station’a location. By
using the results from the earliar study in Illinois
(~),’threa different claaaes of roads were examined
separately. These road classes were based on the
type of aervlce the road providea. By using func-

tional claas aa the determinant, the three service
types were InterStates (representing interurban and
interregional service), principal arterials (repre-
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senting rural-to-urban service), and minor arterials R2 values, t-atatiatics, and elaaticitles are as
and major collectors (representing rural-to-rursl
service). Thus three sets of elasticities and three
forecastingmcdela were derived.

Several regression analyses were performed’ by
using a stepwise linear regression program. In the
initial runs, one of the income variables was en-
tered into the nodel. ?Iowever,future values for
either of those income variables are difficult to
forecast, especially in an economy that is under-
going such rapid changee. Given the esrlier crite-
rion for using variables that are easily available
and simple to forecast, all further anslyses elimi-
nated any incrsmavariables from consideration.

In addition, throughout the remainder of the
analyses, town or county housing units appeared in
many of the equations. In this caae, although the
relationship haa statistical significance, the
causal relationship to travel must be questioned.
It was believed that households (sometimes defined
as occupied housing units) were a better determinant
of travel. Therefore, whenever housing units at any
level entered the equationa, the correapondin7
household value was aubstltuted. This resulted in
●xtremely small reduction in explanatory power of
the models, but the models had a much better causal
foundation.

The final regression equations, along with the

follows. For Interstate,

MDT =-1097S70+O.051 county automobiles

+ 9.042 town households

R2= 0.65 t=2.49 t=6.86
F =25.13 e=O.228 e=O.t332

For principal arteriala,

MDT = -3013.145 + 0.125 county households

+0.866town population

(4)

(5)

R’= 0.77t=4.98 t=7.27
F =45.75e=O.572e=O.760

For minor arterisls and major collectors,

AADT = 2867. 129+ 0.619 town households (6)

R*= 0.20 t=4.95
F =2452 e=0314

Each of the models are relatively simple, with only
one or two variables in” each. The equations use
vsrisbles that are easily available to 100al plan-
ners from a variety of sources for both historical
and future trenda. Each of the variables is aignif-



50 TransportationResearchRecord944

icant at the 95 percent confidence level, and all
function in the properdirection; i.e., ●s the vari-
ables increame, travel increases. Bquations 4 ●nd 5
exPlain much xore of the variance than Bquation 6,
but thie ie an expectedresult. The last type of
rural road is much more ●bundant ●nd serves aany
sore purposes than the other, ~re specialized,
typae of roads. Therefore, it is expected that
there would be much ~re variability in the data and
much less explanatory power in ● simple model. This
variabilityia probably caused by local factorsbe-
low the twn level. Large trafficgeneratorssuch
as malls,drive-infast food restaurants, or schools
in the proximity of the counting station are ex-
amplesof such a local●ffect.

There are severalitemsof interestin Equations
4-6. First, in only one equationdoes a population
variableenter, whereas a householdvariable is in
●very equation. This supportsthe contentionthat
households, not population, ●re a better deter~inant
of travel. This is especially significant becauee
the previous procedure at NYBDOT relied exclusively
on population as the determinant of future traffic
volumes. Second, it is interesting to note that the
energy variable did not ●nter ●ny of the equations.
In fact, ite correlationwith ~ was extr~ly
small. This variable was a statewidevalue,whereas
the reet of the data was of ● finer detail. Unfor-
tunately,nore detailed information on fuel supply
was not available. Perhapswith xore detailaddata
energyfactorsmay becomesignificantin theee aque-
tions.

By using the elasticitiesderived from the re-
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9reSsiOnaguatione,it is now possible to ~lete
the devel~nt, of the forecastingmodel by substi-
tuting those elasticitiesinto Equation 1. This
model ia preeentad in Equations 7-9. For Inter-
state,

AADT1=AADTP [1+0.228(%Acmmty automobiles)

+ 0.832 (%A town households)] (7)

For principal arterials,

AADTf=AADTP [1+0.572 (%lcounty houzrholds)

+0.670(%Atown population)]

For ■inor●rterialsand majorcoUectors.

(8)

AADTf=AADTp[ 1+0.314(%Atown households) (9)

~ make the procedureeven easier to use, nomo-
grapher were developedto prwide fasterestimateeof
the growth factor (called Z), that portion of the
equation ●ncoapaqing only the elasticities
(l+elA8xl+. . .). These nomography ●re shownin
Figures 2-4, ●long with ●xa8plecalculationsde~n-
stratingtheir uee.

TO use theee nowgraphs, the user needs to com-
pute the percentagechange in the appropriatevari-
ablee at the projectsite fra the base year to the
horizonyear. By using Figure 2 (Interstetes) as an
exaaple, the variableswould be county automobile
registrationand town householda.The intersection
of those lines in the graph yields the growth fac-
tor. In the example,a 35 percentchange in county
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automobile registrations and a 20 percent change in
town households give a growth factor of approxi-
mately 1.23, which implies a 23 percent growth in
traffic from the present to the future year.

These models satisfy all of the criteria speci-
fied earlier. The procedure is easily used by any-
one with a hand-held calculator; no large computer
syetea is necessary. With the nomography,the fore-
castingprocedurebecomes●ven easier to use. The
data needed to predict rural traffic volumes with
these models are readily available at the local and
regional levels. Historical trenda for population
and households are found in census publications, and
autcmmbile registration data are generally available
from either the state transportation or motor vehi-
cle department. In addition, recent work at NYSOOT
has been directed toward compiling a reference di-
rectory for gathering transportation and energy data
at all levels of detail (~). Thie directory pro-
vides guidelines and euqgestions for collecting this
type of information at the local, regional, and
state levels.

To use the forecasting procedure, a eimple seven-
step outline was developed:

1. Determine functional class of roadway,
2. Determine town and county of roadway,
3. Collect baae year AADT,
4. Collect base and horizon year data for re-

quired variables,
5. Calculate percentage change for each variable,
6. Calculate (or uae ncaograph to estimate) z

factor, and
7. Calculate horizon year AADT.

The user’e manual that describes this procedure was
develop@ and distributed to the regional offices of
WYSOOT (~). This manual included etep-by-step ins-
tructions for using the procedure, the nomography,
an example calculation, and the necessary data to
use the methodology.

TSSTING THE KSTHODOIOGY

A sample of 100 sections from the state highway sye-
tem were selected to test this procedure. These
sections were selected because they were propor-
tional to the total number of sections for ●ach of
the three service types, and each section had a
traffic count performed in 1975 and 1980. By using
the appropriate town and county values for the back-
ground variables, foreoasta of AADT for 1980, based
on 1975 AADTs, were computed and coapared with the
actual 1980 AADTs for each section.

The results indicated‘that the tiels performed
satisfactorily.

Avq
Forecast Avq

SOadway Error (t) AADT
Interstates -4.54 iziao
Principal arterials 14.49 5,415
Minor arterials and 6.93 3,865
major collectors

The larger errors (for principal arterials, and
minor arterials and major collectors) are associated
with the smaller valuee of AADT. Errors of these
eizes will not have a large hpact on any design de-
cimions.

The models overestimate future AADT on moat of
these sections, but it must be remembered that in
the 1975-19S0 time period an energy shortage caused
a drop in travel of 5 percent or more. Therefore,
the estimate of future AADT should be high. By ad-
justing the forecasts to account for the 1979 fuel
shortage, the models would perform even better.

APPLICATIONS

There are many potential uses for the rural travel

forecasting model. Several poaeible applications
are preeented in this section, and these deal pri-
marily with the project development process, which
is the main task for many state highway agencies.

The most obvious ~nd direct uee of this procedure
is for the ●stimation of the benefits for specific
highway system improvements. These projects can
range from relatively simple road widenings to
large-scale reconstruction of highway eections. The
procedure estimates future traffic volumes reason-
ably quickly and accurately, and thus allowe the
analyat to examine many alternative projects with

minimal expenditures of time and money.
A second, related application would be ae an aid

in the eelection of the appropriate design for a
project. Answere to questions such as the number of
lance and type of traffic control required are also
determined by the volumes on that highway segment.
The engineer can gain some insight into the future
needn of the area in order to scale the project to
meet those criteria.

The final application for the rural traffic fore-
casting model is the use of the procedure as a guide
in the identification of potential problem segments
of the state highway syetem (at leaet the rural por-
tion). SeCause the model is based on town- and
county-level variablea, it is possible to identify
the towns and counties where traffic growth will be
the greatest and to focus on these areas for more
detailed examination. This will be of great assis-
tance in helping the planner estimate where the fu-
ture problems will be. Ae a corollary to this use,
it is possible to key the traffic counting program
to thie information by concentrating on the areas
that show rapid growth (or decline) and by eliminat-
ing frequent counte in the areae that ahow a stable
situation. As the available funds for all phases of
highway work decline, this could be one of several
ways to reduce the cost of the traffic count program
without sacrificingmuch of its information.

PROB= AND LIMITATIONS

Perhape the meet serious problem with the procedure
ie one that is coamon to all forecasting tools: the
accuracy of the model is determined to a large de-
gree by the accuracy of the inputs, especially for
future values of the background variables. The
state provides a set of forecasts for county popula-
tion and households for 5-year intervals, but there
is little information available for the other vari-
ables required in the procedure. Thus the queetion
is how to eeth.zte future values for county autcmw-
bile registrations and town population and house-
holds.

There are several ways to obtain future year es-
timates of the number of automobile registered in
the county. The first and most obvioue way ie to
check with the state department of transportation
or motor vehicles to see if they have some forecasts
of that sort. If that fails, or the local planner
wiahea to check thoee forecasta, there are other
waye to forecast future automobile registrations.
The eaeiest is to calculate the average annual
growth rate from the historical data (in thie case,
1973-1980 data), and aesume an increasing, decreas-
ing, or constant rate for the future. Thie method

does not incorporate any concern about reaching a
saturation point, but it may be reflected by alter-
ing the projected growth rate. Another way, which

accounts for the eaturatlon problem, ie to examine
the trend of historical automobile per pereon in
the county, and then carry that trend out to the fu-
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ture until this value reaches a predefine 6atura-
tion point. Then, by multiplying this trend by the
county population, estimates of future year county
automobile registration are developed.

The varioua ways to obtain future values for both
town population and households are virtually identi-
cal, and will be considered together. These methods
also parallel the ones used to eatimete county auto-
mobile registration in the futurel The first and
simplest way is to calculate an average annual
growth rate for the town and carry it over into the
future. Of course, the analyst can adjust this rate
to more closely reflect the local situation. This
method, however, does not guarantee that the sum of
the town values will equal the county total (pro-
vided already) for a given year. This is not a real
problem for localized projects, but it could prove
to be a significant error in larger undertakings.
Therefore, a somewhat more complex way may be con-
sidered. In this method, the town’s proportion of
the county total is calculated for two points in
time. Depending on the difference between them, it
may be assumed that the town’s proportion increases,
decreases, or remains constant out to the horizon
year. Although these procedures are not elegant,
they do provide eeveral options for the local ana-
lyst to usa to meet the data requirements of the
rural travel forecasting models.

One other major problem encountered while using
this new forecasting tool deals with the applicabil-
ity of the model in various areaa. Row does the
analyst decide that the project area ia rural enough
for the model? Obviously, the model should not be
used to estimate future traffic volumes in the cen-
tral city, but what about the rest of the areas? It
ia difficult to develop guidelines to assist in this
decision. Perhaps the beet advice to give here is
to use this model In conjunction with any other
travel forecasts (e.g., from the assignment network
in the fringe of the urbanized area) that deal with
the acme area. If no other forecast exists, then
the area may be assumed to be adequately represented
by this model. As experience is gained in the use
of this pr=edure, better guidelines may be de-
veloped.

Finally, the model formulation asaumes that the
elasticities are constant over time, but the regres-
sion derivations do not ensure this. Historically,
travel has been growing at a fairly constant rate
for many years. After the interruptions caused by
the two fuel shortages, travel growth resumed that
rate in a short time. Therefore, it was believed
that assuming constant elasticities would not intro-
duce any substantial errors.

In addition, a log-linear form to estimate the
elasticities, which ensures constant elasticities,
was tested. The form of the equation ia

Y=~+a, lnX,+a21nX2+... (lo)

where al, a2~ . . . are the elasticities. The
results were not significantly different from the
original models (as shown in the following table) ,

and this provides further evidence to support the
assumption of constant elasticities from the linear
regression formulation.

Roadway
Interstate

Elasticities
Linear Log-Linear
-4.54 9.98

Principal arteriala 14.49 13.19
Minor arterials and 6.94 6.50
major collectors

Overall, few probleme have been identified during
the Initial uses of these modele. The problems pre-
viously identified were the only significant ones
experienced to date. As local planners begin to use
this procedure more often, some of the subtler
shortcomings may surface, but they are not expected
to be major concerns. It must be kept in mind that
the end uae for the forecasted volumes ia the design
of rural highway projects. These volumes are gen-
erally low enough ao that large errora (on the order
of 20 to 50 percent) will not cause a significant
change in the design criteria.

Finally, it is important to note here that this
model Is not intended to be the perfect forecasting
tool, if such a thing could ever exist. Rather, it
is to be used by the analyat as one way, among many,
to estimate future travel on the rural highway sys-
tem. The user is expected to weigh the results in
terms of the local situation, and adjust them ac-
cording to his judgment of the specific area and ap-
plication.
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Respondent Trip Frequency Bias in On-Board Surveys

LAWRENCE B. DOXSEY

In this paper it is shown that on-board grwveys are burdsn~ with an in.
herent and serious ssmpling bias. Tha rouraa and implications of this bias
are pressntad, and a simple statistical correction proceshm is developed.
An example is used in which the bias leash to a 50 percent overestimate
of aversga tripmaking by usarsand ● 33 percent undarastimste of the
number of trsnsit usersin the population.

On-board surveys are the most commonly used mecha-
nism for the collection of disaggregate data about
public transit patrona. For many operators, on-
board aurveya are conducted on an annual baaia and
provide them with their only source of information
on the users of their systems. The attractions of
this survey technique are both strong and obvious.

Compared with other survey procedures, on-board sur-
veys are inexpensive to both develop and administer
and they guarantee that all respondents will be
transit users. Thus fairly modest resource expendi-
ture can generate a substantial volume of user in-
formation.

Unfortunately, on-board surveys are also burdened
with a number of disadvantages. Frequently acknowl-
edged among these is the general low response rate,
often 25 to 50 percent, with the poaaibility of se-
vere nonresponae bias. Also widely recognized is
the inherent need for brevity and hence the relative
paucity of information on each respondent. Other
difficulties relating both to the method of adminis-

tration and to limitations on the information re-

ceived have been identified and could be mentioned
here. However, one fundamental and potentially se-
rious drawback to on-board surveys has been quite
generally overlooked. This ia the problem of selec-
tion biasr which results from using transit passen-
ger trips as the sampling frame for interviewing
tranait users. This particular form of selection
bias is referred to in this paper as respondent trip
frequency biaa. It is the purpose of this paper to
isolate the source and implicationsof respondent
trip frequencybias in on-boardsurveysand to offer
a simple statistical weighting procedure that can
correct it.

SELECTIOW BIAS

Selection biaa results when the probabilities with
which sample units aro actually drawn differ from
the probabilities with which they are believed or
perceived to have been drawn. The relationship of
the sample to the population consequently differs
from what it is thought to be and, in turn, esti-
mates based on the sample are biased. Selection
biaa conmtonlyoccurs either if the pattern of nonre-
sponae is such that the actual probability of an in-
dividual unit appearing in the sample is unknowingly
correlated with variablea under study, or if the ac-
tual sampling prccedure differs from the sampling
design. Selection biaa constitutes a broad class of
problems in survey sampling (~). The on-board sur-
vey respondent trip frequency biaa addressed here
belongs to the latter category. In other applica-
tions, identification of and correction for selec-
tion bias are routine stepa in the analysis of sur-
vey data. However, with the exception of a few
specific and sophisticated application (~), the
presence and implications of selection bias in on-
board surveys has been conmtonlyoverlooked.

In an on-board survey the sampling frame is the
set of passenger trips taken during the sample pe-

riod. However, much of the subsequent analysis, and
much of the motivation for conducting a survey at
all, involves identifying the characteristics of the
usera of the system. It is significant that in con-
ducting the analyaia, the observation are treated
aa if the sampling frame had been system users
rather than system trips, and each res~ndent is
treated as if he had an equal probability of appear-
ing in the sample. This is in error because the
probability of an individual user appearing in the

sample is directly proportional to the number of

tranait tripa that user makes during the sample
period.

Individuals who take many trips are far ~re
likely to appear in the aemple than are individuals
who take few trips. Potentially severe selection
bias occurs because the asaumed design probabilities
(i.e., those implicit in the analysis) differ mark-
edly and systematically from the actual probabili-
ties. From a sampling viewpoint, the relationship
between trips and users can be regarded as an im-
plicit stratification of users on the basis of their
respective individual trip rates. This interpreta-
tion allows viewing respondent trip frequency bias
in the endogenous variable stratification context of
Hauaman and Wise (~), although their work is couched
in terms of explicit rather than implicit stratifi-
cation.

WHAT RESPONDENT TRIP FREQUENCY BIAS NEANS FOR
ON-BOARD SURVEY R33SULTS

Because differences in individual travel frequencies
give rise to the bias, it may be intuitively clear
that its most critical impact is on ●stimates of
patronsr mean transit use. Relative to the popula-
tion, the sample has an overrepresentation of fre-
quent users and an underrepresentationof infrequent
users. A linear average of responees to the ques-
tion of frequency of use will provide an estimate of
the population mean that is biased sharply upward.
An ●stimate of mean frequency of travel based on an
on-board survey is often used with total boarding
counts to estimatethe total numberof patronsand
hence the market penetration of the tranait ayatem.
An upward bias to the mean frequenoy esthete will
imply a downwardbias to the aatimated total number
of users and the degreeof market ~netratloni

Althoughthe consequencesare greatestfor esti-
mates of mean travel frequency, biaa also reSUltt3
for any characteristic that is correlated with
travel frequency. For example, if an analyst wants
to determine the income distribution Of transit
usersr and if low-income people generally take fewer
transit trips than do middle-income people, then the
estimated income distribution of users will be

biased from those with low incomes and toward those
with middle incomes. Overall, the distortions can
be large enough that the on-board survey provides a
misleading picture of the user population.

CORRECT WSIGHTING PROCEDURS

Although the problem of respondent trip frequency
bias in on-board surveys is serious, application of
a relatively simple statistical correction can elim-
inate the bias. The correction involves the use of
individual travel frequencies to develop weights for
●ach observation, whereby observations are weighted
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by the ratio of their relative frequency in the POP_
ulation to their relative frequency in the sample.
The individualweights are as followa~

(1)

where

Wi = weight aaalgned to the ith observation,
fi = transit travel frequency of the ith respon-

dent, and
n . total sample eize.

The weights calculated from Squation 1 take
larger values for observations on infrequent travel-
ers and smaller values for observations on frequent
travelers. In calculating the relative frequency of
the occurrence of various characteristics in ‘the
user population, an observation contribute a share

e~al to the valUe of its weight rather than con-
tributing a unit amount. ~us an unbiased estimate
of the share of the user population in a given in-
come bracket ia equal to the sum of the weights for
all respondents in that income bracket divided by
the sum of the weights for all respondents. It may
be worth noting that the weighting procedure ia
self-normalizingin that

; wi=n.
i=,

That is, the sum of the weights taken over all re-
spondents equals the number of respondents.

For variables that are not categorical, estimstea
of population values are made by using the weights
multiplicatively with the variables. For example,
if the on-board survey had continuousdata on incxma
ratherthan categoricalvariables,an unbiasedesti-
mate of the mean income level of users would be made
by suming all observations of the product of the
individual weight values and income level and then
dividing this sumsation by the total number of us-
ers. This is also the procedure by which the mean
transit trip frequency is calculated. Thus the fol-
lowing equation provides an unbiased estimate of av-
erage number of trips taken by users:

()u= ,},fiwih (2)

where u is the mean frequency..~is compareswith
an estimate of the mean calculated aa

in instances where the ●ffect of respondent trip
frequency bias
the mean trip
fied to

()u =n/ ; l/fl
i= 1

is ignored. As a direct estimate of
frequency, Squation 2 can be eimpli-

(3)

It should be evident that with nearly any analy-
sia, software package calculation and application of
weights to correct for res~ndent trip frequency
bias can be easily accomplished. In the next sec-
tion an example that should underscore the impor-
tance of this correction is given.

55

ILWSTRATIVE EXAMPLE

In this ex-le data are used from an on-board sur-
vey conducted in Atlanta during 14ay1979 as part of
a PrOjSct sponsored under the Service and Methods
Demonstration program of OMTA. ‘i%e demonstration
project was designed to study the impacts of fare
integration of a mcnthly transit pass that had been
introducedto the MetropolitanAtlantaRapidTransit
Authority(MARTA)system in March 1979. Interviews
were conductedwith 4,672people during the on-board
survey.

The survey results provide clear evidence of the
importance of correcting for respondent trip fre-
quency bias. When the observations are properly
weighted, the average user is estimated to take
eight trips per week on MARTA. If the weighting is
Ignored, the estimate is 12 trips per week. Thus in
this example the Influence of respondent trip fre-
quency bias ia to overstate the mean trip frequency
by 50 percent. Bias of 30 to 60 percent could well
be found in most on-board surveye.

Bias in estimating mean user trip frequency is
reflected in esttites of the total number of us-
ers. For May 1979, UARTA counts indicated a total
of 5.4 million boardings. If the unbiased estimate
of mean trip frequency is used, a total of 161,000
persons are estimated to use the system. The uncor-
rected estimate of the mean implies an estimate of
107,000 system ueers. The indicated market penetra-
tion of the MARTA system differs substantially be-
tween the two eetimates. The former suggests that
8.7 percent of the area’s population are system us-
ers, whereas the latter indicatesthat only 5.8 per-
cent are users (note that these data are based on
U.S. Census estimates of 1.852 million people in the
Atlanta standard metropolitan statistical area as of
July 1, 1978).

The data in Table 1 give a further illustration
of the effect of respondent trip frequencybias. In
the table the household income distrtbuttons of us-
ers are presentedbasedon unweighed, and hence in-
correct, data and on the same data properly
weighted. Also in the table are the respective
within-group mesn weekly transit trip frequencies.
Although the share of riders in any one income group
is not more than a few percentage points wrong, the
income distribution calculated without correcting
for respondent trip frequency bias Is biased toward
lower-income people. when corrected, people with
household incomes of 815,000 ●nd greater appear to
cOmPoSe 28 percent of the users as oompared with the
22 percent they appear to compose with the un-
weighed data. !rhisbias in the income distribution
in the dirsot aonssquence of a lower ●verage transit
trip frequency at higher incomes.

It is also worth observing that the impact of re-
spondent trip frequency bias is not wnstant across
income groups. The overstatement effect of the bias
on the within-group trip frequencies ranges from 39

Tabhl.lnoonmdistribwtkmofMARTA8Ystsmussn.

Without Weights to With Weights to Cor-
Correct for Respon- rect for Respondent
dent Trip Frquency TripFrequoncy
Bias Bias

Household
Income Ueen MeanWeekly Users MeanWeekly
Range (S) (%) TriPs (%) TriP8

< 5,000 23 12.3 23 8.0
5,000-9,999 32 12.s 28 9.0
10,000-14,999 23 12.5 21 8.8
15,000-24,999 15 10.8 18 6.7
>25,000 7 10.0 10 5.7
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percent for the 85,000 to S9,999 group to 75 percent
for the $25,000 and greater group. The difference
results from differences among the groups in the
underlyingtrip frequency distributions. In gen-
eral, the greater the disparaion of trip frequencies
across group members, the greater will be the rela-
tive bias.

BONE aIDBLIWSS ?OR WEB

Although no great difficulty is presented in calcu-
lating weighta to correct for respondent trip fre-
quency bias, the survey instrupant must be written
to provide information on individual trip fre-
quency. A precise count of tranait trips taken dur-
ing the survey peziod is the ideal situation. Com-
plete accuracy is, however, too much to expect, and
an adequate alternativeis the,number of transit
trips taken within the previous 7 daya ar the number
typically taken in a week. It can be an aid to the
thought process of the respondent to aak for total
use through questions about ita components. Thus a
survey form could ask for the number of transit
trips to work during the previous 7 days, the number
of transit trips from work during the previous 7
days, and the numbzr of transit trips to or from
placea other than work during the same time period.
Note that although measurement error creeps in with
any form 0$ question, the need ia not so much to
distinguish the person who takee 8 trips from the
one who takes 10 trips aa it is to distinguish the
pereon who takes 2 or 3 trip= from the one who takes
10, 12, or more trips. Furthermore, even if ques-
tions are written precisely, the accuracy of re-
aponsee to on-board murveys ia sufficiently unsatis-
factory, especially with the ~n practice of
eelf-administration, so that it is unrealistic to
expect the instrument to distinguish fine grada-
tiona. *US substantial improvement can be made
even when working with four or five categorical re-
sponaea.

Lest the case appear to have been made too
strongly, there are instances when unweighed data
are appropriate. when the analyst’s interest lies
not with the uaera of the systembut with the triPa*
then the unweighed data provide an unbiased pic-
ture. Nevertheless, care should be taken to dis-
tinguish between reporting that s- 55 percent of
all system trips are taken by people with household

i~s less than $1,0,000 (which is the case in
Table 1) and reportingthat 55 percentof users have
household incomee less than $10,000 (which excaeda
the unbiased estimate by 4 percentage points). TO
the extent that the role Of a transit system is the
provision of eerviceto a region’spopulation, un-
derstanding the user population and measuring ●arket
penetration are crucial. Neither can be accom-
plished with unwaighted on-board data.

FINAL CamsNTs

The focu9 of thie paper has been exclusively on one
fundamental and dramatic eource of bias in on-board
surveys. This im not to suggest that on-board sur-
veys are otherwise ●bove reproach. Among the ave-
nues for hprwemants to on-board eurveya are
optimal use of the clustering implicit In drawing
obaervationa through bus runs, development of tech-
niques to increase response ratea, ●nd application
of procedures for efficient stratification so as to
minimize the variance of estimates. Nevertheless,
incorporation of the weighting procedure presented
in thim paper can do much to increaae the validity
of on-board surveys conducted, even without benefit
of eophiaticatedsampling techniques.

Work on this paper was sponsored by the Office of
Service and Nenagemant Demonstrations,Dt4TA.
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Bus, Taxi, and Walk Frequency

57

Models That Account for
Sample Selectivity and Simultaneous

JESSEJACOSSON

A 2-year utor+ti subsidy wqsgrimwstthat providzd tho hasdiappod ●wl ths
zldwly with disoountzd coupons to k uszd on busm ●nd tasis was amductzd
in a wmdl nofieastzrn m.tropolitznoity.Tha .ffzot of the uozr-aishsubsidy

@xWimwst on bswati t=i trzvd bY *C ddzfly population i: describzd. AS
WS~. *O SUISIWoxwiment imwzaud tha number of trips taken by bus
znd by taxi. Futizrmom, ●ble-bdzd elderly por&rss who do not own msto-
rnobilas and hzrrdimppod.Idwfy personswho ● m oitfszr employed or stud.nti
arc morzIikcty to pwrofwr disosrurrtrdbus coupons than the population of
ddorly pznons & a wtrok Alxo, tho numbsr of wzlk trips wzs not zffemzd by
tho number of bus end tzxi trips taken. Therzforej pwpfa who hzvo pzrtici-
pztzd in the subsidy prwam hzw.njoyzd● notinoreauinmobilityOnthe
formofzdditiondbus●sdtaxi trips) Iszoeuw bus wrd taxi trips hwo not
simply rzpkad wdk trips.

Starting in July 1978 and for 24 consecutive months
thereafter, the U.S. Department of Transportation
(DOT) conducted an experiment of user-side subsidies
for public transportation in Lawrence, Masaachu-
●ottar a small metropolitan city north of Eoaton. A
select group of individuala--the elderly (65 years
and oldor) and the handicapped of all agea--waa eli-
gible to receive fissancialasaistenoe in the form of
● r~uced bun fare (theregular bua fare for elderly
and handicapped persons waa ~0. 15, but only SO.01 if
projectcouponswere used)and a 50 percentdiscount
on taxi rides (the discountwaa limitedto $1.25 per
ride and $20 per month). To establiaheligibility
individual were to register at a downtownoffice,
whichwaa aleo the only locationwhere discountcou-
pons for bua and taxi rideacould be purchaaed.

In conjunctionwith the experiment,a sample of
individual who were eligibleto receivethe aaais-
tartcewaa wntected and ●aked to report aooiodetno-
graphic informationand to recorda diary of travel
for Uey 1978 and May 1979 (beforethe experimentand
during the tenth month of the experiment) . Although
the total sampleincluded lwth elderlyand transpor-
tation-handicappedpereona, only the aubaample of
the elderly (handicappedand able-bodiedperzona)
was selectedfor this study. From this groupr 130
~leted returnm were available; 48 percent of
theee returna were from tranaportetion-handicapped
peraorm,●nd 40 percent of the returnawere fron in-
dividual who choseto bacon projectuaerm.

The purpo8e8 of this paper ●re to ~aaure the
travel impact of the experiment on the ●lderly popu-
lationand to understandthe reaaonsthat attracted
some of the ●ligible populationto purchase dis-
counted ooupona●nd to uee bua ●nd taxi for their
travel.

There i= a problemin measuringthe impactof the
project becauae the purchaaeof the discountedcou-
pons is promptedby expectedbenefitsand other ex-
ogenous factorsthat are not fully measurable. If
the incidenceof theme factorswas known, the vari-
ablea that identify them could be used in the analy-
sia. Unfortunately,theme variablesare often not
known or measured! thus in this paper ● aathod to
represent their●ffectia preeented.

In the followingsectionstwo nodela that measure
bum ●nd taxi trip fraguencyr ●nd a model that mea-
●ures the numberof walk trips, ●re presented. The
lattertiel ia used to determine whetherwalk tripe
are beingreplacedby bus or taxi trips.

PROB- OF

Equation Bias

SELF-SELFCTION TO ~~

Although the goal of this research ia to meaaure the
effectiveness of the project in increasing travel
mobility,it ia rarsognizedthat the inevitablelimi-
tation of the data generate iaaueathat the model
haa to deal with explicitly. This ia ao, in partic-
ular, becauae the choice of becoming a project user
(i.e., registeringin the projectand purchasingthe
dhcount coupma) rests ●ntirely on the individual
who participate in the survey. Therefore,a defini-
tion has to be found for the follwing dichot~a
variable for individual t,

1

lifindividuslpurchasrsdiscountedcouposu
d,= (1)

Oothenvisr

and for the follwing model of travel demand,

yt=6%+64+et (2)

where

Yt =
6=

$=
6-

~t =

number of tripatakenby individualt;
columnvectorof coefficients;
columnvectorof independentvariables;
a scalar,which is the coefficientof the
dichotmua variabled t and
a.tochaaticcomponento~ the model.

At first glance it would appear that 6 would rep_
resent the effect of the project. Hwever, those
who baceneprojectusers did zo bacauae,aa a gen-
eral rule, they expectedtheir travel demand to be
higher than otherwiaerand those who chose not to
bacrma ueera did ao becauae they did not expect
their travel to increase by becoming users. In
other words, the benefits that users derive from
purchasingthe diaoountedcoupons are larger than
the benefits foregone by nonuaere. This impliez
that dt and ct are correlated;thucrthe model
of trip generationthat wan propomd could not be
eatimeted either by ordinary regreaaion or by con-
ventional croaa-claaaification,a method that aa-
auaea,much like ordinary regreamion, independently
distributedstochasticcomponents.

As nentionedpreviously,if it Waa Possible to
meaaure all the variables that determine project
participation,the variableacould be incorporated
in the analyainexplicitly. However, becauae some
of these variable=are unmeaauredrit im neceaeary
to consider dt am being an endogenouavariable.
Thus the estimationof a model that reoognizeathis
endogessicity,which is aleo calledselectivitybias,
is presented. The theoreticaljustificationfor
such a aodel ia straightforward,and the reader ia
referred to the extensiveliteratureon the subject
(1,2) for =re detail.--

BUS FSEQOI$WY -L

Purchase of diacountad-coupons for bua travel ia
clearly a major factor In the fremency with which
individual.take bu8 tripn. ROwever,as diacusaed
earlier,the uae of the variablethat repreaentathe



58

observed purchase decision in the model could yield
inconsistent●atimetea of the projecteffectbecauae
of the likely presence of sample aelectlvlty. Ac-
cordingly, the bua frequency model h estimated by a
two-stage procedure first proposed by Maddala and
Lee (~). The Pr=edure r-irea estimation of a
probit model of the decivsionto purchase discounted
bua coupons, and esthation of a model (which incor-
porate as an independent variable the expected
value of the dependent variable of the probit) of
bus trip frequency.

The probit model of purchase of discounted bus
farea is estimated from data on the actual purchaae
of these fares in May 1979. The observed dependent
variable of the model is ●qual to one if bus coupons
were purchased (in f4ay 1979) and zero otherwise.
The probability of purchasing discounted bue coupons
(i.e., the expected value of the dependent variable)
is equal to *(y’zt)# wher● Zt is a column
vector of independent variables, Y is a column
vector of coefficients, and o(.) is the cumulative
of the standard normal distribution. The estimated
Coefficients (y), together with some goodness-csf-
fit measuree, are given in Table 1. Although the
probit waa formulated as a single-equation model,
different coefficients were estimated for able-
bodied and transportation-handicappedpersona.

Tablal. Probite$timates ofuaaofbuacoupons.

Asymptotic
User Coefficient t-Statiatic

Ablebodied person
Constant -0.945 3.2
Zero automobiles in household 0.711 1.7
Bus trips in May 1978 0.0678 2.5

Transportation-handicap ped person
c0nst3nt -0.856 3.1
Ernploytd or student 2.09 2.9
BUS trips in hfay 1978 0.281 3.6

Note: br-Mkahood tithdhted cMmcieati= -S0.16, ks~~~dtith
a~nti Ane=-74J6, 10~WWwdmtiosmtkic (4df)=49.4, mtmbsrof
obaarvatkona- 13o, SS.4pmcant ofsampls wascocractly clasdffed, 10.8 parcsnt
ofmmplaw~on-~yedunon~,ud 3.8 pareont ofaampla was
wronaouslyckuakfked asuaer.

For able-bodied elderly persons, automobile own-
ership (a zero-one variable) wae found to affect the
purchase of bue coupons significantly, whereas for
transportation-handicappedpereons, the most hpor-
tant variable was that of employment and etudent
status, again a zero-one variable. The log-likeli-
hood ratio statisticie equal to 49.4, a value that
allowsrejection,with a large level of confidence~
of the hypothesis of no effect of the independent
variables.

The second-stage model--a limited dependent vari-
able model of the number of bus trips--iseatimeted
frcevbus trips reported in the May 1979 diary sur-
vey. As discussed earlier, instead of including a
zero-one variable for actual coupon purchase (or
nonpurchaee), the probability of being a project
user ie included in this model, i.e., the expected
value of the dependent variable from the probit
model. This ensures that the coefficient for the
bua coupon purchase variable is aonaietent because
s.@pie selectivity is accounted for. A eingle-equa-
tion specification ia again used for the groups of
able-bodied and transportation-handicappedpereone.
Th6 eetimated coefficients are given in Table 2.

To teat the ●ffectiveness of the program, further
statistical tests are performed on the subsample of
actual project ueers. specifically, the expected
number of bus trips of project usere, had they been
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TableZ Estimatesof Mw 1979 bustrips (limitsd dopandent variable
modd).

User
Asymptotic

Coefficient t-Statiatic

Able-bodied person
Constant -6.07 2.s
Probability of being a user for 28.7 2.2

individuala who are neither students
nor employed

No. of bus trips in May 1978 0.791 1.9
Transportation-bandkapped person

Constant -10.1 3.9
Probability of being a user 23.4 4.3
No.ofbuatripsin May1978 0.630 4.2

0 10.4 10.6

Note: y*= X’#+e

y ~{o. If Y*<0.s
y otharwisa

snd loa4Skadihood with sattnmted coaftlckents= -270.36, Iovlkkeiihood with
constants akone = -31s.01, Ioa.likelihood ratio statkatlc (4 df) = 9S.3, ●nd mm.
berof obser’vatioru= 130.

nonuaera, is compared with the actual number of
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bus
trips taken. Bgause the distribution of the number
of trips f.struncated normal, the probability that
the expected number of bus trips (conditional on
nonpurchase of the project coupons ie lower than the
actual number of bus trips) is written as (X88 - u)/
a, where B is a column vector of coefficients, X
is a vector of independent variables, u is the ac-
tual number of bus tripe taken in May 1979, and a
ie the standard deviation of the underlying non-
truncated distribution of the stochastic component
of the model. For the subsesopleof program users,
this probability averages 80 percent, and the Pear-
songs PL is 252.90 with 70 df, a value that
clearly permits rejection of the null hypothesis of
no-project effect on bus travel. Note aleo that the
mean number of bus trips for the individuals who
purchased discounted bus coupone in May 1979 is
16.51, whereae the mean expected number of busstrips
for the same individuals, had they been ttonusera,is
4.70, a difference of approximately 12 monthly trips.

TAXI FREQOENCY MODEL

The estimation of a probit model of taxi coupon pur-
chases did not yield acceptable resmlts. specifi-

cally, standard statistical teate pointed to the low
explanatory power of the model. Several different

Swifications of the probit model were tested, but
thoee also met with little euccess. Althoqh it
would have been poseible to investigate the failure
of the probit formulation to yield a satisfactory
model, doing eo would have been beyond the scope of
this research. As a consequence,the two-stagepro-
cedure adoptedfor the bus frequencymodel wae re-
placed by a simpler model. This’model, which mea-
sures the monthly taxi trips taken, includes ae an
independentvariable the actual purchaee (or ~nNr-
chase) of taxi coupons in May 1979 (a zer~ne vari-
able) and not the expected value from a probit model.

It ia recognized that the coefficient eetimste of
the coupon purchase variable will be biaeedbecause
of its endogenicity. ffowever, it should be aten-
tioned that this endogenicity is expect~ !O ~ much
lese severe in the taxi model than in the bus model,
particularly becaume the subsidy is only 50 percent
(versus93 percent for bum tripe) and it ie more
limited in availability (the maximum taxi subsidy is
$1.25 per trip and S20.00 per month per pereon).
Accordingly, although the model Preeented in the
followingparagraphahae some evident limitation.
it wae decidedto includeit in this paper for com-
pleteness.
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The taxi frequencymodel, like the model for bus
travel, la ● li.xiteddependent variable Xodel. An
for the previoue xodel, the taxi trip rate cannot be
negative, and 79 of the 130 persons in the sample
(61 percent) did not take any taxi trips in MSy
1979. In addition to the zero-one variable for in-
dividuals who purchased taxi coupons, the number of
householdautomobilesbaa, aa expected,a signifi-
cant effecton taxi trip frequency(ace Table 3).

T6131c3.E6timataaofMzyl979tartitr@s(limit6ddapandcntvti~.
modal).

Asymptotic
ltcm Coefficient t-static

Constant -7.54 4.6
No. ofhousehold●utomobiles 3.48 2.1
No.oftaxitip;inMay1978 0.812 8.S
Purchaaadtaxicoupons(1ifyes, 9.10 5.3

0 otherwhe)
a 6.91 9.6

Note: y*= X’#+@
,.{;egou~

and lo@ke613mod with Utimsted coefflcionts = -199.36, lo@koUhood with
Cowtaat done = -247.3S, lo@ke13hood ratko ststbtic (3 dYJ = 9S .6, and own.
* of Observatloru = 130.

To teat the effectivenessof the prograx in in-
creasingtaxi travel,statisticaltasts identical to
the onea used for the bu8 travel xodel are applied
here. Specifically, PearaonSs P

+ tkh?: tr&id~valueof 167.92for the aubaaxpleo
uals who are taxi coupon purchasers)sllowa rejec-
tion of the null hypothesisof no increasein taxi
travelbecauaeof projectparticipation.The analy-
sis also indicatesthat tha mean nuxber of taxi
tripstaken %n Jtay1979 by taxicouponpurchaser is
8.6, whereas the expectedvalue conditionalon non-

purchaeeis 3.45 taxi trips for the aaxe group of
individual, a difference of approximately5 tripe
per xonth.

Although vehiculartripe in general, and bus and
taxi trips in Mrtioular, increaseda. a resultof
tha user-sideeubsidy,it was hypothesized that ame
of the new vehiculartrips might have replaced what
were forxerly walk trips. TO test this hypothesis a
walk fraquenoy mdel tbet includes hue and taxi trip
frequency as explanatoryvariablesis estimated.

Because bus and taxi trips ●re ●ndogenousto the
walk trips xodel (i.e., the xodels for eaoh travel
xrtdeare pert of ● ayateaof structuralequations),
it was decided to use the ●xpected trip rates from
the modelspresentedin the previous two aeotionsas
instrumentsinsteadof using tha observedtrip rate
for bus and taxitrips.

The specificationchosen for the astimtion is
again a limited dependentvariablemodel. As for
the previctua models, the walk trip rate cannot be
negative,and 17 of the 130 pereona in the sample
(13 percent) did not take any walk tripe in MaY
1979. The coefficient●stixatea for the xrtdel are
given in Table 4. If bus and taxi trips were ●ctu-
ally replacingpotential walk tripe, the coeffi-
cients of tha frequency of bus and taxi tripe would
be negative (and statistically significant). z13e
results, however, reveal these coefficient to be
positiveand not statisticallydifferent frox Xeroe
which indicatesthat the hypothesisof modal substi-
tutionia unlikelyto be valid. ,

59

[two
Asymptotic

Coafficiantt-awiatic

Colutant 0.40 0.13
Expcctrdno. of bua hips in May 19?9 0.15 0.85
Expwtcdno.oftaxitripsinMay 1979 0.43
No. of W6fk tiPS in hfay 1978 0.79 1:::
U 20.7 15.0

NO*,:y**x’#+*
y.{;og~s
@ 10@k4313100d with66t&06t0d406ffldentS--S1S.862, loc-Uk6113mod vdtb
comtant done --@2.4 S8, lo&W@&md rstk@stik(3d0- 173.19, andnum.
kofobawmuolls =130.

COIWLUSIONS

The tiels presented in this paper have confirxed
quite strongly the a priori hypothesis regarding
travelby bus, taxi, and walk. The large increases
in bus and taxi travel observed in May 1979 by thoee
individual who purchaaed dieoounted couponscan be
directlyattributedto the project. Aleo, it was
ehown that the irtcreaae in bua and taxi trips was
not achieved at the expense of walk trips. Rether,
the additionalbus and taxi tripe were tripe that
would have not been takan in the absenceof the sub-
sidy projeot.

Tha data in Table 5 furtharconflrxthe findings
of the xodels. Note in particularthe incraase (be-
tween 1978 and 1979) in bus trips for bus aubmidy
users (i.e.,for those individual who purchasedbus
coupons),and the increasein taxi trips for taxi
subsidyusers. These increasesare xuch larger than
the inoraaaesfor the aaxpla aa a whole and for the
subaampleof nonusersof tha prograx.

Td3106. Triprstoabvmod.mdp rohctpartidpatior.ststus

Project Participation Statua

Project
Uaara,Taxi Roj6ct Prqact

Month AU Sample and Bua Bua Uaera Taxi U3rrI
Mode and Yaar (n=130) (32-49) (n-35) (n- 30)

Bus M3y1978 3.52
May 1979 6.22

Taxi tiy1978 2.43
May 1979 3.22

walk ~~y 1978 40.27
May 1979 37.12

Ml May 1978 109.05
modaa May 1979 106.69

7.18
12.82

3.69
5.57

49.27
44.98

100.00
99.61

9.97
16.51

3.83
4.37

54.54
49.69

103.63
104.14

8,27
11.77

5.33
8.6

42.9
39.93

100.67
99.37

Walk tripe are mostly unaffected by programusee
which confirm the findings of the model of walk
trips. Wote that only bua subsidy users take a
larger number of walk tripsthanothergroups.

This paper was prepared” aa part of an exploratory
study of the travelbehaviorof the elderlyand the
handicapped; it was sponsoredbY the Service ati
Uethods Demonstrationprograx of ~A. I wish tCJ

●cknowledge various c~nts by Lawrence B. D=seY
of the TransportationSystems Center.
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Effect of Sample Size on Disaggregate Choice Model
Estimation and Prediction

FRANKS. KOPPELMAN ANDCHAUSHIECHU

8amplhsperrorisoneofaevaraitypasofarmrin aconomatricrnodaling. Tha
mlatiormhipbetwean samplingarrorand samplaaizaiswell knowmforboth aa-
tintetiomandpradiction. l%eobjaotiwofthi$papari stoprovidaanampiriaal
foundation for usingdsasemletionships to guide masarshan ●nd ptenners in tha
titarrninationofsampl esizeformodal davalopmsnt Analyticrelatiossshipa
em formulated for sampla size, praaision of paramatar aatirrratas,replication of
~rnt~lad~, mdm@i~donof maltermtiva (~ntiw)~~lti~. Ap-
plication of these ralationshipa to an ampirioai ozseindiaatas that the sample
sizesre~irad to obtain reasonably praaiaa fmramater estimates are substantially
larger dsmsthe sampla sizas generally considzmd to be needed for diaagpmpata
model aatirnatiom. Nawrtfrelwa, these sample sizesappear to be adequate for
obtaining reasonably aaossratampiiaation of observed ahoire behavior in the
*mt population. 7ha aorrasponding results for prediction to a dtiamnt pop-
uhtiols ● re eomrpliratad bv tha issueof intrapopulatimr twmfwebility. Al-
thMsph the MSUIU reported in this papar should be validated in odrar contexts,
~ appears that aamwzta estimation raquiraa tha use of samplesthat are aub-
stmrtially Iarpar than formerly baliewd. samples on tha order of 1,000 to

..2,000 obwrwtidns may be needed for aatimatlon of reletivaly simpla diaappra-
gate rhoira models. Althou~ sormsraduotion in this raquirarnant may be ob.
tainad by improved szmpla design, it is unlikaly that the final aampla require.
nrsntt m be reduced to leasthan 1,000 observations.

Econometric model development is subject to errors
in samplingr model spscification, and measurement
(1,2). In this paper the effect of sampling error
i; ‘examined for model parameter estimates, predic-
tion to.the parent population, and transfer predic-
tion to alternative populations. Sampling error can
be avoided only by observation and analysis of the
entire population. In practice, the resources
needed to collect data for an entire population and
to analyze such extensive data are not available.
Thus there is concern with tt.emagnitude of the er-
rors that are introduced by use of samples of the
population.

EXPECTEDEPPECTS OF SAMPLE SIZE

The precision of parameter estimates for a given
model structure depends on the estimation method
usedr the multidimensional distribution of the ex-
planatory variables of the modelr the range of ob-
served &havior, the quality of model specification,
and the sample eize of the eatimetion data set.
Maximum likelihood estimation obtaine consistent
estimators of the parameters of disaggregate choice
models and provides eetimetes of the precision with
whicheel paremetereare estimated(3-5).--

The relationship between
sample eize is well known.

parameterprecisionand
The variance-covariance

matrix of ●stimated parametersin linear models is
inverselyproportionalto sample size (J,x). The
variance-covariancematrix of maximum likelihood
eetimetedparameters for quantal choice models is
a$rymptoticallyequal to the negative inverse of the
Hessian of the log-likelihoodfunction (3,7). The
asymptoticexpectationof this matrix is-~nversely
proportionalto sample size. Thus the error var-
iance-covariancematrix for maximumlikelihoodesti-
mationsfor quentalchoice models is also inversely
proportionalto samplesize.

Predictionaccuracydescribeshow well the choice
model replicatesobservedpopulationbehavior. Pre-
diction performance of discretechoice models is a
functionof the validityof model theoryrthe valid-
ity of the derivedMel structure,the qualityof
model specification,the quality of variablemea-
surementand prediction,and the accuracyof eeti-
mated parameters(8). As noted earlier,precision
of model parameter estimates ia proportional to
sample size. It follows that the portion of predic-
tion error attributableto errore in parameter esti-
mation is inverselyproportionalto s~le size.
Specificallyrthe ●xpected squaredpredictionerror
caused by errors in parameter estimate.is inversely
proportionalto sample size (~, p. 189). Uodels
estimatedfr- large semplea are more likelyto ac-
curatelydescribe the behavioral prooassin the gen-
eral population,and consequentlysuch models will
have satisfactory predictionperformance. Thus it
is expectedthat increasedsamplesize in model es-
timation will yield improved prediction precision.
When excessively emell samples are used, both perem-
eter estimates and parent population predictions
will be highly variable.

Trenaferebility of disaggregatediscrete choice
models ie based on the argumentthat choice mcdela
describe the underlyingbehavioralrespotsaemecha-
nisms or dedsion rules of decisionmekerm in the
selectionamong availablealternatives(9,10). If
the behavioralresponseor decision rule;~ deci-
sionmekere is conatent aor6sa contexts, models that
describethis behaviorwill be transferable.KOP-
pelm.snand Wilmot (~) define transferabilityof
choicemodele as ‘the degree of successwith which
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the predictions obtained by model transfer describe
behavior in the prediction context.” Transferability
is a function of the quality of the model being
transferred and similarity of behavior between the
estimation and application contexts.

If choice behavior in the estimation and applica-
tion contexts is baeed on the same behavioral pro-
cess, the transfer predictive accuracy will be in-
creased with increasing estimation sample size. In
this case a model that is able to provide an accu-
rate description of choice behavior in the estima-

tion context will be able to provide an accurate
description in the transfer qr prediction context.
However, if the behaviors are different between con-
texts, increasing sample size will not overcome
these differences.

The objective of this paper is to examine the ef-
fect of eample size on parameter etability, parent
population replication, and transferability of dis-
a99re9ate discrete choice models of multinominal
logit structure. In each case the expected rela-
tionship is formulated, an empirical analysis to
scale the relationship is executed, the implications
of the results obtained are identified, and the con-
clusions are stated. Also described in the paper
are the data used and the structure of the empirical
analya’isundertaken.

DATA DESCRIPTION AND EXPERIMENTAL DESIGN

Data

The data used in this study are drewn from the Wash-
ington Council of Governments travel to work modal-
choice data collected in Washington, D.C., in 1968.
The data used describe the central business district
(CSD) work trips of 2,236 persons. A total of 1,768
persons have drive-alone, shared-ride, and transit
alternatives available, and 468 persons have only
the shared-ride and transit alternatives because of
a lack of driver’s license or cars available in the
household.

The data set is partitioned into three geographic
sectors of the region according to worker residen-
tial location. Each sector includes approximately

one-third of the sample observations. The partition
allows for the examination of the first two rela-
tionships (parameter precision and parent population
replication) within each sector and the investiga-
tion of the transferability prediction relationship
for six possible transfers between sectors.

EXperimental Design

The experiment is constructed by defining the full
sample in each sector as the population of interest,
and then subsamples of varying size are selected.
These subsemples are used to estimate multinominal
logit model parameters, predict choice behavior for
the population from which each sample is drawn, and
predict choice behavior in each of the other popula-
tions (different sectors). The flowchart of this
experimental design is shown in Figure 1, which de-
scribes the sampling and estimation process and also
the data used in each step.

The first task of the experiment is to obtain
subsamples of each data set with varying sample
sizes. Forty-five eets of random subsamples are
independently generated within each of the three
sectors. within each sector the number of individ-
uals in samples varies from approximately 50 to ap-
proximately 700.

The second task is to estimate travel modal-
choice models for each data sample. A nine-variable
model previously used in a related study of model
transferability (11) is used in this study. These
variables are de~ribed in Table 1. By using a
single-model specification, it is poseible to ex-
amine the effect of sample size without any con-
founding effects caused by differences in model
specification. The estimation results for these
models that use the full set of cases (the popula-
tion) in each sector, as well as additional data,
are reported in Tables 2 and 3. These estimation
resulta serve as a reference point for the models
estimated with each data subsemple. The subsample
estimation results are discussed later in this paper.

The third step in this study is to use the 45

models estimatti-in each sector to predict travel
choices for the full population in each of the three

F~re 1. Flowchart for experimental design. FLOWS OF OPERATION
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sectors. Thus each estimated model is USed for
three predictions (one local and two tranafer pre-
dictions). Population replication performance and
transferability measures are developed for each of
these predictions and used to interpret the model
accuracy relationships.

EFFECT OF SAMPLE SIZE ON PARAMETER PRECISION

Parameter precision is the inverse of the variance
of parameter estimates obtained in repeated sam-
ples. In this section the effect of sample size on
parameter precision is evaluated by ca~ring esti-
mated parameter values for each sample with the Pp-
ulation parameters reported in Tables 2 and 3.

Relation Between Parameter Precision and Sample Size

The total available data sample is treated as the

population of interest, and the difference between
models estimated on subsamples and models obtained
from the population (full sample) is examined. As
all the data included in each eubsemple are also in-
cluded in the full sample, the parameter estimates
obtained from samples are not independent of param-
eter estimates obtained from the full dsta. The

Tat4el. Model aparif~tions.

Variable Name Variable Description

DAD, SRD

CPDDA,CPDSR

OPTCINC

TVTT

OVTTD

GWSR

NWORKSR

Dummy variable specific to drivedone and shared-ride
alternative; measures average bias bet wemr pairs of al-
ternatives other than that represented by the included
variables

Cars per driver included separately as alternative specific
variables from the drive-alone and shared-ride modes;
measures the change in bias among modes caused by
changes in automobile awilability within the household

Round trip outof-pocket tmvel coat divided by income
(cents/$1,000peryeer~ meaaurestheeffect oftmvel
cost on mode utility with wst effect modified by
househcddincome level

Roundtriptotal tmveltime inmirrutes; measures the
linear effect of combined in- and out-of-vehicle travel
time in mode utility

Round trip outaf-vehicle tmvel time divided by trip
distance (minutes/mile); measures the additional effect
of out~f.vehicle tmvel time in utility in addition to the
effect represented in TVIT; this added effect is struc-
tured to decline with increasing trip distance

Dummy variable that indicatesifthe breadwinnerisa
government worker specific to the shared-ride akerna-
tive; measures the effect on aharedwide utilit y of ahared-
ride irrcentivesfor government workers

Number of workera iri the household specific to the
shared-rfdealternative; measures the change in utility of
shared ride when there is an opportunity to share ride
with a householdmember

Variance-covariance matrix of estiraetesof the dif-
ference between sets of psrarnsterestimates is

Z.,=2=+ZP-2XW (1)

where

ZZ = error Variance-covariance matrix for dif-
ference between subsesple and full sample
parameters (i.e., z = 86 - 13~;

Zs, Zp = error variance for subssmple and full
sample parameter estimates, respectively;
and

Z~p = covarianc~matrixof errorbetweensub-
sampleand fullsampleparameteresti-
mates.

When the subsampleis a subset of the full sample
&sp = ts (see Appendix),

Zz=z$-zp (2)

which is a positive semidefietitecovariance matrix
of the differences between parameter estimates ob-
tained from the full and partial samples. The ex-
pected relationship between the full and partial
sample error variancea is

~p=~s~s/Np) (3)

Thus, from Equations 2 and 3,

&=[(Np-NJ/Np] Z, (4a)

and

Z. = [(NP - Ns)/N,l ~p (4b)

A standardized variable of differences is formulated
in parameter estimates (Q) by dividing obeerved dif-
ferences (z) by the standard error in population
estimates (Sp)f i.e., square root of diagonal
elements in Zp.

Q = Z/Q (5)

where Q is the difference between sample parameter
and population parameter values in units of standard

error of estimate for population parameters. Then

the variance and 95 percent confidence interval of Q
are

V(Q) = (NP - NM, (6a)

and

-1.96[(NP - NJ/N, ] % < Q* < 1.96 [(NP - Ns)/Nsl H (6b)

Table 2. Paramater eatimatea mwfatmxl~d errors.

Sector 1 Sector 2 Sector 3 Region

Estimated Standard Estimated Standard Estimated Standard Estimated Standard
Variable Parameter Error Parameter Error Parameter Error Parameter Error

DAD -3.30 0.425 -1.44 0.388 -2.73 0.402 -2.67 0.226

SRD -2.62 0.321 -1.92 0.277 -2.52 0.345 -2.35 0.175

CPDDA 4.06 0.426 2.70 0.382 3.58 0.396 3.41 0.227

CPDSR 2.06 0.319 1.67 0.235 1.59 0.315 1.77 0.159

OPTCINC -0.0138 0.0155 -0.0282 0.0139 -0.0280 0.0163 -0.0297

TVTT

0.0084

-0.0459 0.0070 -0.0110 0.0050 -0.0223 0.0049 -0,0233 0.0031

OVTTD -0.0019 0.0668 -0.1068 0.0666 -0.0421 0.0781 -0.0588

GWSR 0.775

0.0393

0.179 0.481 0.166 0.680 0.163 0.648 0.096

NWORKSR 0.133 0.128 0,27S 0.110 0.502 0.123 0.308 0.067
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gate choice models. The eample size required is
subatentially greater than the 300 to 500 observa-
tions that are commonly believed to be adequate for
estimation of disaggregate choice mdele (13,~ for
more than half of the model paremater.e. Use of the
smaller samples can be expected to produce parameter
estimates that have a high probability of being dif-
ferent from the true parameters. This problem is
most serious for level-of-serviceparameters in this
data act.

Conclusions

Two important observations are drawn from these re-
sults. First, as expected from sampling theory, the
variability of parameter estimates is inversely
related to sample size in a nonlinear fashion. This
relationship is described in Equation 6a and is
shown In Figure 3. Second, the sample size needed
to obtain a reasonable degree of precision for mana-
gerial policy analysis may be substantially larger
than is commonly suggested for the estimation of
disaggregate choice models. The ~nly held be-
lief that 300 to 500 observations are satisfactory
seriously underestimates the eemple size suggested
in this analysis to be needed to obtain eetimetors
with a reasonable level of precision, especially for

service variables. The importance of these results,
if verified in other studies, is heightened by not-
ing that many studies use samples of 1,000 or less
observationa (l&20J, whereas this study suggests a
need for at least 1,000 observations to estimate the
influence of travel time--a most important vari-
able--within an error of 25 percent with 80 percent
confidence.

EFFBCT OF SANPLS SIZE ON REPLICATION OF PARENT
POPULATION BBNAV20R

In thLe study an examination was made of the ac-

curacy with which a model, based on a data “SS28Ple,
will replicate the choice behavior in the parent
population.

Relation Between Replication Precision
and Sample Size

A prediction test statistic was formulated to test
the hypothesis that the subsample model 68 iS
equivalent to the population model SP8

This statistic, which is approximately chi-equared,

can be exprassed as a quadratic function of the dif-
ference in parameter vectors (S)2

PTsp(&)-(Bp-A)’x;&.-Jz) (14b)

Entering the relationships of z=6E-g~andZz=

[(Np - NE)/NEIZp into mation ldb~

PTSP((3,)- [(NP- N,)/N,]z’~; z (15)

where the quadratic term has a chi-square distribu-
tion. fius the mean, variance, and 1 - a confi-
dence limit of PTS are

E(P’TS)= [(NP-MN,] xDF (16)

V(PTS)= 2 [(NP-N,)/N,]2X DF (17)

and

ITS=< [(NP-WhL]~iF,. (18)

Thus both the average and the varia~e of PTS de-
crease at deczeaaing rates as eatimetion sample size
increaaes and are asymptotic to zero ●n sample size
approaches population size.

~irical Population Replication Analysis

To empirically demonstrate the results derived in
the previous subsection, the predicted population
log-likelihood by subseaple models was compared with
the maximum population log-likelihood by the full
aemple mdel in each sector by using llquation14a.
,To examine the distribution and the 95 percent con-
fidence limit of the prediction test statistic,
scattergreme were plotted of the prediction teat
statistic against the size of eatimetion mubeemples
in Figure 4, and different syubols were umed to rep-

resent observation in three different sectors. The
results were aa follows. First, ● s expected, PTd ia
subject to large variance when estimation sample
size is smell. The variance decreamea quickly as
estimtion sample size increases for observations in
all three sectors. Second, the curve that repre-
aente the expected value of PTS appears to fit the
date well in ●ll three ●ectors. Third, it appears
that ●pproxinetely 95 percent of the observations
are within the 95 percent confidence limit shown in
the figure. Thus these observation ●re consistent
with the analytic results in the previous subsection.

Next, a prediction index was formulated that de-
fines the degree to which the model ●stimated froa
the sample describes the population choice behavior
relative to a model baaed on the full population.
First, the comon sample-based rho-square measure
was conaideredt

P:=[LU4)-LL OW1/[LL”-LOWl
=1-[L~(J?J/L~(NM)] (19)

and then the corresponding population-baaed rbo-
equare meaaure based on senple ●atimetes waa oon-
sidereda

P&=[%W-LLP @W/[L~-L~@Wl
=1-[L~@J/L~(NM)] (20)

Baaed on population estLmetes,

P;P=[%16%)-%1 OW1/[L~-LLV@’Wl
=1- [L~(L$J/LLv(NW (21)

Next, the prediction index as the ratio of Bquations
20 and 21 were formulated to obtain

FI=[Lb@)-~(W]/[L~ (&)-~@M)] (22)

The degree to which the sample-beaed model prwides

information ●bout population behavior relative to

that prwided by the population-based 60del (when
both referred to a c~ bees or null model) is de-
scribed by this ratio. To interpret this index, it
wae reformulated in terms of the population test
atatiatic defined in Equation 14,

PI=l-{~@)/2[L~(&)- L~(NM)]} (23)

Note that the denominator in the ●aoond term is

fixed for any population ●nd model ●peoification.
Further, this term is the population wdel likeli-
hood ratio atetiatic reported in Table 3 for ●ach of
the population models. Theme results can be used to
obtain the expected value of the predictim index
for fixed population ●ize ●s

E(M)=l-{[(Np-NJ/Ns]“DF/LRs} (24)
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Finally, these results are modified for populations resented by the value of the likelihod ratio sta-
of varying size but otherwise identical characteris-
tics by defining the likelihood ratio statistic per
individual in the population (obviously, population
data from which to compute the ppulation model
likelihood ratio statistic are not generally avail-
able; however, LR& can be estireatedby dividing
sample likelihood ratio statistics by sample size):

LRS.=LRS/NP (25)

to obtain

E(H)= 1- {[(NP- N,)/N,]DF/(NPXLRS.)} (26)

which, when population size ia much greater than
sample size, ia

E&’I)=1-(l~,)(DF/LRS.) (27)

The expected values of the prediction index for the
three Washington sectors for different sample sizes
are given in Table 5. The proportion of information
provided by models eatimeted on samples of different
sizes depends on the ability of the model to prwide
information about the behavior under sthdy, as rep-

Tnble5.ExpeatedwalueofpredktionksIex(larlPPVJltibnms).

ExpectedValueofRedictianIndex

.%moleSize sector1 sector2 SaCtor3

50 0.62 0.21 0.34
100 0.81 0.61 0.67
200 0.90 0.80 0.83
300 0.94 0.87 0.89
500 0.96 0.92 0.93

1,000 0.98 0.96 0.97

tistic per person. Sectors in which estireatedmod-
els provide a higher level of information require
smaller samples to achieve a specified level of rel-
ative accuracy. The results reported in Table 5 in-
dicate that samples of 500 observations will provide
90 percent of the potential model information in
each of the three Washington sectors.

Conclusions

The theoretical relationship between sample size and
population description accuracy in the form of the
prediction teat statietic is developed in Equations
14-18. The empirical results reported in Table 4
are consistent with those relationships. The pre-
diction index provides a somewhat more intuitive
description of the relationship between sample size
and descriptive accuracy. ‘l’hisrelationship sug-
gests that, in terms of descriptive accuracy alone,
disaggregate samples of approximately 500 observa-
tion may be adequate. It is important to recognize
the distinction between the ability to describe
parent population choice behavior and prediction of
behavior under different travel service conditioner
which is meet closely related to the precision of
estimated parameters discussed previously.

EFFECT OF SAMPLE SIZE OW TRAWSPERASILITY

StatisticalMeaaure and General Expectation

Model transferability at the disaggregate level can
be measured by indices formulated as a function of
the difference in log-likelihood for the application
sample of a transferred model [LLi (8 )1 and the cor-

4 estimated onresponding log-likelihood of a mode
that sample [(LLi (8i)]. The transfer test statistic
formulated by Koppelman and Wilmot (Q) is usad to
evaluate the transferabilityof disaggregate models.

The transfer test statistic
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l’rs,(/jJ)=-2[L~@j)-L~W] (28)

is chi-squarad distributed with degrees of freedom
equal to the number Of model parameters under the
assumption of fixed values of parameters for the
transferred model. The smaller this statistic is,
the more applicable is the transferred model to the

application population.
This transfer test statistic is used to evaluate

each of the sample-based models for transfer predic-
tion of the population in each of the other eec-
tors. Based on the results given previously, it is
expected that the sample size of estimation subsam-
ples will affect both the prediction accuracy and
variability of a transferred model in the applica-
tion context, according to a function that has a
term of (Np - N8)/Ne to reflect the sampling
effect in the estimation context. It is also ex-
pected that there is a constant term in the transfer
test statistic that reflects the real difference be-
tween the population of estimation and the popula-
tion of prediction. These relationships are devel-
oped in the following subsection.

Relation Between Transfer Test Statistics and
Estimation Sample Size

The transfer test statistic of a subsample-based
model ( .), predicted on an alternative popula-
tion, is defined as

l-rsu=-2[L~(d,)-L~(p;)] (29a)

which is approximately (~),

TTSti=(8”-8j)’Z~@/-6j) (29b)

Let TTS~j represent the transfer test statistic
of the population-basedmodel,

~s; .@“ -~;)’z; (&”-p;) (30)

which is nonstochastic, and assume that Npi x ~pi =

NPj x ~Pj
(i.e., the underlying model parameter co-

variance matrices are equivalent) for the two popu-
lations; thus (ZJ,

~%j =~si +(NPi/NPj)[(NPj- N%)/N%][2W“ -B;)’G; Zj

+ z;z;;Zj] (31)

That is, the transfer test statistic for a model
estimated on a sample from population ~ and used to
predict population i is ccnnposedof a deterministic
term that describes the difference between the two
populations and a randcsovariate composed of two
terms. The first term, which is random because of
the inclusion of zj, is normally distributed with
mean zero and variance-covariancematrix rzj. The

second term, which is random because of the inclusion

of z; r;;zj, is a chi-equare variate with DF de-

grees of freedom. Thus TTSij is the sum of a
fixed term, a normal variate and a chi-square vari-
ate. (Note that this breakdown of TTSij ignores
the interaction between terms and the constraint
required to ensure that ‘r’rSi
expected value and variance of?~~~~~?ative”) ‘he

E(TTS)=TTS~+(Npi/Npj)x[(NPj-N,j)/N3]DF (32a)

and

v (’rxs)=4(Npi/Npj)X{[(Npj-N5)PJ31TT%}

+2(NPi/Npj)X[(Npj-N%)/N,j]xDF (32b)

Thus both the mean and variance of the transfer teSt
statistic increaae with the difference between the
two populations involved in the transfer process and
decrease with the semple size of the estimation data
Set so that increased estimation sample size im-
proves model transferability.

Empirical Analysis

The relationship between the transfer test statistic
and sample size is examined empirically.
of the population transfer test statistic
given in the following table:

Transfer Test Statistics
Estimation by,Prediction Sectors
Sector 1 2 3
1 -- 67.2 F
2 48.6 -- 29.0
3 52.6 27.2 --

The values
(TTS*) are

A scattergrem of the transfer test statistic is
plotted with varying estimation sample size for
transfers from sectors 1 and 3 to sector 2. This
scattergrem (Figure 5) can be used to examine the
expected values and variances that were derived. In
this figure, the expected value of the transfer teat
statistic, as defined by Equation 32a, is included.
Ae expected, these lines fit the data in the respec-
tive transfer conditions satisfactorily. It was
also observed that the variance of the transfer test
statistic decreases as the estimation sample size
increases, as suggested by Equation 32b. Further,
it was noted that the sample values of TM for
transfers from sector 3 with the smaller value of
TTS* have both lower mean and variance than the

transfer from sector 1.

Conclusions

The expected relationship between sample size and
tranafer prediction accuracy is confirmed by the
analytic decompaition of the transfer test statis-
tic into a deterministic component that is indepen-
dent of sample size and a stochastic component, the
distribution of which Is related to sample size for
any given pair of populations. Empirical transfer-
ability tests are consistent with these analytically
formulated relationships.

Increases in sample size cannot be used to offset
real differences in the behavior of two populations
reflected in TTS*. However, they can reduce the
stochastic component. Additional analysis my be
useful to clarify these relationships, but the em-
pirical results suggest that samples in excess of
500 observations may be necessary to obtain transfer
predictive accuracy that is close to that fiich
might be obtained by a population-basedmodel.

SUMMARY OF CONCLUSIONS

The conclusions reported in the pr~eding sections
are summarized as follows.

1. Increased size of estimation samples leads to
(a) parameter estimates that are likely to be closer
to the true population parameters, (b) smeller stan-
dard errors of such parameter estimates, and (c)
more accurate prediction “of population choice be-
havior.

2. The sample size required to obtain choice
model parameter estimates that are reasonably close
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to the true population parameters appears to be sub-
stantially larger than the seaple sizes ~nly
prescribed for the ●stlxetion of disaggregate choice
aodela.

3. The sample size required to obtain a aodel
that accurately replicates parent population choice
behavior appears to be saewhat smeller than that
required to obtain accurate parameter egti~tes and
●ccurate prediction under changed transportation
service coordination.

4. Model trenaferability ia a function of both

the estimation ●aaple size ●nd tha difference be-
tween the populations involved in the model trana-
fer. Inorea8ing emtimetion ●enple size has a posi-
tive effeot on transferability it a dacreaaing
rate. When the difference between two population
ia large, it ia expected that there will be large
and highly variable tranafer ●rrora.

5. The required sample ●ixe needed to obtain a
desired level of perenter estimation or prediction
accuracy can be determined from pilot sample model
●etimetion.

Overall, these reaulta ●uggeat the need to use
data mmplea on the order,of 1,000 to 2,000 observa-
tions rather then 500 observat~ona as formerly ba-
lieved. Although come reduction in eample ●ize My
be feamible when optiael sample stratifications are
used (12, ●nd paper by Sheffi ●nd Tarem ●leawhere in
this Reoord), it is unlikely that ●-lea as smell
aa 500 observation can be adequate for model eeti-
nations.

Obviously, the ~rtanoe of this ismue wgqesta
that ●dditional reeearch be undertaken to obtain
further ●nalyais of ●eaple size requirannto for
modelm of different travel choices in different wn-
texts. Further, transportation plannere auat forxu-
late judgmarttaabout the deeired preoiaion of eati-
●atad mdel paramatera ●nd xodel prediction.

o

Appendix: Derivation of Sample Population

Covariance Matrix

The population (full eample) eetlmetion covariance
matrix is the negative inverse of the Eeasian (~) or

(Xt-%)’pito-%)(xit -%)”
1

(Al)

covariance matrix,
auznation,
variable veotor of alternative i for indi-
vidual t,
probability weighted average of xit,
choioe probability of alternative i for in-
dividual t,
population,
individual,and
alternative.

Similarly, the sample estimation oovariance matrix ia

“% ~ ‘%- X’)’P’(’‘p’)&- “!-’
(A2)

where a ia the aaaple indicator.

Finally, the oovariance matrix between the popu-
lation and sample estimatem ia given by

vm=[,~p;&-xt)’P, (l-P.)&-%~”’ (A3)

where ap indicatea the covarianoa matrix between
population and ample estimations, and t C a.p ix-
pliea s~tion over obaervatione inoluded in both
the ●aple and the full population.

In this caea, where the population includes all
sample elemante, the aumation wer SVP ie U@Va-
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lent to the stumation over s and Vsp = Va OK, by
using the notation in the body of the paper, =Sp =“
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Mobility Enterprise: One Year Later

MICHAELJ.DOHERTY AND F.T.SPARROW
o

A mobilityenterpriseisanewtrarwpcrtztionconcept .im~ at increasing SISe
productivityoftheautomobilethroughuseofmini0smicroautomobilesin
conjunctionwithe$heredfleetofintermediatemadfull-sizedvshidet.The
mainobjectiveoftheenterpri$ei$toprovideabettermatchingofvahicleat.
tributestotriprequirementsandKillmaintainthepersonalfreedomthat
appear$tobe$ohighlyvaluadbytheAmericzndrivar.Althoughthisconcept
waspresentedin dateii in an earlierTRB Record(TRR8S2),aviewoftha
progress that has been made in taking the mobility enterprise from an innwa-
tive concept to an actual experiment is presented in this paper. The majority of
the information deals with metheds for observing consumer attitudas, design-
ing the actual mobility enterprise, and measuring mini and micro autemoblle
performance.

In January 1982 the Automotive Transportation Center
at Purdue University unveiled an innovative trans-
portation concept called the mobility enterprise
(~). Briefly stated, the research examined the ef-
fects of mini and micro class automobiles and
shared-vehicle fleets on the overall productivity of
the personal automobile. This paper is designed to
provide an update of the progress made during the
last year and to discuss the experimental design and
preliminary findings.

After years of promoting public transit and car-
pooling to conserve energys it appears that the av-
erage consumer still prefers the convenience of the
personal automobile. At the same time, although
automobile efficiency (fuel economy) has undergone
significant improvement, automobile productivity has
remained disturbingly low (2S3). The concept pre-
sented here for improving pr~~ctivity is batsedon a
better matching of the trip requirements of an indi-
vidual to the characteristicsof the vehicle. Three
interrelated features of a mobility enterprise--
retained autonomy, easy access to an expanded fleet,
and reduced expenditures--are the inferred keys to
its success. An enterprise membersa minimum attri-
bute vehicle (a mini or micro automobile in these
experiments) provides hiresby definition, with the
most economical means of accomplishing hie most fre-
quent trips. When a memberss mini or micro automo-
bile is inappropriate for a desired trips he must
seek access to an appropriate vehicle from the
shared fleet. This process may involve delaya, some
advanced planning, paperwork, and out-of-pocket
costs, depending on the procedures of the enter-
prise. A general description of the mobility enter-
prise that has been set up at Purdue University is
as follows.

1. The following items are included in a set
monthly fee: (a) an individually garaged mini or
micro class vehicle that will satisfy most comcnuting
and around-town driving, (b) access to a shared
fleet of intermediate and full-sized vehicles for
trips that the mini or micro vehicle would be un-
suitable, (c) all insurance costs, (d) all mainte-
nance costs, (e) all registration and licensing
costs, and (f) taxes.

2. Gasoline costs are not covered in the monthly
fee.

3. Cost per participating household for experi-
ments is $165 per month.

The concept of a mobility enterprise requires
careful examination of several behavioral parameters
of the American as a driver. Judging from the
underutilization of public transit systems and ride-
sharlng programs, it appears that personal freedom
and independence are highly valued attributes. If
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it is imperative that this independence be pre-
served, a key step in the design of proposed experi-
ments must be an inventory of the current patterns
of the U.S. driver and the use of his personal vehi-
cle. The shape of the enterprise must come as close
as possible to’ satisfying travel demands, with as
little inconvenience as possible. However, because
there may be come inconvenience (changes in travel
behavior), it is important to gauge the value driv-
ere place on the quality of travel provided by the
shared fleet available through the enterprise. In
other words, what would be the trade-offs between
the current condition of automobile ownership and
participation in a mobility enterprise?

Two key tools that have been used to acquire data
pertaining to consumer acceptance and current travel
behavior are the focus-group interview and a survey
instrument (questionnaire). In addition to consumer
and travel-behavior studies, a microprocessor-based
data acquisition system, under development at Purdue
University, will measure the stress on these small
automotive engines when subjected to real-world mis-
sions. Such a system is necessary to determine the
feasibility of using mini or micro automobiles for
personal transportation in the United States.

FOCUS-GROUP INTERVIEWS

Focus-group interviews are predicated on the assump-
tion that the mobility enterprise will be better un-
derstood and more efficiently designed when there
are more data on how potential users, supporters,
and detractors define its advantages and disadvan-
tages and its significant and modifiable attributes
(~). The content of each interview was analyzed for
recurring themes. The attributes that account for
decisions to join or not join the enterprise were
schematized, and questions measuring the character
and quality of these attributes were developed for
the larger general survey instrument.

Focus-group interviews began in West Lafayette,
Indiana, in March 1982. The length of the focus-
group interviews varied from 1 to 1.5 hr. There
were seven focus groups: one group of Purdue Univer-
sity faculty and staff, one group of Purdue Univer-
sity faculty and staff couples, one group of Purdue
University faculty and staff as new car intenders
(intention to buy a new car within 2 months), two
groups of college students, and two groups of teen-
agers (one consisting of all male and one consisting
of all female). A total of 62 individual partici-
pated.

Data from the focus-group interviews were ana-
lyzed for issues raiseds opinions expressed, and ex-
periences reported and were then examined for recur-
rent significant themes. The fbcus-group interviews
and subsequent analyses were based on the aeeumption
that the study of coneumer attitudes and interaction
and the emphasie on analysis of themes should pro-
vide insight into the consumer decision-making pro-
cess of automobile ownership, mini and micro vehi-
cles, and the mobility enterprise (5s6). This in

turn should improve the capability f~r-planning and
developing the mobility enterprise. The focus 9rouP
interviews were divided into four content areas: (a)
vehicle ownership and use~ (b) the expense of ownin9
and operating cars, (c) the mini or micro autmo-
bile, and (d) the mobility enterprise. The major

findings in each of these content areas were as fol-
lows.
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1. Vehicle ownership: Increasing costs are cre-
ating comprcaises concerning style; i.e., when pur-
chasing a vehicle, people are settling for less car
than they originally had planned to buy. Also,
there wae an overwhe2xing attitude that automobiles
are synoncaous with personal mobility and freedom.

2. Vehicle expenses associated with vehicle own-
ership: All groups knew that owning a car was ex-
pensive, but when probed they were relatively un-
aware of the actual coat. There was a strong belief
that ownership coataiwould not get too high. Virtu-
ally all groups believed that some technological
breakthrough would occur to keep automobiles afford-
able.

3. Mini and micro automobile: Price (quoted as
between $3,000 and $4,000) makes these cars attrac-
tive aa a second car. Also, safety was dismissed as
a realistic issue because the participants generally
perceived drivers to be more important than automo-
biles with respect to safety.

4. Nobility enterprise: Generally, the shared-
fleet concept was not well received, as most groups
believed it was an infringement on their freedom of
mbility; thus they tended to dwell on the negative
aspects of sharing. But, continuous maintenance was
almost universally viewed as the major point in
favor of the mobility enterprise. Finally, the
ability of membership for a trial period of time was
seen as crucial.

Because this study uses a small population and is
not truly representative, and because the findings
are qualitative and subject to biases, the study
should be viewed as exploratory in nature, thus mak-
ing generalisations difficult. Nevertheless, it is
anticipated that the validity of issues raised will
be considerably strengthened as the hypotheses de-
rived from the focus-group interviews are further

explored by forthcoming surveys. Such has already
been the case in two other papers (7,8).. .

SURVEY INSTRUMENT

The local survey was intended to help gather data
pertaining to the acceptability of the -bility en-
terprise concept to a representative sample of
households in the area where the first experiments
were to be run. It also acted as a tool to compile
an inventory of current vehicle use patterns in the
sample area.

The Social Research Institute of Purdue Univer-
sity conducted the local survey. The sample size
was 300 houaebolds. Tippecanoe County is a desig-
nated standard metropolitan statistical area (Sf4SA),
and 80 percent of the sample was drawn from the
urbanized area and 20 percent from the nonurbanized
area. Within the urbanized area, four strata were
selected based on eocioeconoxic status (SSS): high,
medium, low, plus a fourth category containing small
blocks (four dwelling units or fewer). Three strata
were selected from the nonurbanizad area based on
SES (high, medium, and low). The survey instrument
was administered by personal interviews of 30 to 45
min each. TWO additional eubgroups of 30 households
each were interviewed, which represented retirement
cenmnunitiesand condominiums. General demographic
information that characterize the sample population
is given in Table 1. The attitudes of the respon-
dents toward the mobility enterprise as a transpor-
tation mode are given in Table 2.

When the sample is broken down into two aub-
groupe, one consisting of those interested in join-
ing and the other consisting of those not interested
(only two respondents were undecided), several in-
triguing difference with reepect to age, automobile
purchasing intentions, and the acceptability of
emall cars for everyday use are noted (see Table

3). In general,
bility enterprise

71

those interested in joining a mo-
are younger, closer to making car

purchase decisions, and find small cars more accept-
able than those not interested in jolnlng. TWO
other significant obaervatkms are that (a) no re-
tirees were interested in joining, and (b) those who
were interested in joining believed tbeY would need
to use a shared vehicle, on average, approximately
45 percent more often than thoee who were not inter-
ested (67 days per year vereue 46 days per year).

The results presented here are merely preliminary
findings. A more detailed report enalyzing the
local survey will be forthcoming. In addition, a
national survey about the mobility enterprise con-

Table1.Gmserddemographioroftransportationsurvey.
.— ---—.— . . ___

No.of
Item Respondents

Total
Male
Female

Age (yeara)
16-25
26-40
41-60
>61

Nighest level of education
Less tkan 12th grade
High school education
Some postsecondsry
Four ormore yearapost.vecondsry

Housaholdincome
<$5,000
s5,00@$14,999
$15,000-S24,999
$25,00G$34,999
●$35,000 .

360
173
187

79
124
73
83

46
123
86

102

38
80
93
74
62

Tabla2 Preliminarysurveyresultsfromqueationnzira.

Positive
Response

Question (%)

Do you think the rnobiJityenterprise is practical? 65.3
Do you tfdnk the mobility enterprise is complicated? 20.3
Would the mobility enterprise work for your household? 23.9
Woulditbairnportant toseeothersjoin themobilityenterpriae .50.3

before ynu would?
Would you be interested in joining the mobility enterptie? 14.3
Would you be willing to join the mobility enterprise for a trial 24.4

period?
Foryourhousehold, wouldowrringyour owncarbebetter than 883

being a member of the mobility enterprise?

Now: 360rmpondmea were asked these questions,

Tabla3.Preliminarysurveyresults.

WiUirrgtoJoina
Mobility Enterprise?

Yes
Item (rr= 51) $=309)

Mean age of respondent 31.6 44.6
Planning to purchase a vehicle within the next year 37.2 11.0

(%)
Plarminatoourchaaeausedcarwithio the next year 62.8 30.7
(%) - -

A mini or micro automobile is acceptable sa a vehicle 76.5 63.1
for weryday use (%)

A subcompact is acceptableasavehicf6for.everyday 96.1 72.5
Uae(%)
Itwouldbeacceptableahasingacarwithaaveral 88.2 63.6
otherpeople (%)
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cept
West

TRIP

will be conducted by J.D. Power & Associates of
Lake Village, California.

DIARIES

Although focus-group interviews and transportation
surveys are helpful in ident~fyittgthe inclination
toward acceptance of a mobility enterprise concept
and zome of its critical attributes, another snore
direct measure of acceptance based on actual be-
havior was also needed. For this reazon, the col-
lection of trip diaries from potential experimental
subjects began in August 1982. Thus nearly 6 months
of actual travel behavior was collected before the
initial experiments.

Because participation in the mobility enterprise
involves changes in vehicle use, it is important to
know whether the enterprise fits into the current
travel behavior of the participants. Because the
travel patterns of the participants both as a group
and as a household are known up to this point, this
data should prove to be extretttelyvaluable. Signif-
icant changes in travel patterns caused by the ac-
cormaodation of the operating system and restrictions
of the mobility enterprise are detected with these
data. A meaningful control group of trip diary par-
ticipants who will not be enterprise members is be-
ing maintained for the duration of the experiments.

Trip diary results to date have revealed a re-
markable degree of consistency for the test popula-
tion from week to week. A summary of trip typea and
mileage for the first 12 weeks of the study is given
in Table 4. The trip occupancy pattern for the pop-
ulation for the first 12 weeks is given in Table 5.

Table4. Pretest tripdiary resulta oftriptypa andmileaga.

Trips Mean Mileage
per per Trip

Trip Type Week (one way)

Shopping(grocery andnongrocery) 2.66 4.97
Commuting(work orschool) 5.19 7.64
Social-recreation 3,49 14.65
Peracmalbuainesa(errands,paaaengerferry,andsoon) 5.75 5.14
Return home 9.05 9.24

Note: 65.36 percent were muttipurpmetfirn. Raault8cdver a12-weekparkod.

Table5.Pretaattripdiawraaultsoftripoeaufaency.

Occupancy per Trip
(%) by No. of
Occupants

Trip Type <2 >3

Shopping (grocery and norrgrocery) 89.7 10.3
Commuting (work or school) 99.0 1.0
Social-recreation 79.1 20.9
Personal buairreas(errands, passenger ferry, and ao on) 91.2 8.8

AU trips 91.1 8.9

ing four or more occupants. By using these cri-
teria, the expected use of shared vehicles for the
first 12 weeks of the study ie ahown in Figure 1.
Extrapolation of these data for a 20-member”enter-
prise, run under the restrictions assumed here, ap-
peara to indicate that the enterprise is umt effi-
cient if it owns two vehicles in its shared fleet
and uses an outside vendor for those times when ad-
ditional vehicles would be needed. Eowever, these
questions must be more thoroughly examined during
the actual experiment.

F@wal. Hypotheticalahm’s&ffastkras.

,’,,l,qusl

l!
40 6( 8(

September ctober

4
100

Time
Note: Datigtic ax~d Afwtiud vtikloforfi*12ti&
triodisrvstudica. Thmodmsuabnadonwhtdiavrawltsfromffrat
timfiariodfor ●hypotfratkafantamrisa of24membarhou~

TBCNNICAL DATA ACQUISITION SYSTEN

All mini and micro vehicles in the experiment are to
be equipped with a data acquisition system (DAS) to
collect information on the performance characteris-
tics of these vehicles. The DAS has a standard con-
figuration, with sensors mounted on the power plant
that pass signals to the crsaputer. The processor
passes the data or processes it and sends the infor-
mation to a digital recording device. Oefaignspeci-

fications were developed to sccoamodate the harsh
automotive environment. ~is work is not new; it is

an extension of the basic work on internal combus-
tion vehicles already perfomed for instrumentation
of electric vehicles st Purdue University @).

A mission use pattern will be developed through a
series of plots, such as vehicle speed histograms
(percentage of time spent in various vel-ity
ranges), trip length histograms, number of trips per
day versus day of the week, and so forth.

A mission severity index will be used to calcu-
late the energy required for acceleration, constant
speed, and idle periods. Data fr- engine fUel_COn-
sumption maps will also be used to characterize fuel
consumption during s mission. A general schematic

of this system is shown in Figure 2.

Note: Resuttsc-av=a 11-weekpwiod.
INITIAL EXPERIMKSTS

A final purpose for which the.trip diary data may
be ueeful is in the design of the ehared fleet. One
of the most critical design charscteristtcs of a mrr-
bility enterprise is the size of the shared fleet
for a given size of enterprise. HOW many cars would
be tw many? HOW many would be too few? For the
purposes of the experiments currently bein9 con-
ducted, assume that a shared vehicle iS r~ired for

a trip greater than 30 milee (one way) or transport-

The first mobility enterprise experiment became a
reality on January 22* 1983. The enterprise ini-

tially consisted of seven participeti$W households.
The basic service included an individually ga-

raged, mini or micro automobile and access to a

shared fleet of one vehicle. Because of insurance
restrictions resulting from-the lack of safety date
on the mini and micro automobilee~ all such vehi-
cles are prohibited from use on Interetaatehi9h-
ways. All operating costs (excludi~ gasoline) are
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Fiwe2 FicwzhwofDAS.

I
OPEP.ATOR INPUTS OATA

I

I
FROM KEYPAD

(No. of Occupants, TripI. D., Cargo Code, AmOUnt Of Fuel, etc. )

I
I

F==7DATA CdLLECTED nORINC MISSION IS

(Date, Time, Full Flow, Vehicle Speed,

Oil Pressure, Manifold Pressure, Grade,

Temperatures, Engine Knock and Speed)
I

I OATABASESTORAGEI

included in the monthly fee. In addition, each mem-
ber receives approximately 10 coupons for use of the
shared fleet. The coupone have a caah value of ap-
proximately 87.00. The basic rate for shared-fleet
use varioa ●ccording to peak or off-peak perictda.
The coupon ●xchange rate for shared vehicles is two
coupons per weekday and three coupons per weekend
day. Coupons m@ be accumulated for use at a later
time, traded among mmbera, or turned in at the end
of the month for a credit toward their next wnth”a
bill. Maintenance of all vehicles and shared-fleet
operations ia administered through the Purdue Uni-
versity Tranepcrtation Bervicea Department.

Trip diariea are being ●aintained for all vehi-
cles in the mobility enterprise ae well aa in a con-
trol group of nonenterprise members. In April 1983
the mini and micro vehicles were equipped with the
on-board DAS that meaeures varioua factore in engine
performance. All teat aubjecte are being cloeely
monitored throughout the experiments.

tion of the travel demands of the potential partici-
pants. This is particularly noteworthy because the
data from the trip diary include AUgUSt (a high va-
cation month) and September (Labor Day weekend).
The fccua-group interviews imply that there is no
aversion to mini or micro automobiles (also indi-
cated in the survey) and that continuous maintenance
ia a significant factor in favor of the mobility en-
terprise concept. The survey and focus groups have
also indicated that the mobility enterprise, to be
successful, must coma close to the current state of
autrsnobileownership. Other work currently under
way deala with determining optimal shared-fleet eize
(~, which is crucial to the ultimate economic auc-
cesa of such a venture.

In addition to the data presented here, a great
deal of the first year’a effort haa dealt with lo-
gistical considerations, such as obtaining waivers
for importing the mini and micro automobiles, ar-
ranging insurance coverage and maintenance delivery
aystemar procuring vehicles for the shared fleet,
and calculating costs to the participants. Although
such efforta yield no experimental data, they are
both time consuming and crucial to the performance
of the actual exparimenta. Thus, bacauae of the
work described in this paper, the Purdue University
mobility enterprise experiments were able to begin
in January 1983.

This work has truly been of an interdisciplinaryna-
ture, and special thanks are due to Harry Potter
(Department of Sociology), Richard Feinberg and
Thelma Snuggs (Departmentof Consumer Sciences), Jon
D. Frlcker (Department of Civil Engineering), and
Patrick McCarthy (Department of Economics) for all
of their intereat and active participation in the
early and tedious data-gathering phasee of the
atudy. A apaclal thanks ia elao due to Lori
Serthold and Pat Sandere, without whose diligent
work and akilla this paper would not have been pos-
sible.

Thanks is also due to the three research teams
that have asaiated in the formulation of the focus-
group interviews: the Purdue University teem
(headed by Richard Feinberg and Thelma Snuggs of the
Department of Consumer Sciences), Avis Rent-A-Car of
Garden City, Hew York (headed by Al Dold, executive
vice president for marketing), and J.D. Power & As-
zociatee, consulting spacialiata in autmobile mer-
keting (headed by John Hemphill, executive vice
president).

The purpose of this paper ia to describe the prog-
rees that has been made in the paat year in bringing
the mobility enterprise frm a hypothetical concept
to a set of actual ●xperiments designed to test ite
viability as a transportationmode. Many of the re-
sulte presented here deal with research activities
that must precede the actual exparimenta. The re-
search emphaeie to date has been in the area of con-
sumer acceptance of the mobility enterprise concept,
recruitment of experimental subjects, operational
design of the Purdue University experiments, and
methods for measuring mini ,and micro vehicle per-
formance under U.S. driving conditions.

Thus far the data are encouraging becauee mre
than 20 percent of the random sample would be will-
ing to try ● mobility enterprise for a trial period
and more than 10 percent said they would be willing
to join euch ●n organisation. The data from the
trip diariee a~ar to indicate that a mobility en-
terprise operation could aatiafy a significant por-
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Person-Category Trip-Generation Model

JANUSZ SUPERNAK, ANTTI TALVITIE, AND ANTHONY OeJOHN

A pereon%etegorymodalof trip generation is presented as an altarnativoto
houeehold-beted trip-psneration models. In this modal a homogeneous group
of persons is used m en analysis unit. The final daedption of the person wte-
gories is not wbitracy but results from the multistage, multivariate analyeis of
mmsypotentially significant variables. The variableeege, ●mployment status,
and automobile availability were found to be the most signifiint deeoriptors
of a person’s mobility. The final version of the model ia based on ●ight pesems
oategoriet. Both theoretical discussion and empiriad findings favor the pro-
posedversion of the pereon-oztegory model over houeehold-beeed models be-
oause it is more preatiral at tha foreazet stage, requires eignifkantly Iaeedata,
has Mter behavioralbackground, and is more compatible with the ●ntire eye
tam of individually oriented trzveldemarwl models.

The development and evaluation of a person-category
trip-generation model as an alternative to house-
hold-based models are discussed in this paper. The
individual-levelapproach was chosen for the follow-
ing reasons. First, a person-level trip-generation
model ia compatible with other components of the
four-step travel-deinandmodel system that is based
on tripmekers rather than on households. Second, it
is extremely difficult to devise a household-based
cross-classification scheme that uses all important
variables and has a manageable number of classes
[e.g., a British household cross-classification
model (&) haa 108 categories]. Predicting represen-
tations in so many classes is difficult.

Third, the sample size for the person-ate90rY
model can be much smaller (10 to 40 times) than for
the household-category model. Fourth, demographic
changea can be more easily accounted for in the
pereon- rather than household-category model, and
some demographic variablea (such as age) are virtu-
ally nondefinable for households. Finally, person
categories are eaaier to forecast to the future than
the household categories, which require forecaets
about houeehold formation and family size. With the
person categories these tasks are altogether
avoided. More importantly, because the bulk of the
tripz will be made by people older than 18 years of
age, the task of predicting the tripmakinq popula-
tion 15 to 20 years ahead is much easier.

There are of course scme limitations that a per-
son-category model may have. Foremost among these
is the difficulty of introducing household-interac-
tion effects and household money costs and money
budgets into the model. On the other hand, it is
not clear how.vital these considerations are and how
they can effectively be introduced even in a house-
hold-category model. The methodology of the develop-

ment and testing of the person-category uslel waa
based on previous work from Europe (2-6), where the
person level of data aggregation w~s-found to be
successful for travel-demandanalysie.

DATA AWD DEFINITIONS

Date

The data used in preparing this paper were from the
Baltimore home interview survey conducted in 1977 by
the FHWA and from Minneapolis-St. Paul hoeea inter-
view data collected in 1970. Before the enalyses,
data were superficiallycleaned. .Workday records
were separated from weekend-day records, and some
persons were excluded froa the original saeeple. For
example, if in the original file a significant in-
consistency was found (e.g., number of cars in the
femily = 7 and number of drivers = O), the parson
was excluded. Outliers were also excluded. If the
number of trips done by a pereon was greater than 10
and if total time spent on traveling during the day
exceeded 150 rein,then this person was suspected to
be a professional driver (or similar category) and
was excluded from the sample.

Definitions

The following definitions are used in the analyses:

Ni = trip rate, that is, the daily number of
one-way trips made by (aVera9e)eer~n in
category i; and nqi = triP rate to Pur-
pose q in category i;

Ti = daily travel time; that ia, the time (in
minutes) spent by (avera9a)Per-n in cate-
gory i on traveling during the daifz

Yj - total number of trips made anywhere by the
inbabitenteof sone j (all categories t-
gether);

q . nuraberof zone j inhabltantsrand

aij = percentage of inhabitant of zone j be
longing to category i.

Thus the following basic relationship is given:

(1)
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The method of calculating zonal Productions (P )
and 1attractions (A ) is not presented in th s
paper. iThis method s briefly presentad in Supernak
(s).

In analyzing and calculating trip rates, trips
are divided into

1. Hcae-based (RS) trips if origin (NBO) or
destination (NBD) of the trip is the place of resi-
dence of the traveler, and

2. Non-home-based (NSB) trips if neither origin
nor destination of the trip is at home.

Trips are further divided by trip purpose (q) as
follows: work (W), education (E), shopping (S),
personal business (Pb), and social-recreational and
other purposes (Sr). This trip-purpose classifica-
tion applies to both NB and NHS trips. Work and
education trips are called obligatory trips, and all
other trips are called discretionary trips. The
traditional description of the trip links (instead
of sojourns of trips) was chosen because it clearly
relates the number of outside-the-home activities to
the number of trips made (6,7).

An example of trip rat&-for category i is given
in Table 1. Fifteen-elementvectors of partial trip
rates

9
i (i.e., separated by purpose, direction,

and base may be derived from the data, as shown in
Table 1; they served as the trip characteristic of
category i.

Tsblsl. ExarnplaoftriprztsoharrctsristicNforrategoryi.

Obligatory Discreti0n2ry

Triu w E s Pb Sr Total’

HBO 0.86 0.02 0.10 0.21 0.05 1.33
HBD 0.86 0.05 0.21 0.19 0.02 1.33
NHB 0.02 005 0.14 0.14 0.07 043—-
Total’ ~bl=l.86 N:isc=].24 Ni=3.10

aNotethatmmecolumnswillnot totalbecau=of rounding.

ANALYSIs mwcmoRs

The model development was done in four stages:

Stage l--(a) arbitrary choice of many variables,
which are expected to be important for explaining
differences in a person’? mobility, and definition
of plausible person categories by using these vari-
ables; and (b) preliminary analysis of trip rates
(Ni) and trip times (Ti) to find which variables have
the least explanatory power and can be excluded from
the model~

Stage 2--(a) detailed analysis of trip character-
istics to find variables that define similar cate-
gories for stage 3; variables that do not give
substantial explanation of the data variance or
variables that duplicate an explanation of other
better variables are excluded; (b) proposal for the
final trip-generation categories the number of
which should not ●xceed a certain practical maximum
(for example, 10); and (c) analysis of dependency of
trip rates between trip purposes [not reported in
this paper, see Supernak et al. (g)];

Stage 3--(a) final trip-generation characteris-
tics of each category, as determined in stage 2, are
analyzed in detail; and (b) transferability of the
results within different sections of Baltimore and
to other cities is exeminadr and

Stage 4--comparieon with household-based trip-

generation model, aa presentad in detail in DeJohn
Q) .

The statistical methods used in the analyses are
simple and straightforward. At all times these
statistical methods are supplemented by visual anal-
ysis of data that try to find petterns in the data
that a blind application of statistical methods may
not find.

In stage 1 of the model develo~nt only a peir-
wieiecomparison of total trips rates is performed.
The Z-statistic for the trip rates of two categories
i and j, which are differentiated by the analyzed
variable only, is computed and compared with the
critical Z-value at the 0.01 level of significance.

In the remaining stages three additional measures
supportad by histograms and analyses of variance are
used. These three measures are the correlation
coefficient, slope (m), and intercept (b) of the
r~ression Nqt = bij + mi Nqj.

The categories i and 1 may be treated as similar
if (a) the correlation coefficient between vectors
of the partial trip rates (i.e.,
poee and base) ~i and

7
j, and

of the regression coeff cients
intercept),-satisfy

ru>0.900

0.75<q< 1.25

Ibul<0.10

the following

trip rates by pur-
(b) the parameters
(m~ - slope,

4-con itions:
bij -

(2)

(3)

(4)

These conditions are arbitrarily chosen and are
quite demanding.

These three measures can be used to analyze the
appropriate categories for both pareons and trip
purposes, as shown in Figure 1. The Q-type regres-

sion and correlation analysis is used for analyzing
the best grouping of persons, and the R-type analy-
sis is used for grouping trip purposes. These anal-
yses are useful for both travel-demand analysis
(~,~) as well as for nontransportation applications
(~) .

Fiwws1. @~patiR-WpadytiMwipr*Nqi.
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STAGS 1: CHOICE OF VARIABLES AND DSVEL@MENT OF
CATSGORIEB

For stage 1, the following variables (and strata)
were used to form the categories.

1. Sex: The obvious “choice of strata here is
male and female.

2. Age: Age was used to describe the main activ-
ity at a given age (primary school pupilsr high
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school pUpilS, college students, employees, re-
tired) . Accordingly, the age groups used were O to
12, 12 to 18, 18 to 65, and older than 65. Age 40
is also used to divide the employable work force
into two categories.

3. Car availability: In all known trip-genera-
tion models the variable csr ownership was used and
treated as a baaic variable. Here a variable defined
aa car availability is used. The reason for this
change comes directly from the general concept of
the model. When using a traveler or a person as the
analysia unit, car ownership of the family is not
directly related to the car availability of differ-
ent family members. Thus the following distinction
was made (where ~ = number of cars in the household
and Nd = number of drivers in the household). For a
given person, car availability-is (a) never available
if Nc = O or Nd = O (person haa no driving license)
or (b) sometimes available if Nc > 0 and (Ncfld) < 1
(Nd > O) or (c) always available if (N&Nd) > 1.

4. Employment status: Status la divided by em-
ployed and not employed.

5. Income: Income is defined at the individual
level rather than at the family level. Household
income was converted to per capita income eimply by
dividing it with family size.

6. Race: The race variable (white versus non-
white) was analyzed because of the significant per-
centage of nonwhite respondents in the Baltimore
data set.

7. Employment types: Three strata are used--
white collar, blue collar, and other.

8. Family type: Five family types were analyzed
to understand how the family duties affected a per-
son’s tripmeking behavior. The strata of this vari-
able were as follows: single person, childless
couple,.family with children youn9er than 5 Years of
age, family with children 5 to 12 yeara of age, and
family with children older than 12 years of age.

These variables and strata resulted in the 100
categories shown in Figure 2. (Note that Figure 2
is read in the following way: each dot indicates
which variable applies. For example, persons in
category 24 are white, single, employed blue-collar
males who have a car always or sometimes available
and whose per capita income is between $lt500 and
$4,000 per year; there are 11 euch persone in the
sample.) Note that in defining these categories
many potentially important variables were included
initially, and yet there was a desire to keep the
number of categories reasonable (i.e., not to exceed
100). The eight variables could have produced 5,400
categories, whereas the aemple size was only about
2,000. The categories were also defined in such a
way so as to avoid impossible or improbable combina-
tions of variables and to avoid extremely unequal
representation in each category. Therefore, no
computerized procedure to generate categories auto-
matically, which would be otherwise useful, was ap-
plied. The initial arbitrary split into categories
is presented in Figure 2.

The aim of the analysia at this stage was to
discover which variables have the least effect on
trip-generation ratea and can be reawved from con-
sideration. A convenient method used was a series
of pairwise compsriaons performed for categories i
and j, which differ with respect to one variable
only. An example of such an analysis ie given in
Table 2.

The results of the stage 1 analysea are summa-
rized in Table 3. Some variables always give a
significant and regular explanation of patterns in
tripmaking. These variables are car availability,
employment status, age, and sex. Income sight be
significant if only two levels (higher, lower) were

introduced and, therefore, deserved further inveati-
gation.

Other variables euch as family status, race, and
employment type gave unsatisfactory explanations and
were excluded from the eecond stage of the model.
The proposal for further analysis of the category
definition is shown in Figure 3 and ia analys&d in
the next section.

It is worth dwelling on the significant result
that household type does not appear to be an iapor-
tant descriptor of a person’s tripmeking behavior.
One of the major arguments made in favor of the
household level of data aggregation ia that family
structure (e.g., number of children of different
ages) affecta travel behavior of adults in the
household. It was claimed, therefore, that the
femily’s needs (and consequently trips) should be
analyzed together with special reference to interac-
tions within the family.

The result here suggests that adults will fulfill
their transportation needs (meaaured by trip ratea)
independently of their family situation! the sources
of variation in data are outside the family-struc-
ture variable. This result supports the person
level of data aggregation applied here. It is alao
worth noting that, with the exception of single-mem-
ber households, the sample size is rather large
(>250), and the result obtained should not be a
statistical artifact.

STAGE 2: ANALYSIS OF TRIP RATSS AND DEVBLO~ OF
FINAL PERSON CATEGORIES

Pairwiae Analysis of Remaining Variablee

The total trip rates (trips per person) and travel
times (total daily travel time per person) by age
groups, sex, automobile availability, employment
status, and income, as well as the results of peir-
wise comparisons of trip rates for each strata, are
given in Table 4. The accompanying figures (Figures
4-7) provide a graphic analysis of ttm or more fac-

tors that the peirwiee comparison ia unable to do.
These graphs are useful in understanding basic rela-
tionships between variables.

The results given in Table 4 and shown in the
accompanying figures suggeet that the meet important
variables are age, employment status. and car avail-
ability. Sex and income appear to be weak variablea.
Their independent effect when analysed together with
car availability or employment status tend to disap-
pear altogether (for example, see Figure 4, which is
an analysis of employment and sex).

Traveling activity, measured by trip rates W and
by daily travel times T, declines with age (Figure
5). lbst dramatically thie ia true for the obliga-
tory trip, which declines substantially after re-
tirement.

Employment (i.e., the existence of obligatory
activity) is a beeic factor for explaini~ the dif-
ferences in trip rates and daily travel, as ahown in
Figure 6. Car availability ie also of great mignifi-
cance~ this is especially true for distinguishing
the tripmaking petterns of those who do not have
care available from those who do have cara available
(eee Figure 7).

The obvious reasonableness of theee conclusions
supporta the modeling approach by which they were
derived. A uore thorough analysis of date will be
described next to define the final categories.

!2-- Correlation Analyeis-of 40 Pereon Categories

Baeed on previous results, four versions of the

final categories shown in Figure 8 might be con-
sidered. In these groupings age is divided in~
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Figures. stsps2dsacriPtion ofps~MtsgorisI.three strata: younger than 18, 18 to 65, and older
than 65. The pairwise analysis suggested that the
age groups younger than 40, 40 to 65, and older than
65 may be most appropriate. However, plots in Fig-
ures 4-7, which consider more than one variable, as
well as practical considerations, favor the firat-
tnentionedage strata. The first stratum consists of
(mostly) unemployable students, the second stratusn
includes the labor pool, and the third stratuztitt-
cludes retired people.

Four versions of category descriptions were ana-
lyzed (Figure 8). Version D is preferred because it
is a parsitaoniousgrouping of people into only eight
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categories; however, it must be based on a more

Tatde2. Andysisofvariebloagz: trip rzteaforyourrgervsnuaolder
hou3ewivsa.

Trip Rstes N,
Category No.

Age c 40 Age >40
Age <40 Age >40 (n = 21S) (n = 190)

Variable Levels:

ME 1. <12
2. 12-18
3. 19-40
4. 41-65
5. >65

SEZ 1. Haze
2. Fenle

71
73
75
77
79
81
83
85
87

72
74
76
78
80
82
84
86
88

3.36
3.00
1.42
2.18
1.89
1,12
3.86
2.72
1.50

2.81
2.33
0.85
1.50
1.13
0.70
3.65
2.27
1.52 mu 1. Never

WAILASILITY 2. ti~ti~’2.1l’,b 1.73’”
3. Nways

~T 1. @loyad
2. Nen-aPloyed

‘Mereof totsl triprate.
bz,,~=4.oo.
cZ~,~, = 2.30. mx6rz 1. < $3000/cap

2. ~ W3001eap

TotsS Trip Rate’
Z-Veluesb(Zo.ol =

1 2 3 4 2.57,2..0S = 1.96)

Variable Category Mean No. Mesn No, Mean No. Mesn No. 1,2 13 2,3 Comments

sex We, fe- 2.65
mde

811 2.20 1,093

1,661 1.23

190

289 3.23

478

163 2.83

176

171 2.92

246 2.82

7.89

—

0.42

0.2I

26.3

3.8

8.W3

0.83

0.32

8iinifkmrt difference in trip occur-
redordyforpersons >6S;thia
group alone may not wmrant
strztifxationby sex

Younger persons tmvel more4.82

4,00

15.4

Age 12-18,18- 2.92
65,>65
<40,>40 2.11

482

215

309

2.56

1.73

2.78

243

341

206

27

276

Youngerpersom travelmoreAge, hou3e-
Wive$Onsy

car avail-
abilityy

L3ifferenceabetween cm never, some-
times, and aSwaysavaiSableare
signifirant;grester csravailsbility
mesrrsmore trips

Whetheraperann isemployednrnot
inssrextremely sigrritlcantvsriable

Never, 1.38
sometimes,
shays

Employment
status

EnapSoyed, 2.85
not em-
ployed

kW, mid- 1.89
die, high

White, non- 2.25
white

1,183

187

398

1.85

1.85

1.98

17.0

0.40

2.88

Trip rates between lrisSSand other
income groups are different

Thinu sn extremely erratic variable;
viauaSexmnination of data did not
susgeat atratificstion by race; dif.
ference.cauaedby fourcateisnries
(46, 59,94, 98)

Notnaigrdficaratvariable

Income

Race

2.28Employment
type

White col- 3.05
hr. blue
cdsr,
other

Single, 2.90
couple,
couple with
children
<5, rouple
with chil-
dren >5

133 2.67

2.80 591 0.62 Farnilytypeisnot significant

(23,4= 0.10)
Household

type
70 2.78

%ocolumnsh this=thn w.redufoUow. me*tcfme* w@bletied&d .nd=tie V-bbkati Gt~wc~umnsi c4., c=sw~bMY+~r, ~m"th_. ~Y'._dth`
*lPmtah cO1umns1,2, md3ptiti tothexamts lnthcco&smow(l.e-l forneva, 2forsometlmm, snd3fm~aW).

bZ-vstuosus cskulsted by comwlm ttw mean tip rstcsforthecotumnsshown.



Table4. f%wisa comparison of tripstttributasby catagory (stage 2).

Characteristicsof Attributes
Z-Valueof PairwiseComparison

1 2 3 4 of Means of Attributes
Attri-

Variable category bute Mean SD No. Mean SD No. Mean SD No. Mean SD No. z,,.’ Z,,3 Z,,4 z~,, Comments

Age <18, ]840,41- N 2.88 2.0s 347 2.77 2.01 698 2.40 1.76 586 1.2s 1.67 195 0.82 3.65 3.50 3.50 Z2,4 = 10.72, Z3,4 = 8.23
65, >65 T 51.8 37.2 347 52.8 38.0 698 47.9 35.2 586 22.0 31.2 195 0.40 1.17 9.94 2.40

Sex Male, female N 2.69 2.05 816 2.37 1.98 1,010 3.37 – – –
T 53.8

Sex sfone is a significant variable,
38.9 816 42.7 36.5 1,010 6.S7 – – – but when plntted together with

employment status its signifi-

Automobile Never, wmetimes N 1.55 1.58 501 2.86 2.05 349 3.23 1.95 483
availabihty always T 32.6 36.1 501 54.8 35.8 349 60.6 38.2 483

Employment Employed, not N 3.05 0.19 1,086 1.71 1.43 740
Status employed T 61.4 39.4 1,086 27.8

fncome
34.7 740

bW, high N 2.78 2.05 217 3.27 2.23 522
T 62.8 39.1 217 67.2 42.3 522

carrce disappaam
10.05 14.80 – 4.23 lmpnrtant variable
8.86 11.80 – 2.23

21.18 – - – Impurtantvariable
19.22 – – –
2.88 Income is not a strong variable; for
1.42 Tit is not a aigrrK1cantstratified

even when considered slone

Note: ‘EIIistabte is read in the same msnmw8$Table 3. N = trip rate and T = total trawl time.
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detailed examination of the data using the 15-ele-
ment trip rate vector (Nqi) shown in Table 1 and
calculated for each category.

For all four versions of the final category defi-
nition, respective triangle matrices of rij, mij, and
bij were found (the Q-type analysis). From the analy-
sis point of view, the interesting parts of these
matrices are those near the hypotenuse, where the
values of ri , mij, and bij are
conditions o~ similarity given~~~~~~~~~~
2-4) for those old categories i, j,..., m, which
will be combined in one new category C (Figure 9).

Figum9. &ncmlidca ofmatingandavdudng
ncwfinalpcmon ostzgoricc.

rij, bi s and mij led
First, there are three ~ai~~&s?%’i&e-z~
have clearly different trip-generation characteris-
tics: people under the age of 18 (mostly students),
employed adults (age 18 to 65), snd not employed
adults and retired people. Second, the conditions
taken as a measure of similarity (ri > 0.900, 0.75 <
m~

1
< 1.25, bi

i
1< 10.1OI) are sat sfied for most

pa rs of old ca egories, which are consolidated into
the final new categories. These criteria are better
met by the etudent snd eaployed sdult categories
than by the not employed snd retired categories. It
means that the exlatence of an obligatory activity
(work, school) makes travelers’ behavior more regu-
lar. Third, unsatisfactory valuea of ri , mij, and
bij observed 1in aoee cases were regular y sccompa-
niad by emall size in the categories.

The correlation analyses and the pairwiae com-
parisons strongly suggest tihatthe final categories
should be based on age (younger than 18, 18 to 65,
older than 65) and ecoploymentetatus (employed, not
employed). Of the remaining variables, either car
availability or sex and inocae could be used. For
practical reasons, to keep the numbers of categories
low and variablea compatible with other models, car
availability was chosen to complete the list of
variables for defining trip-generation categories.
A two-dimensional analysie of variance was done to
provide quantitative support for this choice; the
results indicated that sex and income do not have
much explanatory power when analyzed together with
car availability.

STAGE 3: FURTHSR ANALYSIS OF FINAL TRIP-GENERATION
CATEGORIES

The final eight person categories were baeed on
three variables: age, employment etatua, and car
availability. These ●ight categories are analyzed
in more detail.

Car availability data may be replaced in the
model by car ownership, the latter in some casee
being more readily available. The results of a
version A (using car availability) and those of a
version B (using car ownership) are compared In
Figure 10. .For practical model applications, both
versions require estimation of category representa-

ACE

The shadowed triangles in Figure 9 that were near
hypothenusee of the matrices rij, m~j, and b~j were
examined carefully. As one of the possible measures
of appropriateness for each four versions of the
final category description, the average regression
for pairs of categories in the shadowed sreas wae
calculated.

The results of the regressions [see Supernak et
al. (~) for details] indicated that a 14-category
vereion is only slightly better than the 8-category
version. This conclusion is aleo supported by visual
inspection of the triangular matrices for rij, bij,

and;;lh;~) hetailed examination of the matricee for

F~ro10. Twovmcioncoffinalpeno~ dc4cription and their
mpmcsntationin tfceseltirnorsdcca.

vEnslon I Vfmslcm9

rzwl
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tiona at the zonal level. This can be achieved by
applying the parson-category car-availability and
ownership model, which is presented in detail in
Supernak et al. (~. This model uses land uae and
level-of-service variables and thus takes into con-
sideration the influence of these variables on both
the category representationsand final trip ratea in
the given area.

Figure 10 compares these two versions of the
final trip-generation categories in the available
sample. The weekday trip-generation rates for the
two versions are given in Table 5 for all trips and

Tab4e5.Trip.ganarationrates (tripsperpersan) forei@tperaanatagorias,
wakdaysonly(sw#2),

Home Based
Non-Home

Obligatory biscretionmy Based Total
Wezov
No. A B A B A B A B

1 1.47 1.47
2 1.40 1.27
3 1.77 1.69
4 1.67 1.72
s 0.13 0.15
6 0.34 0.23
7 0.30 0.27
8 0.12 0.12

Wei@ted 1.01
avg of
population

1.13 1.13
0.59 0.70
0.85 0.85
1.05 0.90
0.89 0.93
1.74 1.39
2.10 1.66
0.93 0.93

1.07

0.38 0.38
0.51 0.57
0.55 0.59
0.76 0.68
0.31 0.35
0.47 0.43
0.59 0.43
0.43 0.43

0.50

2.98 2.98
2.50 2.54
3.17 3.23
3.48 3.30
1.33 1.43
2.55 2.05
2.99 2.36
1.48 1.48

2.59

Note: QtwMstivmtinsAmdBwedeftiedh Fwure10.

in Table 6 for vehicular trips only. The data indi-
cate that there ia little difference whether car
availability or car ownership is used. The biggest
difference is in discretionary trips by car-owning
persona. Generally, version A of the model formula-
tion is reconuoanded because it clearly refers to the
person (a real or potential traveler) and hia access
to transportation models and hia individual travel
choices. The person-category car-availability model
(~ is a direct input to the person-category trip-
generation model. Both models require only routinely
available data and are easy in practical application.

A crartperissonof the data in Tables 5 and 6 indi-
cates the importance of walk and other nonvehicular

Table&Tfi~rn~~(tiidoti~~r~~}foroi@t~mn
Z-@-I -kdw *.

Home Based
Non-Home

Obli@ory Oiscretionsry
Cdtegory

Based Totsl

No. A B A B A B A B

0.63 0.63 0.48 0.48 0.15 0.1s 1.26 1.26
; 1.15 0.98 0.28 0.28 0.28 0.27 1.71
3

1.53
1.64 1.57 0.76 0,83 0.49 0.52 2.89 2.91

4 1.61 1.61 0.96 0,82 0.71 0.63 3.28
5

3.09
0.06 0.06 0.40 0.31 0.14 0.11 0.60 0.48

6 0.28 0.16 1.39 1.04 0.38 0.32 2.05
7

1.52
0.24 0.21 2.03 1.50 0.57 0.39 2.84 2.10

8 0.12 0.12 0.60 0.60 0.28 0.28 1.00 1.00

Weighted 0.80 0.7s 0.36 1.91
avg of
peculation

Note: Categ.orleiinversionsA ●.d B ●re defined in Fiswe 10.

trips (e.g., bike,
parsons not Ownina

81

horse, boat). For example, for
cars these trips account for 40

to 60 percent Of all tK@3. For young people this
percentage ia greater. This is important because
there clearly exist substitution possibilities be-
tween walk and bike and vehicular modes, and these
should be accounted for in the models. It also
appears that there is a distinct difference between
employed and not employed persone~ trip ratea~ the
same is true for the car-ownership and car-avail-
ability groups.

For example, non-home-based vehicle trips (during
weekdays) are more numerous far employed persons and
increase with higher automobile availability level,
which is an expected finding.

Also, modal choice ia strongly related to the
person category for both obligatory and discretion-
ary trips. Employed persons are more likely to
drive than not employed persons; public transit is
rarely used by those with car always available, and
the same applies to discretionary trips by persons
with any access to a cart also the percentage of
walk trips increases with decreasing car availabil-
ity and is larger for discretionary trips. Again,
the walk trips
are more ccwronrrn

TRANSFERABILITY

TO examine the
trip-generation
ferent areas of

are of no smell significance;‘they
than the transit trips (~, Figure 3).

OF MODEL WITNIN TNB BALTIMORE AREA

performance of the person-category
model, it was applied to three dif-
the Baltimore region. Area 1 is the

central urban area (628 Persons)r area 2 is the
remainder of the urban area (617 persons), and area
3 is the suburban area (622 persona)

Figure11.BaltirnoraregiondividedintoUrraearaas.

A transferabilityerror analysia
rates, nonwork vehicle trip rates,

(see Figure 11).

of areawide trip
and the autceto-

blle drive portion of modal split for subareas 1 and
3 ia given in Table 7. The data indicate that the
categorization of persons reduces the percentage
error in the average trip rate, and thus in travel-
demend prediction often by more than SO Percent,
which leaves the remaining error rather low. The re-

maining errors for total trip rates (N, NObl, I@isc)
are smeller for the r~nded version A of the
model formulation than for version B. The data also
indicate that person cat_qories provide a satisfac-
tory explanation of automobile driver modal-selit
percentages (it can even be argued that these are
better results than the results obtained with a

sophisticatedmodal-split model).
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T-Mo 7.Corrtpzriweroftretwfwabilitywrmerfor au- 1-3 hr Bzltirrrorzwith end without zztzpory division,

fine 1:Central Urban Zone 3: Suburban

Percentage Percentage Percentage Percentage
Category Errorwith- Errorwith Errorwith- Errorwith
Split out Category cat Ory

Y
out Category Cate ory

No, Value %Veraktn Splita Split split’ split

1 N A
B

~ i@’ A

Ndi,r B
3

:
4 ~onwatk A

B
5 PercentageofdiscretionaryA

nonwalk trips B
6 Percentageof drive-alone A

trips B

+10.5
+23.3 -14.2

-6.6
+12.8 -8.6

+29 .1
+9.3

-11.2
-3.2

+8.1 -3.2

+19.4 +11.9
-16.4

-1.7
+19.4 -15.8

+57 .0
+26.5

-26.4
-14.3

+18.7 -1 s ,4
+31.2 -13.3+s 1.9 +29.9 -18.2 -16.0

+86.8
+7.4

-37.6
-15.3

+16.9 -11.4

‘Calculated as (Nave - Nj)/Nj, where j = area.

(U:i
bCalculated as Za.. N.. . N. INi, wirere ad = percentage of rample in cat.?gory i Ao reside in area J.

The numbers in Table 7 also call for caution in
treating walk trips. The data indicate that there
ia an overprediction of nonwalk trips in the urban
area by about 30 percent, and an underprediction of
nonwalk trips in the suburban area by about 15 per-
cent, even when pereon categories are used; thus
walking is an importantmode.

Overall, this analysis demonstrate the useful-
neaa of categorization of the population into eight
aagmkants. The conclusion from the data in Table 7,
howeverr should not be that trip-generation fore-
casts based on person categories provide a substan-
tial improvement over trip-generation forecaata
baaed on average (one category) trip rates. This
would be a trivial finding. Rether, the conclusion
is that the remaining transferability errors are
low, keeping in mind that sample size in Baltimore
subereaa is only attout600.

Another transferability teat was performed be-
tween Baltimore and the Twin Cities of St. Paul-
Minneapolis (~). Unfortunatelyr this comparison
could be made for travelers only and their vehicular
trips becauae the data records in the Twin Cities
were not complete. The trip rates of eight cate-
gories appeared to be similar for those two cities,
and the transferability errors were low. ffoweverr
because the analysis unit traveler is not recont-
mended for trip-generation analyses, this part of
the research is not presented in this paper. More
details about transferabilityof the person-category
trip-generationmodel are given in Supernak (~).

CONPARIBON WITB ROUS~LD CATEGORY NODEL AND
CONCLUDING ~

For comparison purposes, a household-category model
was developed in the aerzeway as the person-category
model (~). Because there were only 609 households
(but 1,825 individuals) in the Baltimore data (week-
days), the analyses lacked the richneaa of the per-
son-categorymodel.

Baaed on previous research (&,~,~), three vari-
ables were chosen for the analyses: household size
(one, two, three, four, five or core), car ownership
(zero, one, two or more), and number of employed
household merzbers(one, two, three or more). Unfor-
tunately, other variablea such as income and race
could not be included because the chosen variables
already yielded 51 categories, and the sample size
was only 609.

Some results of the pairwise comparison of trip

rates are given in Table B. One unexpected result
is noticed. The household-size variable is the only
one that gives expected, consistent reaulta. Rouae-
hold size appears to overshadow all other differ-
ences; this of course is a trivial finding (i.e.,
more people, therefore more trips). This result is
substantial becauae it indicstea the inefficiency
and simplicity of the household-categorymodel. The
person-category model totally avoida these types of
trivialities and the difficulty of predicting house-
hold size [for substantial errors in predicting
household size, see Talvitie et al. (16)].—

Variable
Examined Stratumi Stratumj Zij

Carownerahip o 1 2.24
1 2+ 4.24

Housrhold workers o
1

1
2

1.48
1.76

2 3+ 4.17
Household size 1 4.80

; 2.70
: 4 3.39
4 5+ 3.89

Note:ZO,o,=2.S7,

The two models discussed next are two-dimensional
combination of the three variables. The first
mcxiel,model A, has 15 categories of household size
(one, two, three, four, five or more) and car owner-
ship (zeror one, two or more). Model B has nine
categories of workera (zero, one, two or more) snd
car ownership (zero, one, two or more). Trip rates
for these models are shown in Figure 12. Model A
shows consistency; that is, trip rstes increase with
car ownership and family size. Model B does not
show consistency that is, the trip rate for one-car
families ie lese than the zero-car households when
there are zero or two or more workers in the house-
hold. This outcotrtais difficult to ●xplain and
suggests that model A is the better model because
introduction of one more variable (e.g., household
size) would increase the number of categories to
make the model impractical. It may be recalled that
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MODEL A

IIOUSEHOLOS12[

MOOf L B
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employment etatus wae the key variable in the psr -
son-category model.

Examination of the performance of model A wae
difficult. Becauee of reaeone of data incompatibil-
ity, a transferability check with Minneapolis-St.
Paul data was impoeeible. The ecarcity of data

rquired that the Baltimore region be divided only
into two areae, inetead of the three ueed with the
pereon-category model, to examine the transferabil-
ity propertied of the model. The remaining trans-
ferability error between the two zonee wae approxi-
mately 15 percent, or eliqhtly more than for the
pereon-category model (6 to 12 percent for the rec-
onmsendedvereion). Nevertheleee, the findinge are
not comparable becauee the Baltimore eubareae were
defined differently.

Principally, then, the pereon-category model ie
favored for the following reasons. Firet, it clae-
eifiee people in a manner that ie logical and elimi-
nates the neceeeity of predicting houeehold forme-
tion and, especially, houeehold eize with their
attendant difficulties. The research also indicated
that houeehold type was an unhportant variable in
explaining pereon trip generation. Second, data are
ueed much more efficiently in the pereon-category
nwxielthan in houeehold-categorymodel, or, alterna-
tively, less data are needed for developing the
pereon-category model. Third, fewer categories maY
be used in the pereon-category model. Becauee houee-
hold size ie the key variable in houeehold-category
model, it precludes the introduction of real behav-
ioral variablee (euch ae age, esnploymentetatue, and
othere) if the number of categories ie to be kept
within practical limite. This rendere the houee-
hold-cateqoryrsodeltrivial.

Finally, the pereon-category model haa a better
behavioral background bscauee the analysis unit ie
identical with the traveling unit. This makee the
pereon-category trip-generation model compatible
with other modele in the entire travel-dessendmodel
eyetern. The pereon-category car-availability melt
which ie fully compatible with the person trip-gen-
eration mcdel, makes references to the land use and
level-of-eervice variablee that where found to be
significant in previous aggregate modele, but were
not present in ssoethoueehold-category trip-genera-
tion modele. Therefore, the person-category tKip-
generation model reported in this paper ie con-
sidered to be ueeful and practical and superior to a
houeehold-categorymodel.
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Trip Generation by Cross-Classification:

An Alternative Methodology

PETER R. STOPHER AND KATHIE G. McDONALD

An alternative methodology for calibrating cross-daaaifiaetion medals, namely
multiple daaaification enelysis (MCA), it deaaribad. This tadrnique, which hes
bean aveilable in the secial saienaes for acme time, does not appasr to have
bean used in trwwpc+tation planning before, although it appears to be able to
everrome moat of the disadventagatnormally eaaoaietadwith atsndard cross-
dassifiation ralibretion tedwsiquas. The MCA prooadure is deearibad briefly,
end its merits-in terms of stetiatiod aaaaesmant,ebility to permit comparisons
among alternative models, end leek of susaaptibllity to smell asmples in in-
dividual aalls-ere disaueaadin detail. In addition, the method ie IMS~ on
endysis of variersoa(ANOVA), whiah provides e atmeturad proaadure for
drooairrgemong alternative irrde~ent variablesend eltarrtativegroupings of
the values of eaoh independent verieble. Thaaeprooaduravwe oontmsted with
standard proaadurasfor cross-dassifiation that aatimate sell valuee by obtain-
ing the averagevalue of the dapandant variabla(a.g., a tip rata) for those tam.
plas that fall in the all and ara unable to use any information from any othar
odl. Tha proaas of salarting indapandent variablasand sderting groupings of
the rlroaanvariables by ANOVA is illustrated with a mea study. In this study
the wey in whiah this prooasaworka, and the dagrw to whidr thara is stetistiad
information provided to ~ida the analyst’s judgment, is shown. In the caea
study tha aorrfirmationof intuitiva sdeatiom of variables is noted, andalsoa
mere surpri$irtgresult is produmd that shows that thabesthousehold grouping
is one that oombtnee two- and thres-parsrwrhouseholds. A aaoend csee study
illustrates the use of MCAto aaloulatatripretas.A aornpsriaonoftheconven-
tionalproredura of cdl-by-all everaging,a MCA design that doas not arreunt
for intaraations among the indepandant variables, and a MCA design thet rer-
raotafor intarartions is given. It is ahown that the MCAallows trip rates to be
oomputad for soma cells that are ampty of data, and that MCA ramovassome
pesaibly spurious rates that erisa in tha mnventiorrai mathod from gmall temple
problems in soma oalb. It is concluded tfrat MCA provides a strong meth-
odology for arosa-dasaificationmodaling and that the prooadure is effadva in
surmounting most of the drawfmrksof eorrventionalaatimation of suds medals.

In the 1950s and 1960s most of the transportation
planning studies developed trip-generation equations
that used linear regression, particularly for pereon
trip-production models. Linear regression wae eo
strongly favored that it was the central reethcdin
the FNWA guide to. trip-generation analysie (~).
Initially, most of the trip-production models were
formulated to provide an estimate of zonal trips as
a function of zonal variables that descrbe house-
holds. These models were increasingly the subject
of criticiem, particularly because of the lees of
variance from the extremely aggregate nature Of
these models (2,3) . As a result, household models
of tr1P produc~i~n were developed, in which the de-
pendent variable be@MVS average daily tries Per
householdr possibly by purpose, as a futtction of at-
tributea of the household. These models remainedr
however, predominantly linear-regressionmodels.

In a few instances an alternative method of

modeling trip generation appared. This method was
known in the United States as cross-classification
and in the United Kingdom as category analysis
(1,4). Thia method went through the same develop---
-meritaz the linear-regressionmodels, with the ear-
liezt procedures being zonal trip estimators and
subsequent models being based on household rates.
For the most part, however, the household-based
crose-classification models were still aggregate in
that the classes were defined by average zonal val-
ues for household characteristics, and the trip
ratez were applied simply to the total number of
households in the zone. Thus a cross-classification
model beared on household size and car ownership
might have the first variable classified into
ranges, such as less than 1.5 persons per household,
1.5 to 2.5 persons per household, 2.5 to 3.5 pereons
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per household, and more than 3.5 permns per houee-
hold; car ownership was defined similarly in
ranges. Then the average zonal values of each vari-
able would be determined and a look-up table would
be used to eelect one cell rate for the zone based
on these average values.

Although the cross-classification method was
widely used in Europe, it was used in relatively few
instances In North America. Howeverr with the grow-
ing interest in and use of disaggregate modal-choice
models, there has been a resurgence of interest in
the cross-classification model, formulated now in a
substantially more disaggregate form. Currently,
the saodeluses categorized variables, such as house-
hold sizer vehicle ownership, and so on, as integer
values to describe individual households. The rates
in the cells of the table are then average rates for
households of that type. The correct application of
the model is to estimate the number of households in
each category within a zone and to multiply the trip
rates by those numbers of households. In general,
this procedure leads to greater disaggregation than
any other nethod of modeling trip generation, and
has the potential to provide more policy responsive-
ness than alternative methods.

It is important to note that the standard method
for computing cell rates is to group households in
the calibration data to the individual cell group-
ings and total, cell by cellr the observed trips by
purpose groups. The rate is then the total trips in
a cell by purpose divided by the number of house-
holds in the cell. In mathematical fom it is as
follows:

& =T~n/Hmn (1)

where

tP *
m

Tpm =

‘mn =

trip rate for the pth purpose for households

of type mn,
observed tripe made by households of type

mttfor purpose p, and
observed number of households of type mn.

The advantages that can be claimed for the disag-
gregate cross-classificationmethods are as follows:

1. Cross-classification methods are independent
of the zone system of a region,

2. They do not require prior assumption about
the shape of the relationships (which do not even
need to be monotonic, let alone linear)?

3. Relationships can differ in form from class
to class of any one variable (e.g., the effect of
household size changes for zero car-ownin9 house-
holds can be different from that of one car~ing
houeeholdvs),end

4. The cross-classification model does not per-
mit extrapolation beyond its calibration classesn
although the highest or lowest class of a variable
may be open-ended.

The models also have several disadvantages, which
are ~n to all traditional cross-classification
methodss
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1. There ia no statistical goodnessi-of-fitmea-
aure for the model, ao that closeness to the cali-
bration data cannot be ascertained;

2. Cell values vary in reliability becauae of
different numbers of houaeholda being available in
each cell for calibration!

3. For the same reason as the preceding problem,
the leaat-reliable cells are likely to be those at
the extremes of the matrix, which nay also be the
most critical cells for forecasting;

4. There is no ●ffeotive way to choose among
variablea for classification or to choose beat
groupings of a given variable, except to use an ex-
tensive trial-and-error procedure not usually con-
sidered feaaible in practical atudlea) and

5. The procedure auppresaes information on vari-
ancea within a cell (~).

AII alternative computational method is put for-
ward and illustrated in the balance of this paper.
This method--multiple classification analysis
(NCA)-is well known to quantitative social scien-
tists, but appears not to have been used by trans-
portation analysts. As will be shown, MCA overcomes
most of the disadvantages of cross-classification
models without ccmpromiaing their advantages.

MULTIPLE CLASSIFICATION ANALYSIS

14CA ia based on a simple extension of analysis of
variance (ANOVA), and AWOVA (g) alao provides a sta-
tistically powerful procedure for selecting the var-
iables and their categories for the cross-classifi-
cation models. 14CA is a rather simple develo~nt
out of ANOVA, with application primarily for two-way
and greater ANOVA problems.

Although a number of alternative methods have
been suggested for analyzing cross-classification
models and for determining cell values (~), there
ramaina little change in the practice of estimating
cross-classification cell values. Generalized lin-
ear models and regressions with duzmy variables have
been suggested aa alternative methods, but they have
not found wide acceptance in practice. The method
suggested here is rnre readily accessible than meet
others because it is contained in some statistical
packagea that are available to transportation plan-
nera. Nevertheless, like many of the other methods
that have been suggested recently, there la no
treatment of this method in the statistical texts
meet frequently used by engineers and by Couraea
taken by transportation planners. Indeed, no refer-
ence to the Bsthod could be found in any of the ata-
tiatical texts most likely to be found on the book-
shelf of a transportation planner or an en9ineer.
Therefore, a brief description of the method ia pro-
vided here.

Consider a two-way A!SIVAdesign in which the de-
pendent variable is a continuous variable, euch aa a
trip rate, and the two independent variablea are two
integer variablea that describe houeeholda, such aa
household size and vehicle ownership. First, a
grand mean can be estimated for the dewndent vari-
able, where this grand mean Is estimated over the
entire sample of houaeholda. Second, group means
can be estimated for each group of each independent
variable, without regard for the other; in other
words, meana are computed from the row and column
auma of the cross-claaeification matrix. Each of

the group meana can be expressed aa a deviation from
the grand mean. Observing the signs of the devia-
tion, a cell value can now be eetimated by adding
the row and column deviations of the cell to the
grand mean.

An ●xample may help to Clarify this. Suppose the
dependent variable ia home-based work trips, and the
independent variablea are cars owned and household
size. The grand mean is 1.49 trips per household.
Deviations for cars owned are -0.97 for zero cara,
-0.26 for one car, and +0.88 for t- or more cars.
Deviations for household size are -1.06 for one per-
son, -0.33 for two persons, +0.49 for three persona,
+0.55 for four persona, and +0.70 for five or more
persona. For a household with one car and three
~1~4; the trip rate would be estimated as 1.72

- 0.26 + 0.49). That ia, it la the grand
mean plus the deviation for one car plus the devia-
tion for three persona. Note that, in contraat to
standard transportation cross-claaaificationmodels,
the deviations are computed not only for households
in the cell three persons with one car, but rather
the car deviation are computed over all household
sizes, and the bouaehold deviations are computed
over all car ownerships.

If interactions are present, then theaa devia-
tions need to be adjuated to account for the inter-
active effects. This ia done by taking a weighted
mean for each of the group meana of one independent
variable over the groupings of the other independent
variables, rather than a simple mean, which aasumes
that variation is random over the data in a group.
Theee weighted means will decreaae the sizes of tbe
adjustments to the grand mean when Interaction are
present. The cell meana of a multiway classifica-
tion are still based on means estimated from all the
available data, rather than being baaed on only
those data pointa that fall in the multiway cell.
Furthermore, there ia no over-compensation resulting
fran a false assumption of total lack of correlation
between the independentvariablea.

Because it ia baaed on ANOVA, MCA also haa sta-

tistical gmdness-of-fit meaaures aaaociated with
it. Primarily, these consist of an F statistic to
aaaeas the entire cross-classification scheme, an
eta-square atatiatic (~) for aaaessing the contribu-
tion of each classification variable, and an
R-square for the entire cross-classification model.
These measurea provide a means to compare among al-
ternative cross-classificationschemes and to aaaeas
the fit to the calibration data.

Without pursuing come further advantagea offered
by the statistical context within which MCA ia ap-
plied, It is apparent that NCA overcomes effectively
several of the disadvantages cited for other types
of cross-classification models. First, there are
statistical goodneaa-of-fit meaaures available for
the 14CAnodele that permit selection from among al-
ternative claaaification schemes and that permit
overall aaaesanent of fit to the calibration data.
Second, the cell values are no longer baaed only on
the size of the data sample within a given cell;
rather the call values are based on a grand mean
derived from the entire data act, and two or -re
olasa meana are derived from all data in each clasa
of the classification variablea, where the inters--
tion of those claaaea defines the cell of intereat.
tiis aleo tends to reduce the uncertainty of fore-
casting outlying households. For example, if a
critical cell ia the five or more person household
with two or more cars available, for which the orig-
inal data might have provided less than 2 percent of
the ample, WA will provide a cell rate that ia
baaed on the grand mean (from all the data) adjusted
by.deviationa for all five or more person households
and all two or more car .households~where the first
of these miqht comeriae 10”Percent or ‘Ke ‘f ‘he
data and the second more than 20 ~rcent. Clearly,

there is far greater reliability in this cell rate
than would be obtained from traditionalmethods.
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SELECTING CLASSIFICATIONVARIABLES AND CIJissES

In current computer Software packages that compute an
MCA Q), the MCA is USUally provided after perform-
ing ANWA. In turn the use of ANOVA provides the
appropriate method for selecting variables and
claesee within variables. After developing a series
of hypotheses about possible variablea and classes
of variablee that might be used for the cross-
clasaification scheme, a series of ANOVAs can be
performed, from which several pieces of information
are obtained that indicate better or worse classifi-
cation echemea.

Several piecee of information are provided by a
standard ANOVA that enable this evaluation to be
made. First, there is an F statistic available for
each main effect and for the interaction effects. A
highly significant F statistic for the main effects
indicatee that the variable is strongly associated
with the trip-rate variations in the data. A highly
significant F etatietic for the interaction effects
suggests that the independent variables may be too
highly intercorrelated to be useful, and it is
likely to be necessary to choose among alternative
independent variablee and reduce as much as possible
the interaction effects. There ie also an overall F
statistic for the entire crose-classification scheme
that indicates the extent of covariation between the
trip rates and the eet of classified independent
variables.

By trial-and-error procedures, or neeted hypothe-
ses, it is also poesible to compare alternative in-
dependent variablee and to compare alternative clae-
sificatione. Of course, as the number of classes is
changed, there is a consequent change in the number
of degrees of freedom of the ANOVA problem and a
consequent change in the expected F etatistic. Ob-
viously, this must be taken into account in aesess-
ing alternative schemee, but it then becomes possi-
ble to determine the amunt of information loss
occurring by aggregating clasees, or the amount of
added informationobtained by disaggregatingclassea.

Thue ANOVA provides a structured and statisti-
cally sound procedure for eelecting both the inde-
pendent variablee and the beet groupings of those
variablee from those available. There ie no claim
of optimality in this, and clearly there are coun-
tervailing tendencies from aggregating and disaggre-
gating variables, which demand the application of
judgment to the results rather than blind acceptance
of the statistical indicstore. Aleo, the method is
only as good as the initial and subsequent hypothe-
eee of model structure. lhis may be interpreted as
an advsntage to the method over linear regreaeion.
The latter method permits too readily the abrogation
of judgment to stepwise or similar regression pro-
cedures that may build mdels that appear to perform
well, baeed on statistical measuree and the R-square
values, but which make no ‘conceptualsense, whereas
the application of ANOVA is far more demanding of
the structuring of conceptually sound hypotheses,
particularly becauee of its rather low efficiency in
selecting gcc.dstructures from blind application.

Finally, with each ANOVA it is poesible to obtain
the MCA reeulte. Theee can also be revealing be-
cause they provide the additional statistics of an
R-square and the eta-squsre for each variable, and
they indicate the eize of the deviations from the
grand mean provided by each claee of each indepen-
dent variable. These data items msy illuminate,
clsrify, or support the resulta from the ANOVA and
should generally lesd to a more rapid closure on a
good structure for tbe model.

In eunenary,the use of the ANOVA that accompanied
the @lCA procedure resolves the remsining disadvan-
tage of traditional cross-claseificstion methods,

namely the lack of a eound method for choosing a~ng

alternative variables and alternative claeses within
a variable.

There is, bowever, one disadvantage incurred as a
result of the use of MCA. MCA averages the effect
of the relationships of one variable over classee of
the other variables. Becauee the deviations are
based on row and column means, there is no longer
the capability for the shape of the relationship to
differ from clase to clase Of each variable ae ex-
ists in traditional cross-classification methods.
There does remain, however, no limitation on the av-
erage shape of the relationship for each independent
variable, which etill is not required even to be
monotonic, let alone linear. This appeare to be a
relatively small price to pay for the advantages ob-
tained, particularly when taking into account that
many of the variations in functional form between
claeses in traditional models may derive from spuri-
ous emall-sample effects.

USE OF ANOVA TO SELFK!TVARIABLES ANO CIABSES

A case study application of this method used data on
2,446 households from, a metropolitan area in the
Midwest. For initial variable eelection, several
candidates were identified and classifications were
proposed for each of these variables. As a pre-
cureor to the multiway anslyses, one-way ANOVAe were
performed between trip rates and each candidate var-
iable.

There are two bases for selecting variablee in
travel-forecasting models that hold true for any
model. This firet ie conceptual or behavioral jus-
tification that the variable hae a causal effect on
the phenomenon being modeled, and the eecond is sta-
tistical justification that the variable chows a
significant and measurable empirical association
with the phenomenon being modeled.

Given 30 years of travel forecasting at the re-
gional level, considerable experience and informa-
tion exists now on variables that affect trip pro-
duction, so that exteneive concept formulation is
not neceaeary. Based on past experience, the fol-
lowing variables were considered:

1.
2.
3.
4.
5.
6.
7.
8.

Household sise (pereoneper household),
Automobile ownership or availability,
Housing type,
Iioueeholdlife cycle or etructure,
Number of workers,
Number of licensed drivere,
Income, end
Area type.

Each of these variablee is described briefly, to-
gether with ite espected effects on trip production.

Household size is defined ae the number of per-
sons in the household without regard to age. Rouse-

hold size ia expected to csuse increases in tripmak-
ing for all trip purposee, although not in a uniform
manner. Trips per person is expected and has been
shown to be relatively etable; hence the more people
in the household, the more trips are likely to be
made by the household.

Automobile ownership or availability ie measured
as the number of automobiles, vans, or lightweight
trucks usable for personal travel by household mem-
bers, either owmed by the household or available to
members of the household. A well-documented phenom-
enon ie that acquisition of a vehicle increasee sub-
stantially the number of tripe and motorized trips
made by a housebold. Thie arises both from substi-
tution of vehicular trips for wslk trips and from
satisfaction of previously unsatisfied demand for
travel. The tripmaking rate of increase is nonlin-
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ear, with a decreasing rate of increaae with
creaahg autowbilea. Vehicle availability

in-
ia

likely to be the more appropriate meaaure than own-
ership because it ie a more accurate meaeure of the
potential to satisfy demand for vehicular trips.

Housing type is usually defined as single-family
or multifamily dwellings, and hotel and motel units
when tourists and nonresidents are to be included.
It has a weak conceptual link, deriving principally
from density consideration and some aspects of ve-
hicle availability associated with vehicle storage
apece.

Recent research (10) suggests that a household-
structure variable correlates more strongly with
trip rates than almost any other variable. The
categories of this variable are described elsewhere
(see paper by McDonald and Stopher elsewhere in this
Record), as are the arguments for its conceptual ef-
fect on tri~king ~), and they are not described
in this paper.

Number of workers may be defined as all workers,
or as full-time workers only, where worker is re-
stricted to work outside the hems. Clearly, the
number of workers will be in direct proportion to
and is causative of the number of household work
trips. Aleo, as more members of a housebold of a
given size work, the number of trips for all other
purposes is likely to be fewer, except for non-home-
based trips, because nore activities are likely to
be undertaken on the way to or frca work.

To the extent that a household has more licensed
drivers than vehicles, more licensed drivers than
workers, and more vehicles than workers, the number
of licensed drivers would be expected to have a pos-
itive relationship to all nonwork trip purposes.

Income is usually defined as incme groups of

fairly broad income ranges. As income increases
(all other things being equal), it is expected that
tri~king would increase because purchasing trips
requires available monetary budgets and, as these
increaae, ao doea the potential to satisfy pre-
viously unsatisfied demand.

Area type has been defined in a variety of waya
and is designed to differentiate between areas with
markedly different intensities of development and
activity. Therefore, either explicitly or implic-
itly, It is related to employment and residential
densities. Where densities are higher, xotorizsd
trips ere likely to be fewer because opportunities
for satisfying activities are closer and both con-
gestion and perking price may be significantly
higher, whereaa parking availability is lower. In
addition, various services and home deliveries may
be more available, thus reducing the need for some
trips. The effect of area type is likely to be
greatest on discretionary travel (home-based social-
recreational, hone-based other) and least on mnda-
tory travel (hone-baaedwork or school).

The purpose of the one-way ANOVAs was both to de-
termine which variables appeared to have the stron-
gest relationships to tripmaking by purpose and to
determine the best grouping of data to use. The re-
sults of these procedures were as follows.

1. Number of care available waa consistently one
of the most significant variablea for all trip pur-
poses. It always performed better than number of
cars owned.

2. Household size was also consistently a sig-
nificant variable for all trip purposes.

3. Area type, which was defined as tw groups—
high density of either residences or employment, and
low density of both residences and employnnt-~as
ranked third in significance across most trip pur-
poses.

4. ilousingtype, denoted as single family and
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multifaxlily, ranked about fourth in significance
across most trip purposes.

5. Household structure, which was defined in
terms of the relationships enong household members,
presence or absence of children, and some aspects of

both household size and ages of members, was found
to be inferior to household size alone and to numbar

of cars available.
6. Other variables examined included number of

workers, number of licensed drivers, and incoaie.
Each of these variables was significant for at least
one purpose in the most dieaggregated form of the
variables, but they did not perform satisfactorily
across a majority of the purposes.

In experiments on groupings, the results were as
followe.

1. Vehicle ownership or availability could be
specified as zero, one, and two or more without sig-
nificant loss of Power of the variable.

2. The optimal grouping of household size ap-
peared to be one, two and three, four, and five or
more. Exeaination of some other recent models (n)
revealed a smell difference in trigmaking rates for
most purposes between two- and three-person house-
holds, which tended to confirm this grouping.

3. Income is best grouped into low (less then
$15,000). medium ($1S,000 to S34,999), and high
(more than $35,000) categories.

4. Household structure abould be grouped into
five categories: single-person households, one-
parent households. adult households with children
and more than one adult, adult households without
children and more than one adult, and households of
unrelated individuals.

5. Number of workers can be grouped so as to ag-
gregate households of four or more workers into one
class, yielding categories of zero, one, two, three,
and four or more.

6. Number of licensed drivers can also be aggre-
gated to a aet comprising zero, one, two, three, and
four or more.

These results should not be considered indicative
of general rules of classification. They are for
the case study data and are provided here to illus-
trate the way in which ANOVA can be used for this
type of anelysia. Details of the runs are not pro-
vided here, because the results were derived from
use of six trip purposes and involved running a
rather large number of AIUWAs. Furthermore, it is
not the purpose of this paper to produce specific
recommendations on the structure of trip-generation
models or to develop conclusions about the inclusion
of one or another variable in the model. This is
left to other papers that may use the approach de-
scribed here to xeke more detailed studies of the
perforaence of alternative variables. Despite the
number required to be run, neither setup time to run
them nor central processing unit (cPu) tine on the
computer to ~lete them were large.

The results of some of the mUltiWaY ANOVAe used
to select the cross-claeeification scheme are given
in Tables 1-4. The data in Table 1 give five pur-
poses by using car ownershiP, housing tYPeO end
household size, whereas the data in Table 2 are the
seas except for the use of car availability in place
of ownership. For all purposes except shopping, the
F statistics are higher, although not significantly
so, in most cases. The R--area for the MA tables
and the eta-squares for the vehicle variable follow
the sane pettern. There are also two fewer signifi-
cant interaction teras for car availability than for
car ownership. This led to the selection of car
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availability In preference to car ~er~hi~, thus
confirming the results from the one-way ANOVAa.

The data in Table 3 give the replacement of the
partly insignificant housing type by total ●raploy-
raent. Only the home-based work model la clearly
better in this specification, the tiels for all
other purposes being virtually indistinguishable
froafthe SkOdOlwith housing type. The data in Table
4 give the uae of income in place of housing type.

Confirming the ~ results (~, income to ap-
parently able to add little once vehicle availtiil-
ity is included. In all purpoees, none Of the sta-
tistical meamurea for the ~ ia aa good for this
specification aa for the on. that uses housing type.

An additional interesting result ia given in
Table 5. In the ~s presented in Tablea 1-4,
houeehold size was left disaggregate for t- and
three-pereon households. In Table 5 the best ●peci-

Teblel. ANOVAraasltaformodelsticturo 1.

Purpose

Statistic HBWORK HBSHOP HBSCXR HBOTHR NHB

F 28.0 6.0
df

5.7 33.8 10.5

Within group 2,240 2,240 2,240 2,240 2,240
Between groups 29 29 29 29 29

Si nitlcant
R!

–~ –~ –~ –* –~
0.255 0.065 0.059 0.291 0.103

Eta-square
Vehicles owned o.34b o.14b o.09b O.lob

0.06b
0.16b

Housing type o.05b 0.01 0.02
o.25b

o.05b
Household size 0.16b o.2ob O,Sob o.22b

Signifkant interactions Vehicles owned and Ncme None Vehicles owned and Vehicles owned and
household size houaahold size; household sire

housing type and
hooaeholdsize

Note: Independent vwhblm Uevehicles owed, ho~gtyp, andhouholdtize. F. F.ccore, df=degseaa of freadom, HBWOItK=hom+
buad work, HBSHOP= home. baaadahoppjns, HB~R. home.bWd wcM.remeation, HBOTHR= bonw.baasd otber, snd NHB. non-home.
baaed trips.

● ✎
S@ fic4ntat 99 percent or beyond. bSlanUi*nt st 9S percent or bayond

Table2 ANOVAreaultaforcaravaildsility.

h-pose

Statistic HBWORK HBSHOP HBSOCR HBOTHR NHB

F 29.5 5.9 6.0 35.1 11.4
df

Within group 2,292 2,292 2,292 2,292 2,292
Betwarngroups 29 29 29 29 29

S#ificant –~ –~ –~ –~ –a
0.261 0.062 0.060 0.295 0.113

Eta-square
Vehicles avai3able 0.36b o.12b O.1o1’ O.llb o.2ob
Housing type O.osb O.osb 0.00 0.01 0.04
Household sire 0.24b 0.16b o.191’ O.Sob o.21b

Signifhxnt interactions None None Vehicleaavaildble and Houaingtyprand None
houashold SiZO household size

Noto: lndeWtiontvfiblamvohM#.mUblo, ho~typa,andhmuaholddae. Statiatkcsand p~aradeffnsd lnT1blal.

‘Slanincm●t99pbramlt or bayond. b$bifk.Mat95P@SSaIStorbayond.

TdleS. ANOVAnaultswithsrn@oyrnarrt

Purpoaa

Statistic HBWORK HBSHOP HBSOCR HBOTHR NHB

F 37.0 4.3 5.2 25.9 9.s
df

Within group 2,402 2,402 2,402 2,402 2,402
Between groups 42 42 42 42 42

:F”nt
–~ –~ –~ -a –~
0.376 0.058 0.061 0.295 0,126

Eta-square
Vehiclesavsilable o.22b O.lsb O.llb ::3b O.16b
Workers o.4ob 0.04 0.02 o.14b
Householdaiae 0.16b 0.171’ 0.2($’ o.49b o.19b

Signifkactt interactions Workecaand vehick?s None Householdsiseand Workersand household Workeaaandhouaahold
available:workers workers: household sire sise
and houaeholdaize siseand’vehicles

available

Note: hdcPadmttibl-mvtiklmstiblc,wrkm,mdhowtiMti. StatmbsndpV=uodofiedbTobb 1.

●Sk@ffcant●t99Parcant or beyond. bB@kflunt at 9S parcamtocbayomi.
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Tablo4. ANOVAre$ultswith ittoosme.

Purpose

Statistic HBWORK HBSHOP HBSOCR HBOTHR NHB

F 23.7 4.1 3.2
df

22.8 10.5

‘Within gxoup 2,1S3 2,153 2,153 2,153
Between groups 41

2,153
41 41 41 41

S“ “ficsnt
R~

-~ -a –~ –~ –~
0.298 0.053 0.046

Eta-square
0,284 0.119

Vehicles available o.21b o,13b 0.08b 0.08b
Inwme o.31b

o.13b
0.00 0.02 o.07b

o.19b
o.18b

Household sire 0.15’J 0.08b o.491’ o.17b
Ngrrificantinteractions None None None income and household Income and household

size size; vehicles availsble
and household size

Note: hdependsnt tibl~me veMclStw~bl., hcome, Mdhowhold~ze. Statktim andpu~om Uedefiedln Table 1.

‘ S@Mssnt tt 99 pwcsnt or bsyond. bS@fICSnt M 95 percent or beyond.

Table5.ANOVA resultswithaggrzgztrdhouseholdsize.

Statistic HBWORK HBSHOP HBSOCR HBOTHR NHB

F 34.2 7.2
df

Witbin gxoup 2,298 2,298
Between groups 23 23

:icant –~ -a
0.244 0.061

Eta-square
Vehicles avsilsble o.37b o.121’
Housing type O.osb O.osb
Household sire o.19b 0.15’J

Signifhnt interactions Vehicles avsilsble and None
household sise

7.3 41.2 13.9

2,298 2,298 2,298
23 23
–~ :: –a
0.058 0.284 0.112

O.llb o.12b O.zob
0.00 0.01 0.04
o.19b o.49b o.21b
Vehicles avsilable and None None

household sire

Notss: $ndepsndem Vulsblss srs vehlsb wsilsble, houslns type, snd household she. Ststistiwsnd purposessre defined in Table 1.

●SIudflcaatst99permnt or b. yond. b~t at 9S percent or beyond.

fication frcsathe previous structures is.used, but
with the two- and three-person households aggregated
into a single group. Because there is a decrease in
the number of degrees of freedom, it is expected
that the F score will increase. However, the in-
crease is larger than would be expected just from
this effect. Housing type still appears to be an
ineffective variable, but the use of the more aggre-
gated household size appears to be indicated quite
clearly.

DERIVATION OF CROSS-CLASSIFICATIONTRIP-
~TION ~DSLB

A useful exaaple of the MCA procedure is provided by
the use of some data from a trip-generationeodeling
process used in San Juan, Puer~ Rico ~2). Figure
1 provides a set of trip rates coaputed in the sten-
dard procedure by using individual cell means. Note
that cells 9 and 21 do not have trip rates because
the available data lacked observations in these two
cells. Figure 2 shows the numbers of households in
each cell, and it can be seen that these range frena
a low of 4 to a high of 133. This range indicates
clearly a significant range of reliability in the
estimates of rates. If conventional wisdom is
adoetsd, in that ● ●ean and variance can be esti-
mated with some ●lement of reliability from a ●ini-
mun of 50 observations, 14 of the 24 possible cells
are ●stimated with too few data points.

AZ the next step in the procedure, a menual esti-
mation of a noninteractlve14CAwas undertaken. This
was done at the time because of the lack of availa-

bility of the computer software to undertake a full
MCA, but it is useful because it traces out the pro-
cedure for MCA. First, a grand mean was computed
for the entire set of home-based work trips~ it waa
found to be 1.49. Then deviations were computed for
each of the three variables. For the four house-
hold-size groups, the group means were found to be
0.33,’1.26, 1.85, and 1.848 for the two area types,
they were 1.41 and 1.60$ and for the three vehicle-
ownerahip groups, they were 0.65, 1.51, and 2.36;
The deviations are conputed in each caae by express-
ing the group means as values that deviate from the
grand mean. To compute the cell value for area typz
1, vehicle ownership of 1, and household size of
four pereons, the value is 1.98 (= 1.49 + 0.11 +
0.02 + 0.36). The complete set of cell values ia
shown in Figure 3. Note that there are values now
in both cell 9 and cell 21.

Several points are worth noting from a crwnperison
of Figures 1 and 3. First is the one already men-
tioned of the existence of rates for the empty cells
of Figure 1 that appear in Fiqure 3. Second, some
counterintuitive progressions in Figure 1 are re-
aoved or decreaaed substantially in Figure 3. These

progressions appear to have been caused by problems
frcm the zsaellsample size. From examinirw the data
in Figure 2, it can be seen that the grand mean ie
estimated froa 1,178 observations, and that the

least-reliable deviation (for one-person households)
is based on 81 observatibs. All other deviation
are baaed on snore than 120 observations. Althou9h

there are etill some large variations in the e.smple
size used to ccmpute the deviations, the range of 81
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F@ra 1.Conwntiond tripmtw: honwbawdwork.
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Density 2 . .

—.

2 1 ‘o.~ ‘1.29 ~5$ ~69

Urban High

Density 2+ 4- 42.19?.70?.59

Fiwm 2 Numb4r of households by cell of orow-olawification.
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class Persons/DU

Vehicle4 I I I i
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1

Rural Low
Density

2
Urban High

Density

‘w

‘OR7=F711
‘1 ‘2,y,’,-1‘9,,-120,3

-1
2+ 4’ ~s’

I 1
‘“ 24”—

to 609 obaervatione represents a much lesa-aiqnifi-
cant variation in reli&bility than in the data used
for Figure 1.

Figure 4 presents the reaulte from a full-inter-
action MCA for the aama data. There are clearly
ama aajor interaction in this apacificatlon of the
model, aa shown by the differences in the ratea be-
tween ?igurea 3 and 4. The anomaloua decreaee in
rate between four and five or more paraon households
remaina and ia of a similar order of rnagnituder
which auggeata that this result ia etructurad in the
data. For the remaining differences, some ratee are
higher than before, whereas others are lower. Ar’is
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Fi~m3. NonintemctivO~tiprati: horru-bwedwark.

cross
class Persons/DU

Vehicle$:

Area Tvne /Du 1 ~ 4 5+
--J

o 4000“Q ‘1.12:.10

1 1 ‘o” ““ 4’; +“
Rural Low - - g-- ~ ~ ~

[+ d

Density 2 1.30 2.23 2.83 2.81

— . . .

0 ’3000p“”” 50” +“’1

2 ‘1 - ~z: ““ ‘“9 ?J7
Urban High

‘ensity 2+ 4’.” 9- 92.64:.62
~. 1 I 1 1 i

Fiwre4. FullMCA triprata%honw-bewdwork.

:ross
classI I Persons/ DU I

Vehickd
)

14reaTvDe /DU 1 ~ 4 5+

40.12 ~0.62 :.o1 ?.96

-1 J
1 1 ‘O.M ‘ 4 ‘

Rural Low — ‘--~ ~’”3’ ~“75 J’”
Density 2+ 1.63 2.13 2.52 2.47

‘---i-o~
2

Urban High
Density

—-
J J J

1 +’4“1“3’‘V’”7320’”67
J J 23 24

2+ a’1.6, ‘22.11 2.50 2.45

expected from the theory, the range of trip rates ia
lower in Fiaure 4 than in Figure 3 bacauae account-
ing for in~eractions dacrea~ea the net effect of
each variable. Thus the higheet trip rate in Figure
3 is 2.83, whereaa the higheat rate in Fi9ure 4 ia
2.52. Similarly, the loweet value hae inz?reaaad
from 0.00 in Figure 3 to 0.10 in Figure 4. Perhapa
the moat marked difference in the two figures ia be
twaen the one and two or -more vehicle households.
The large differences at all -houeehold-size valuea
between these two have dacreamad markedly in Figure
4, and the valuea of the one-vehicle households are
aubatantlally higher in the one-paraon Itouseholda,
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and lower in the largeet households for Figure 4
qared with Figure 3.

Some etatiatical comparisons among the results
serve to illustrate the differences better than can
ba seen from a visual inspection. Pirat, root mean
square (sMB) errore were calculated between Figures
1 and 3, ?igures 1 and 4, and Figures 3 and 4. For
Figuree 1 and 3, it ia 0.47; between Figuras 1 and 4
it increasee to 0.51; but it ia only 0.24 betwean
Figuraa 3 and 4. This 10 about aa expected. The
largeet difference is between the conventional ratee
and the 14CArates with full intecactiona. The dif-
ference between BKA with full interactlone and with-
out is by far the leaet of the differencaa. Given
an average trip rate of around 1.45, the diffarencee
between the conventional method and the NCA methode
are on the order of one-third of the average trip
rate.

Chi-square contingency tests between values close
to 1.0 are notoriously misleading because the value
of chi-square la nacesearily small in ouch a caae.
This case is no exception, with the three c~ri-
aone producing chi-squares of 1.88, 4.22, and 1.30,
●ach with 21 degrees of freedom. These values would
not be conaiderad significant. ikmmver, if the
ratae ara multiplied by the number of houaeholda in
the sample (Figura 2), the chi-square teat would be
for differences in the numbers of trips produced for
work. In this caae the chi-aquaree are 55.5, 19.0,
and 41.4, reapactively. The degraee of freedom are
the eama ae before, and all valuee except the ●acond
one are significant beyond 95 percent. The low chi-
aquare between Figures 1 and 4 appeare to arise
purely by chance, where two of the larger groupe of
household are associated with a small difference in
trip retee, fortuitously. It ia not clear whether
thie reeult should leed to a conclusion of no sig-

nificant difference in trip ratee between the two
casee. ~us thesa reaulte indicate some real dif-
ference in trip ratee that are likely to lead to
significant differences in forecasts.

Tha two caee studies presented in this paper serve
to illustrate the potential prwidad by the NCA
method ●nd ~ from which it stems. This proca-
dure overcomee ● number of the criticisms that hava
bean made before about cross-classification modele.
Specifically, the method permits a statimtlcally
baeed selection of variablee for the croee-claaeifi-
cation model, and also allowe oompariaottmto be mde
between alternative groupings of any given vari-
able. Frcm this it ie possible to provide a model
structure that has both conceptual ●nd statistical
merit, rather than relying only on a conceptual se-
lection.

Second, the method prwides a etatistioally sound
procedure for ●stimating cell means, which reduces
the inherent variability of rates computed from dif-

ferent size samples of households and is capable of
providing estimates for eon cells where data may be
lacking in the base data set (although the use of
thie capability does reduce eons of the available
statistical information). Third, there are good-

neSe*f-fit atatistice frm all of thase steps in
the procees that permit more epecific mmparhrme to
be made, good hypothesis-teeting procedure to be
folhwed, and results to be aaeeaaed in terms of the
amount of the variability of the dependent variable
that is captured in the model. Finally, and most
important, the method takea into account the inter-
action among the alternative independent variablea,
which have never been taken into account in standard
croee-classificationmodels.

It should be noted that similar modelo have been
developed for predicting vehicle availability, as
wall as for trip productions by a variety of pur-
poses. There is no reason why euch crose-claeeifi-
cation models ehould not be built for any other
phenomenon that ia appropriately modeled by this
procedure. Principally, any phenomenon that has a
nonlinear, and poesibly discontinuous, functional
form, and that ie meet readily ralatad to variablea
that are categorical in nature, would be a prima
candidate for the method.
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Some Contrary Indications

Household Structure

KATHIE G. MoDONALOAND PETER R. STOPHER
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for the Use of

in Trip-Generation Analysis

The variables used to predict household trip-generation ratas hava long been an
areaof eonoarn for transportation plannars;these variablaaindudzd household
siza, number of vahidas owned, and ineoma. Howavar, a raaznt NCHRP study
that used linear repression analysis hee proposed thet a houeehold-scruztrsra
varizblawould corraleta mow strondy with trip rates than almost ●ny othar
variabla,axrept vehiola ownarship. In particular, this should improva tha modal
significantly tiara it is mmbined with vahicla ownarship and used es a substi-
tute for houaahold siza. Tha results of a trip-penerationarrdyd$ performed on
data from tha Miiwast by using multipla dsssificetion analysis (MCA) inron-
lraettolinearregressionaradewribed.Tha household-struoture verizbla was
teetsd by using both analysis of varianoeand MCAto datermins how wall tlra
varisbla performs in various modal struoturaswhan compared with other vari-
.sblas.Theothervariablestestedwaranumberof oarsor vahiclesavailable to
tha household, houwhold size, housing type, total numlwr of amployzd per-
sons, houwhold inoonsa, and total number of licensed drivars. It wee oonduded
that tha househdd-struotura variabiadid not perform sigrtifioantlybatter than
the other variablw tasted.

With the increasing acceptance into practice of tre-
havioral mcdela for travel forecasting, recent re-
search by the NCHRP has focused on enriching travel-
forecasting atodelswith theories and procedures from
the behavioral sciences. [Note that these research
results are from work done at Boston College for
NCWNP Project 8-14 (New Approaches to Understanding
Travel Behavior); the report Is available on re-
guest from NCHNP.] One of the first potential di-
rections examined for translation into practice is
the incorporation of behavioral concepts in trip-
generation modeling at the household level. As part
of this research, Charles River Associates (-)
proposed that a household-structure variable would
erignificantly improve the performance of such a
model (~).

This proposal was based on the premise that
households with differing structures, in terms of
adults, children, and personal roles, would have
differing activity requirements, arobility COtt-
straints, and opportunities for trade-offs with
other household members or for trip chaining. Thus
proposed changes in household structure, such as an
increasing percentage of single and single-parent
households as well as adult households with no
children, as is expected within the next decade,
would have a significant effect on trip-generation
rates within a population. It is argued that such a
variable should add behavioral content that is lack-
ing frca traditional trip-generation models, which
generally have included such variables ae household
sise, nuraberof vehiclee owned, and incoaaeto pre-
dict houeehold trip rates. Furthermore, a house-
hold-structure variable would be more significant in
capturing changes in the future than many of the
more traditional variables used.

The household-etructure categories proposed were
based on the age, gender, marital status, and last
names of each household member. These variables de-
termined the presence or absence of dependents
within the household, the number and type of adults
present, and the relationships eraong and of houze-
hold members.

The results of an application of this household-
structure variable in trip-generation analysis in a
Midweet study area are described. The value of this
variable is compared with other variables that were
tested at this the by using multiple claeaificat~on
analyeis (MCA) (see paper by Stopher and mcDcmald

elsewhere in this Record). WA is ●n ●xtension of
analysis of variance (AlS3VA)that, for ● eat of
claeaified data, expreeses group means ●s deviation
froa the grand mean.

HmsEsOLD—smucTvRECowcEPT

The household-structurevariable defined by CRA ~
Prh3e0 eight household Cat~Orha8 male ●nd female

single-person households, single-parent households,
couplee, nuclear families, adult familiem with chil-
dren, adult families without children, ●nd unrelated
individuals. Age 20 was used ●s the cutoff to dia.
tinguiah between children and ●dultm. The8e catego-
ries were determined by using the method shown in
Figure 1.

It was expected that these categories would have
varying effects on trip rates. Mults living ●lone
would be less 8cbility constrained then those ●dults
living with children; but they would have acme of
the opportunities for trip coordination produced by
living with other adult members. Single-parent
f.zxilieswould have both increaeed mobility ccm-
straints as well ae no opportunities for trip ocor-
dination, whereas couples would have the ●dvantegea
of the opposite of both of theee. ~ ●dult feBily
would have further increased opportunities for trip
coordination, but would perhaps differ from ●n adult
household of unrelated individual where individual
activities would possibly be less influenced by
other houzehold members.

More specifically, when tripgeneration rates ●re
analyzed by purpose groups, differences between the
trip-generation ratee of these household categor~eo
would be expected. Those households with ohildren
would be expected to have ● greater proportbn of
school tripe end trips eervittgpassengers than those
households without children, whereao the latter
tmuld probably have a greater proportion of zooial-
recreation tripe.

CRA examined this houeeftcld-structureconcept by
using Baltimore survey date with regression anely-
SLS, where the dependent variables were trip-genera-
tion rates by purpose mode, and the indePendent VU-

iables tested included, in ●ddition to hcueahold
structure, vehicles owned, income, numkm Of pemorm
older than 12, age etructure of hcueehold, hou8img
type, number of preschoolers preeestt, n-r of

gradeeohoclere preeent, ●mployment •~tus, r-,
population per residential eoret ● aity M8it alu-
sifioetion, and length of reeidenoe ●t that ad-
drese. The trip-purpcee groups defined ●e the de-
pendent variables were as follows: totalh~~eed
tripe, home-based work tripe, hcme+aeed ~in9
tripe, home-based pereortal businese tripe* has_
based entertainment and ~unlty tripe, home-baaed
visit and social tripe, and home-based ●wvice and
accrmpany-travelertripe.

CRA concluded that tne Itoueehold-etructurevari-
able was 8ignificent in predicting trip frequestcY.
It should be noted, however, that tbe regreeeicne
were constrained to use all independent variablee to
permit comparability, even’tbcpgh veryistg numbere of
independent variables were highly insignificant.
Potentially, intercorrelationaamong variables could
have masked acme of the true underlying relation-
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ships. CRA concluded that, of two camaonly used
trip-generation variables--number of vehicles owned
and income--only number of vehicles owned out-per-
formed the household-structurevariable.

CASE STUDY

The analysis of travel dats collected in the Midwest
examined the household-structure concept. The data
were collected from a stratified random sample of
the population in seven counties (~). The principal
purposes of the survey were to provide

1. The means to update trip-generation rates and
modal-split aodels,

2. Attitudes of the population tmtard transpor-
tation and energy,

3. Attitudes toward possible changes in the
transit system, and

4. Preferred methods of obtaining information on
carpooling.

The data were collected by using an in-hose inter-
view and a 24-hr travel diary snd Included the vari-
sbles age, gender, possession of a driver’s license,
employment status, and income of household members,
all of which were avsilsble for use in tr@-genera-
tion analysis.

The final data set consisted of 2,446 house-
holds. Of these households, the average household
size was 2.9 persons per household, where less than
50 percent (1,656) of all households had two or less
personst 60 percent (1,483) had no children; and 53
percent (1,300) were two adult person households.
In addition, alaost 80 percent (1,952)of all house-
holds had at least one car available for use, and 30
percent (734) had more than one; 80 PSrCent (1,875)
occupied single-family dwellings; and 87 percent
(2,124) of all households had at least one licensed
driver. Seventy percent (1,724) of all households
had at least one person eaployed, 63 percent (1,537)
had at least one person employed full-time, and 60
percent (1,468) of all households had 19S0 incomes
greater than $15,000, with 14 percent (341) greater
than $35,000.

The household-structure variable defined by CRA
was derived from the data by the method shown in
Figure 2. ~is differs slightly froa the CRA flow-
chart because of the definition of the variables
within the Southeastern Michigan Transportation
Authority (SR9TA) dsta set. These differences in-
clude the following: (a) the cut-off age between
children and adults is 1S years instead of 20, and
(b) relationship codes were uned to distinguish be-
tween adult fadlies without children and households
of unrelated adults; the last name of each pereon
wss not ascertained in the survey.
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Figure 2. Flowchart of household typeslogyused in analyzing SEMTA data.
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Table 1. Householef-strurtwe characteristics of SEMTA data.

Household-Structure No. of Percentage of

Category Households Households

Single male 200 8.3
Single female 2S4 10.5
Single parent 1so 6.2
Couple 502 20.8
Nuclear family 483 20.0
Adults with children 347 14.4
Adults with no children 420 17.4
Unrelated individuals 56 2.3
Missing ~
Total 2,446

The final breakdown of the data into these house-
hold categories is given in Table 1. Abost 19 Per-
cent are single-pereon households, with ali9htlY
more single females than single males (2 percent).
Single-parent households comprise only 6 percent,
whereas couples and nuclear families comprise 21 and
20 percent, respectively. Adults with children make
up #lightly fewer households than those without
children (14 percent compared with 17 percent), but
households of unrelated individuals form the small-
est category--2 percent of all households. Thirty-
four households could not be classified. These in-
cluded 17 eingle-person households where the person
was younger than 18 years old.

lb analvze the role of
variable in trip-generation

the household-structure
analyeis, this variable

and seven other-variables that ware also thought to
play a significant role in trip-generation rates
were selected from the data set. The other vari-
ables eelected were car ownership, household size,
housing type, licensed drivers, houeehold income,
and total number of employed persons in the house-
hold (see Table 2). These eight variablee were
first analyzed by using one-way ANOVAe to determine
how well they performed against the household-struc-
ture variable. Subsequently, the variables were

analyzed by using one-way ~s to determine the
effects of varying grouping strategies on the
categories within ●ach variable.

The household-structure variable was grouped in
three ways. The least-aggregate grouping oombined
the single-male and single-female categories because
it wae believed that there would be no significant
difference between the overall tripmeking charac-
teristics by gender, although there might be smell
differences for specific trip purposes. The least-
aggregate grouping also combined nuclear families
with adult families with children~ based on the

theory that additional adult members in the house-
hold would not significantly change the pattern of
tripmeking. The second grouping strategy further
combines all edult households,-except single persons
and couples. This assumes that adult households
that consist of related pereons will have little
difference in tripmeking characteristics than those
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Table 2. Variable grouping strategies used in SEMTA tripgeneration anzlysie.

Variable Name Grouping No. Categories Used in Groupirsg

LIFE I (household
structure)

LIFE 11(household
structure)

1-6 1
2
3
4
5
6

1
2

1-5

LIFE III (household 1-3
structure)

NUMCAR(numberofcan O-2
availabk to household)

HHSIZ I (household size) 1-5

HHSIZ 11(household size) 1-4

HOUSTYP (housisrgtype)

TOTEMP (total number of
employed persons)

INC80 ( 1980 household
income)

TOTLIC (total number of
licensed drivers)

3
4
s

o
1
2

1
2
3
4
5

1
2

3
4

0-1 0
1

0-2 0
1
2

1-3 1
2
3

&2 o
1
2

Singlepersons
Single parenta
couples
Families with children
Adult families without children
Unrelated individual

Single persona
Single parents
Couples
Familiea with children
Other adult households with no

children

Single persons
Farni&a with children
Households with no children

No cars available
One car available
Two or mnre cars available

One-person household
Twc-person household

Thre&person household

Four-perann household

Five or more person houa6hnld

One-persnn household
Twn- and thre~person house-

hold
Four-person household
Five or more persmrhousehold

Multifamily
Single family

No employed persons
One employed person
Two nrmoreemployedpenona

S3-$14,999
S15,00GS34,999
>s35,000

No licensed driven
One licensed driver
Two or more I&naed drivers

.
households that consist of unrelated individuals.
Thus the theory of a coordination of tripmaking de-
cisions between related household rnetira waa ex-
amined. The moat severe grouping strategy eeperates
households with children from households without
children, identifying thin characteristic as the
moat important in trip decision making. only
single-person houmeholda are further dietirtguiahed
to reflect unique trip-generationcharacteriatica.

Other variable groupittgaare alao given in Table
2. The model II household size grouping, which craa-
birtestwo- and threa-pereoethouaeholda, waa examined
after initial analyaia indicated little difference
in trip rataa of these households. Income waa
grouped into high-, medium-, and low-inccreacatego-
riea.

Finally, UCA (3, and paper by Stopher and Mc-
Donald elsewhere in this Record) was used to compare
different coeabinationaof these grouped variablea in
trip-generation analyaia. MCA derives trip ratea
within a standard trip-generation matrix by using
deviation from the grand mean of the data act.
Thus it improvaa on the traditional method of coas-
puting individual cell meana becauaa it permits es-
timation of trip ratea for cells that contain no
data. In addition, WA, by using version 6, 7, or S
of the Statistical Package for the Social Sciencen
(S2SS) {~), is able to take into account the inter-
active ●ffects between independent variablea where
these variablea have nonzero correlation with each
other. This corrects for the overestimation of ad-
juateeentsfrom the grand mean when these correlations
are ignored. This uae of MC!Aand the croaa-claaai-
fication structure is different from the CRA ap-

proach, which waa to uae least-aguares
analyaia to predict the trip-generation

95

regression
measures.

The effects of household structure were analyzed
both in terms of the additional level of variance
explained by the household-structure variable as
well as the level of variance ●xplained when substi-
tuting household structure for another variable.

The models examined in trip-generation analysis
are given in Table 3. It can be seen that the num-
ber of vehicles (NUMVEE) available to the household
was substituted for number of cara in some models
because this variable performed significantly better
across all purpose groups.

Table Z. MCAmodels used in SEMTAtrirge.neration analysis.

Trip Purpose

Home-baaedwork ,home-baaed
shopping home-baaed aocial-
recreation, homa-baSedother,
and non-homa-baaadtrips

Home-baaedwnrk, homebsaed
shopping, home-based other,
and non-homebssed trips

No.

1
2
3

1
2
3
4
5

MCAModeh

NUMCAR,HHSIZ I,HOUSTYP
NUMVEH,HHSIZ l,HOUSTYP
NUMCAR,LIFEH, HOUSTYP

NUMVEH,HHSIZ 11
NUMVEH,HHSIZ II,LIFEII
NUMVEH,HHSIZ II,HOUSTYP
NUMVEH,HHSIZ H,TOTEMP
NUMVEH, HHSIZ II, INC80

In all three typaa of analysis previously dis-
cussed, trip-generation models were examined for
motorized trips by specific trip purpose. Initial
analyais distinguished social-recreation trips, but
the final trip-purpose categories examined were
home-based work, home-based shopping, home-based
school, home-baaed other, and non-home-baaed trips.
These final trip-purpqae categories differ from the
categories used by CRA that (a) do not examine non-
hrme-beaed trips, and (b) break down the other cate-
gory into more specific purpose groupa.

DESCRIPTION OF RESULTS

The reaulta of the ANOVA for ungrouped variables are
given in Table 4$ the results indicate that across
all purpose groups the number of cara available to
the household explaina more variation than any other
variable. This result is consistent with results
obtained by CSA. Rousehold size and housing type
are the next most significant variables acroas all
purpose groups; and whereas the number of employeee
in the household explaina the moat variation for
home-based work trips, it does not perform well for
all other purpose groupa. Household structure and
incoae appear to be of equal strength, although they
perfom better on different purpose groups. Incrsae
ie most effective in explaining the total number of
non-hm-baaed trips, whereas household structure is
moat effective in ●xplaining the number of home-
baaed school tripa. The licensed-driver variable
ranks no better than third in ●xplained variation
for any purpose group.

The ANOVA results of the grouping atratsrgieaper-
formed on the household-structurevariable are given
in Table 5. The moat effective grouping is the
model II grouping: single-person households,

single-parent householdat couples, other families

with children, and other adult Stouaeholda. There

appeara to be little difference between the travel
considerations of adult families that consist of
related individual and ttioaethat conaiat of unre-
lated individuals, because there is a large increase
in the F-ratio acrosa all purpose groups when these
are combined, whereaa the change in the within-group
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Tabie4. ANOVAmwlti fwuWrm@variaM~.

original Purpose
category

Variable values Statistic HBWORK HBSCHL HBOTHR NHB

LIFE

NUMCAR

1,8 F
Ss
df

Between soup
Within group

0,4 F
Ss
df

Between group
Within group

F
Ss
df

Between group
Within group

0,1 F
Ss
df

Between group
Within group

65.6
5,711.1

7
2,402

179.0
5,296.5

4
2,440

60.3
5,842.1

7
2,438

125.4
6,195.7

1
2,321

112.7
6,062.2

50.9
19,116.3

23.6
17,464.1

54.0
17,265.3

29.5
17,327.0

52.9
18,008.8

30.8
17,472.1

39.3
16,649.3

41.0
17,075.2

24.1
7,809.3

68.5
19,902.0

HHSIZ 1,8 181.8
5.334.5

62.0
18,794.9

HOUSTYP

TOTEMP

TOTLIC

INC80

22.6
7,842.4

73.9
20,792.9

0,8 F
Ss

205.6
4,551.3

12.7
7,873.5

24.6
20,878.2

df
Between group
Within group

0,8 F
Ss
df

Between group
Within group

1,7 F
Ss
df

Between group
Within group

6
2,439

112.3
5,006.4

8
2,437

148.4
5,020.3

6
2,439

30.3
7,383.5

57.6
18,624.0

15.8
7,814.4

32.7
20,493.5

Note: F= F.score, SS=sumof quare&snd df. degre~ of freedom. HBWORK. home-ba#ed work, HB8CHL=homt-
based 8chool, HBOTHR = home-bssed othat, ●nd NHB - non-borne-bawd trips.

Table 5. ANOVA rewlta for groupad variablee.

Purpose

Variable statistic HBWORK HBSCHL HBOTHR NHB

LIFE I F
Ss

85.5
5,745.0

148.8
6,150.0

69.1
19.195.0

30.3
17,557.7

37.6
17,564.8

61.8
17,752.0

91.1
17,491.1

50.5
17,405.2

108.7
17,259.0

df
Between group
Within group

s
2,406

LIFE 11 F
Ss

110.2
5,748.9

186.0
6,150.0

86.2
19,200.0

df
Between SKOUp

Wlthiu group
4
2,407

128.4
6,146.4

354.4
6,221.0

135.6
19,730.9

LIFE111 F
Ss
df

Between group
Wmin group

2
2,409

315.7
5,445.6

36.4
7,883 ..5

112.6
20,273.5

NUMCAR F
Ss
df

Between gIoup
Witldn group

2
2,443
104.2
5,853.4

27S.9
5,572.0

98.2
19,219.6

HHSIZ 1 F
Ss
df

Between group
Within group

7
2,438

3.58.5
5,298.1

37.1
7,879.5

78.1
20,812.4

1NC80 F
Ss
df

Between group
Within group

2
2,443

Note:StatiseiaandPIM’POSNare defiaod In Ttblo 4.
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variance is small. This contrasts with the model
III grouping (single persons, families with chil-
dren, and other families without children) where,
although there is a large increase in the F-ratio
across all purpome groups, and most particularly
with home-based school trips, this is accompanied by
a significant increase in the within-oroup variance.

The ANOVA results of the other grouped variables
are alao given in Table 5. It is clear thst the
number of cara available to the household remainm
the most significant variable in household trip-
generation analysis. Once again, the F-scores are
substantially greater across all purpose groups,
even taking into account the difference in the de-
grees of freedom. Model II household size, which
combines two- and three-person households, improves
on model I household size by increasing substan-
tially the F-ratio without increasing substantially
the within-group variance. Household income (1980)
is also effective in explaining trip-generation
rates for all purpose groups except hcme-based
school and home-based other, and thus nay be useful
when applied to specific trip-purpose models. The
total number of licensed drivers, a variable that
performed so poorly in earlier analysen, was not
tested as a grouped variable.

The NCA results for the two sets of trip-purpose
groups are given in Tables 6 and 7. From the first
set of purpose groups (Table 6)? the basic model
consists of number of cars or vehicles available to
the household and model I household size. Of the
variables used as additions to this basic model,
housing type clearly performs the best across all
purpose groups. In addition, this model performs
better than the model that uses number of cars,
household structure, and housing type, where houme-
hold structure is used as a substitute for household
size, an alternative suggested by CRA (~). Further
improvements are made by using number of vehicles
available to the household instead of number of cars
available.

The results of the models analyzed for the second
set of trip purpose groups are given in Table 7. An
initial examination of these MCA results gives the
impression that the model that uses household struc-
ture, household stie, and number of vehicles ia the
best model, particularly from sn examination of the
F-ratios. This is, however, a misleading impres-

sion. The ?-ratio for an entire model is usually
based on all main effects and interactions. If data

are missing in some cells of the matzix that define
the ANOVA problem, SPSS Q) is unable to calculate
the interactions and computes an ?-ratio on the main

effects only. This ?-ratio has substantially fewer
degrees Of freedom than one on the main ●ffects ●nd
interactions, and therefore it must be a larger nu-
meric value for the same significance level.

The household-structure model generated ●-ty
cells for some combinations of household structure,
household size, and vehicle availability (e.g., the
household structure of a couple can occur only for
two-person households) and resulted in suppression
of interactions in the AZ?OVA. The model that uaea
household structure is the only model in Table 7 for
which this happened, and leads to an inflated F-
ratio compared with all other models. When F-ratios
are calculated on main effects only for the other
models (as indicated by a footnote in Table 7), the
F-ratios are almost all larger than those for the
household-structure model. Thus the addition of
household structure to the baolc model of number of
vehicles available to the household ●nd household
size does not improve its performance for ●ny trip-
purpose group.

Of the other variables examined as additiona to
the model, the total number of workers in the house-
“hold improves the model for home-based work tripe.
Household income (1980) and the model II houaehold-
aize variable are both improvements over the house-
bold-structure variable. Income is better in ex-
plaining home-based work trips and non-home-based
trips, and housing type Is better in explaining the
other trips. Thus, unless a separate model is de-
veloped for home-based work trips by using the em-

ployment variable, the model of number of vehicles
per household, household size, and housing type
still remains the best approach. These concluaiona
support those found with the previous set of purpose
groups, with the exception that the model 11 house-
hold size performs better than, and thus replsces~
the model I household size.

~SIONS

In the trip-generation analysis of the case study
data, the household-structure variable did not per-

Tzble6. MCAra8ultzef8ztlmedslsu@in~ziwSEMTA*.

Furpozz

Model Statiztic HBWORK HBSHOP HBSOC HBOTHR NHB

NUMCAR, HHSIZI,HOUSTYP F 29.5 s .9 6.0 35.1 11.4
df
‘Betwezn ~oup 29
Within group 2,292

SIG 0.000 0.000 0.000 0.000 0.000
R2 0.261 0.062 0,060 0.295 0.113

NUMVEH, HHSIZI,HOUSTYP F 29.1 5.6 5.0 3s .5 11.5
df

Between group 29
Withingoup 2,244
SIG 0.000 0.000 0.000 0.000 0.000
R2 0.261 0.060 0.053 0.29S 0.116

NUMCAR, LIFEI1,HOUSTYP F 2S.3 5.2 5.1 26.4 9.5
df

Betwzen group 29
Within group 2,259

SIG 0.000
R2 0.254

0.000
0.056

0.000
0.054

0.000 0.000
0.238 0.096

Not.: SIG- slznltlcance, HSSHOP = homo-hued SIIOPPIIUT,HSSOC = hom~bawd mclal+.c?ation, snd the rat are defined In Tabla 4.
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Tsbie7. MCAresults ofszsll modolsusad inanzlyzi~ SEMTAdats.

Purpose

Model Statistic HBWORK HBSHOP HBOTHR NHB

NUMVEH, HHSIZ 11

NUMVEH’, HHSIZ II, LIFE II

F 74.1 14.0 15.9 29.1
df

Between sroup
Wltbin group

SIG
R2

11
2,434
0.000
0.246

94.1
94.lb

0.000
0.057

16.5
16.5b

0.000
0.060

21.0
21.ob

0.000
0.109

34.0
34.ob

F

df
Between group
Within group

SIG
~z

9
2,402
0.000
0.261

34.8
127.2b

0,000
0.058

0.000
0.073

0.000
0.113

NUMVEH, HHSIZ II, HOUSTYP F 7.0
24.9b

7.3
24,2b

13.9
47.3b

df
Between group
Within group

SIG
~2

23
2,299
0.000
0.246

0.000
0.061

0.000
0.059

0.000
0.108

9.7
38.6

NUMVEH, HHSIZ U, TOTEMP F 38.7
176.2b

5.0
19.2b

5.5
14.2b

df
Between group 33
Witf2is2group 2,268
SIG 0.000
R2 0.348

0.000
0.057

0.000
0.055

0.000
0.105

10.4
44.3b

5.2
21.lb

5.6
22.3b

NUMVEH, HHSIZ 11,INC80 F 32.4
148.1b

df
Between KOUp
Within group

SIG

33
2,412
0.000
0.298

0.000
0.057

0.000
0.060

0.000
0.112R2

Note:Ststlst{csandpurposesdefhdinTables4and6.

‘ImmctlonaSuppressed. bF-ratioscdcussted on main effects only.

torily in this trip-generation analysis, there would
be problems implementing it in trip-generation
models. When presented with a possible tr@-genera-
tion design that used the household-structurevari-
able, a metropolitan planning organization (MPO) was
reluctant to implement it. Although CRA stated that
the household-structurevariable could be easily ob-
tained from census data, the !4p0 expressed doubts
that it could be. Forecasting at a zonal level,
particularly to obtain distribution of households by
household-structure category, appears fraught with
problems. Possibly, forecasts could be made at the
regional level of the constituent elements of house-
hold structure, but current analysis-zone forecasts
in most metropolitan areas do not include theee com-
ponents and would possibly be difficult to add to
current forecasts. In addition, household structure
cannot be used as a policy variable, whereas other
variables, particularly housing type, could be
used. l%is aleo helped itsthe decision to exclude
the household-structure variable from the S~TA
trip-generationmodels.

form as well as was expected from the CRA analysis
of Baltimore data. ‘rhismay, however, be a result
of the different methodologies that were used in the
two analyses. The analysis reported in this paper
applied traditional cross-classificationmodels that
used 14CA to predict cell-by-cell trip rates. The
final model consisted of number of vehicles, house-
hold size, and housing type. However, subsequent
analysis not discussed in this paper has revealed
that the use of an area-type variable instead of
housing type may improve the models even further.

Figures 3 and 4 show the resulte of the automatic
interaction detection (AID) analysis performed on
1973 Niagara Frontier Transportation Committee (Buf-
falo) and a 1974 Genesee transportation travel sur-
vey (Rochester) date for all trips and for homa-
based nonwork trips (~). The nufnbarof vehicles
represents the first cluster. This supports both
the conclusions drawn by CRA and by the authors.
This is followed by number of children (usually a
function of household size) and age of the oldest
child. The final clusters are based on houeehold
size, vehicles per licen.zeddriver (a function of
both vehicles per household and household size),
household employment status, and number of vehicles
available to the household. Although the various
age classifications may be a function of household
structure, they may also be a function of other var-
iablea (for example, household size).

xt is also pertinent to note that even had the
household-structure variable performed satisfac-
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Maximum-Likelihood and Bayesian Methods for the

Estimation of Origin-Destination Flows

ITZHAK GEVA, EZRA HAUER, AND UZI LANDAU

The design of trti!c management erhamae usually requires knowledgo of
ttw pattern of trips on the eyetom under scrutiny. This pattern is ordi.
nzrilydescribed by an origindeetinetion (O-D) flow matrix. On. common
*of this type of mstrix is the .etimetion,of flows tin the interw~ on
apprmohes on ● stretch of road. Estimation is based on intersection flow
00unts that we supplemented by ● Iirerssz-plstesurvey. In this paper ● pm-
oedure is daveloped to obtain the rnogtlikely O-D flow zetimetes by using
both intersection counts ●sd resulti of the liowm@@e Uwey. Theprm
redure is described in detail on the baeisof ● numzrioel example. An eerlier
PSPWreported ● method of zetimztion that rolkk on intersection counts only
and does not require the oonduzt of ● sample Iioznee-plete’eurvey. An ern-
piriral wmminetion is ronduoted to test how astirnstiorr●roumzy inorezsas
when the edded information from the lirense.@ete survey is used. This
examination revzek that wfrenthe supplementary Iioenez-platesurvey is smell,
the maximum.likelihood method yields urtsetiefeotofy estimates. This defi-
cim’wyis rectified by the use of ● Wyeshn method. TIMrmuki~ m[ution
pmredure is simple, and satisfactory estimates ●e prodmad.

A variety. of!transportation planning and management
tasks require the knowledge of the pattern of trip
flows between origins and destinations. This pat-
tern is usually deacrihed by an origin-destination
(O-D) flow matrix. One common task of this type of
matrix ia the estimation of flows between the inter-
section approaches on a stretch of road. The esti-
mation is based on a license-plate survey that is
factored up to match counts of intersection flows.

In recent years attention has been given to the
problem of estimating an O-D matrix by using traffic
Counts as the main source of information (1-4). A
recent paper (~) descrIbes a method that‘d~parts
frrx! previous workr in that travel behavior is
brought into estimation by information contained in
small O-D samples obtained by a survey. It iS
therefore not necessary to rely on speculative mi-
crostates (as in entropy models) or to assume that
actual route choice is correctly captured by avail-
able models. Rather, the purpose Is to find that
matrix of O-D flows that is consistent with the ob-
served traffic counts and that is most probable in
view of the O-D samples observed.

This approecb Is used in the present paper, in
which a procedure to estimate flows between the in-
tersection approached on a stretch of road is devel-

oped ~sed on intersection flow counts and a li-
cense-plate survey. The effect of sample size on
estimation accuracy is explored in a real-life ex-
ample.

In the first section of the paper two alternative
likelihood models, which capture the manner in which
data are obtained in the field, are presented. The
normal equations that identify the maximum-likeli-
hood estimate are obtained, and an algorithm for
their numerical solution is described. A numerical
example is presented in the second section. The ex-
a~le is intended to illustrate the how-to of the
method and to assist the practitioner in its appli-
cation. As noted earlier (~), estimates of O-D
flows can be obtained from traffic counts alone,
without having to resort to tedtous license-plate
surveys. The increase in estimation accuracy ob-
tained as a function of sample size is examined in
the third section. The results of this examination
lead to the development of a new procedure based on
Bayesian ztatiztics. This procedure is presented
and examined in the fourth section.
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pRoBxm FO~TION AND SOLUTION

Consider a street section as shown in Figure 1. The
intersection approaches are thought of as origins
and destinations. Estimates of O-D flows are de-
sired.

Figuml. Exernpleofetreatseotionwitie~tiflo~.

~ @ @

The method most commonly used for this purpose in
traffic ●ngineering practice is to count traffic
volumes at every intersection and to conduct a li-
cense-plate survey of a sample of vehicles entering
and exiting the street of interest. Usually several
digits of the license-plate number are recorded and
later matched so as to obtain a sample O-D pattern.
The sample ia later factored up in an attempt to
make tbe appropriate sums of O-D flow ●stimates
match the corresponding volume counts. The purpose
of this paper is to suggest an estimation procedure
to replace the arbitrary and often ambiguous factor-
ing. The merit of the procedure is that it identi-
fies the O-D flows that are mst likely in view of
the results of the license-plate eurvey and the in-
tersection volume counts.

In formulating the problem, tbe following basic
notations are used:

o~ -

Dj =

tij -

T~j =

number of vehicles entering the street at
entry approach i (i = lr2,...,m) during a
specified period of time,
number of vehicles leaving the street at
exit approach j (j = 1,2,...,n) during the
same period of time,
number of license plates matched between
records obtained at entry approach i and
exit approach j, and
number of vehicles that enter the street by
approach i and exit it by approach j.

The objective of the exercise is to obtain esti-
mates of Tij by using the data Oi, Dj, and
tij. The estimation logic is of the customary
maximum-likelihood kind. Thus the O-D sample matrix

(tij) obtained from license-plate matching is
thought to be a random sample drawn from the matrix
of O-D flows (Ti ).
this sample can ~ cap~~~p~~~~i~~~~i~~~~
metical model. A search is made for the estimates
of Ti that maximize this probability and at the
seme~ime fit all the intersection volume counts.
These are the most likely O-D flowerto have pre-
vailed at the time of the license-plate survey and
intersectionvolume counts.
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llto points deserve mention. First, fOr traffic
planning and management purposes, O-D flow estimates
are needed that represent average conditions rather
than estimates of flows that have prevailed at the
time of the survey.
and D., K ‘0 ‘0’ ‘itl ~~~rlc#s;aZ~would have to be regarded
ables ](~). Because the focus in this paper is the
effect of the sampling ratio for the license-plate
survey on O-D estimation accuracy, the estimation of
O-D flows that prevailed at the time of the survey
are sought. This is what practitioners have been
doing anyway. The second point has to do with a
discrepancy between the model and the practicalities
of traffic surveys. In the model the analyst pre-
tends that the intersection volume counts, as well
as the license-plate survey, are conducted during
the same time period. But because of personnel lim-
itations, this is seldom true. With these qualifi-
cations, the random nature of the license-plate sem-
ple is described by using an appropriate probability
model.

The probability model chosen must fit the manner
in which the random sample is selected from the pop-
ulation. Thus the essential details of the li-
cense-plate survey procedure used have to be
stated. To reduce survey personnel requirements and
to keep errors of recording in check, it is usually
best to specify beforehand some part of the li-
cense-plate number to serve as the sampling cri-
terion. Thus if all even-numbered plates are re-
corded, the sampling ratio is 50 percent; if all
plates ending with the digit O are recorded, the
sampling ratio is 10 percent: and so forth. Pro-
vided that the digits selected to serve as a sam-
pling criterion are uniformly distributed in the
population of license plates, the sampling ratio is
established when the sampling criterion is specified.

Two alternative probability models are suggested
to capture the stochastic nature of this survey pro-
cedure. First, each license-plate match can be
viewed as a success of a Bernoulli trial in which
the probability of success is dictated by the ssm-
pling ratio and the rate of errors of recording and
coding. The unknown flows Tij correspond here to
the number of Bernoulli triale. Thus the likelihood
function is a product of binomial probability mass
functions. Second, the license plates recorded at a
certain survey point can be viewed as a random sam-
ple drawn (with replacement) from the constituent
O-D flows passing that point. This leads to the
multinominalprobability model. Both models are con-
sidered and their merits are discussed.

Starting with the binomial model, let Uij de-
note the number of license plates within Ti

1.
that

satisfy the sampling criterion. The proba ility
distribution of Uij can be described by the bi-
nomial model. Thus

()~Ujj)= ~j r‘U(l-r)TU-uU (1)

where r is the sampling ratio.
Equation 1 would be a reasonable description of

the state of affairs if observers in the field were
able to record all license platea that should be
recorded and do so without error. In reality, er-
rors occur. Thus instead of obtaining Uij match-
ing license plates for e stream of vehicles, onlY
tij(tij ~ uij) is obtained.

Now the conditional probability mase function
(M) of tij is given by

p(tijlU~)=
()
‘ijqti’ (1 - q)ui’ - ‘i’

t ii

(2)

where q is the probability that nothing goes wrong
and the license plate is obtained and processed cor-
rectly at both entry and exit.

This case ia known in the literature as partial
ascertainment (g). In such a case the oriqinal dis-
tribution will be distorted. If the rmcdelunderly-
ing the partial destruction of original observations
(or the survival distribution) is known, the distri-
bution of the observed values can be derived. It
wae shown that where the original distributions are
Poiaeon, binomial, or negative binomial, the modi-
fied distribution is of the same form.

Therefore, the PMF Of tij ia also binomial and
given by

()Tii (q)ti(l.rq)
Tti-tij

fltij)= ~ti (3)

An expression analogous to Squation 3 can be
written for every possible flow. It can be shown
(~) that if Xl,...,% are binomial variates with
samPle size Nl~...vNt* respectively, and a common
probability of success in each trial, then the dis-

t
tribution of X = (Xl,...,Xt) conditional on rx~=

i=l
n is multivariate hypergeometric with parameters n,
N, and (N1...~). Therefore, the probability of
obtaining a matrix of (tij)if the matrix of flows
is (Tij) is given by

(4)

The identificationof the array T: for which this
\probability (or the logarithm of th e probability)

ia maximum ia needed. However, the solution must
satisfy the traffic count constraints

~ TU=Oi fori=l,2,. ... m (5)
j=*

and

; Tij=Dj forj=l,Z.. .,n
i=*

(6)

BY forming the Lagrangean, using Stirlin9’s for-
mula, taking derivatives, and ●quating to zero (~),
the following equation ia formulated:

T;=tu/(l-@j) ;j;;’:”::’;
.,

(7)

‘m obtain numerical values for the estimates T; ,
the unknown values Al,A2*...#Am Jand B1,B2~...? n

first must be found. ~is can be accomplished by a
simple algorithm deecribad in the next section.

The alternative manner of describing the survey
by a probability model ie to consider the random
sample til,tiz,...,tinobtained at etation i as drawn
from the flows Til,Ti2~.../Tin# which are unknown.
Only their sum (Oi) is 9iven. The probability of
observing this sample is given by the multinominal
model:

(8)

(The multinominalmodel is only approximate because
it assumea sampling with replacement. As long aa

the sample is a smell fraction of the population,
the assumption appears proper.)
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Accordingly, the probability of observing all
(tij) when the matrix of flows is (Tij) is given by

(9)

The zolution must satisfy the same constraints
(Equations 5 and 6). By forming the Lagrangean and
taking derivatives (~), the following eauation is—
given:

T;=tti/(~+ ~)

The next
simultaneous
knowns: AI,.

i=l,2 ,..., m
j=l,2, . . ..n

(10)

task ia to solve a system of (m + n)
nonlinear equations with (m + n) un-
..,&; Bl,...,&. The aimpleat solution.

algorithm conaista of-repeat& balancing of the vec-
tors Ai and Bj and is named after Kruithof (~. The
algorithm ia described and illustrated by a numeri-
cal example In the following section.

NUMSRICAL SXAMPLE

To illustrate the procedure, consider the road sec-
tion described in Figure 1, on which the ●asttound
flows are obtained from ordinary intersection
counts. A license-plate survey is conducted with a
sampling ratio of 50 percent (r = 0.5). To achieve
this sampling ratio, only vehicles with even license
numbers were recorded. The number of vehicles that
were matched in the survey (tij) are shown in the

uPPer left corner of ●ach of the 16 cells in Figure
2.

Fiwra2.~DlllStdXZom8pmdlngtortrazt8aationinFi~rel.

m4’347’~’l

j“l’lR

ElE 50] 30 ] 70

BI
i ’50 Y’OEEl

0.75130.6430 o.6a67

The flows T12, T13, and T79 are 50, 30, and
200, respectively, because these values can be ob-
tained directly from the counts. Therefore, the es-
timation problem consists of the 13 empty cells that
have to be filled with eatimatea so as to satisfy
the 8 row and column sums. These sums are listed
under the heading ~ and obtained from the inter-
section counts.

The solution algorithm begins by obtaining ini-
tial estimates of Ai. A starting guess may be
Ai = 1.0. By using these tentative values for
Ai, the first estimates of each Bj can be ob-

tained. For example, for j = 4, the aum T14 + T24 +
T34 must be 70. Thus by using SquatIon 7,

[14/(1 - B4)] + [2/(1 - B4)] + [1/(1 - B4)] = 70.

In this case B4 = 0.7571. The valuea of ~
and B9 are obtained similarly by using Equation 7
to fit the given sums of columns 7 and 9. Then new
estimates for Ai are calculated from the given
sums of the appropriate rows and the current esti-
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mates of Bj. The new estimates of Ai are com-
pared with the previous ones. Unless the desired
CIOaUKe is attained, a new round of computations is
carried out. In this example, after a few itera-
tions, the solution in Figure z is reached. The
values of Ai and B

2
are shown in the rightmost

column and the lowes row, respectively. The final
estimates of Tij are ahown in the lower right
corner of each of the 13 cells. (A listing of a
FORTRAN prcqrem for this procedure la available.)

The solution for the.multinomial model (Equation
10) is obtained by the same algorithm. Both models
prcduced slightly different results, which vanish
after rounding to integers. Therefore, it Is inmls-
terial which model is used for the estimation.

ESTIMATION ACCURACYAND EFFECT OF SANPLING RATIO

One of the purposes of this work has been to explore
the accuracy of estimates obtainable by the method
as a function of sample size. This ia done empiri-
cally by comparing estimates obtained when different
sampling ratioa are used with the 100 percent sam-
ple. The information waa provided by a detailed
license-plate survey conducted on a section of a
four-lane collector road with five intersections in
Toronto. In the survey four digits of the license-
plate Code were recorded for 2 hr. The matched li-
cense-plate records were converted into O-D flows.
For this investigation, these results were consid-
ered as the true matrix. It had to be pretended
first that the survey waa conducted with different

semPlin9 ratioa by considering only license plates
ending with certain digits. Flow estimates obtained
by the suggested method are then ~red with the
true matrix.

Esthetes were obtained for different sampling
ratios and alao for the case of zero sample [i.e.,
from ths t~ffic counts only by the method described
by Hauer and Shin (~]. The error measure chosen
was the average absolute error (M), which is de-
fined as follows:

AAE=(l/N)~ IT;-Ttil (11)

where

T;j - estimated flow from i to j,
= true flow frcm i to j, and

‘id = nu*r of nonzero cells.

The results are shown in Figure 3 (similar re-
sults were found when other error measures were
used). Some observations follow.

First, as expected, estimation accuracy increases
with sample size. Initially, the improvement in ac-
curacy is considerable. As higher sampling ratioa
are reached, the law of diminishing returns exerts
strong influence.

Second, even without an O-D sample, reasonable
flow estimates can be obtained. In this case none
of the models described here can be used. The ana-
lyat haa to rely on the assumption of equally likely
microstates and use the method described by Iiauer
and Shin (~,~. The accuracy of estimation in this
caae (sampling ratio = O) la shown by a square and
is ~rable to what can be obtained by using Equa-
tions 7 and 10 with a 20 percent O-D sample.

The reason for the unsatisfactory performance
when the sample Is smell ia inherent in Equations 7
and 10. Nben the flow between an O-D pair (ij) is
not captured by tbe semple;(i.e., ti
necessity, the ●atimete Tij = O. d: :;; ;Z; ::
license plates recorded is sufficiently small for
this to occur often, estimation accuracy ia likely
to suffer. Thus it is not so much the sampling
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ratio as the absolute sample size that governs esti-
IOSt~031accuracy. When the sample size is small, the
analyet can do better by ignoring it altogether be-
cause it uncovers a deficiency in the maximum-likeli-
hood method of estimation described in the section
Problem Formulation and solution! it forces the
analyst to assign zero values to flows, ●ven though
it is known that this is highly unlikely to be a
satisfactory estimate. It ie unwiee to disregard
this prior knowledge. A method that makes use of
both the prior knowledge and the information con-
tained in the O-D sample should be sought. The next
section is aimed at developing such a procedure that
bridges the existing discontinuity and improves esti-
mation accuracy when relatively small samples are
used.

BAYESIAN APPROACH TO ESTIMATION

The essence of Bayesian methods (~ is to apply the
information contained in the outcome of an expari-
etentto the knowledge about the probability distri-
bution of some parameters that are available before

the experiment in order to generate a new, posterior
probability distribution function about these pa-
rameters.

In the preeent case the experiment is the li-
cense-plate survey that yields the sample realiza-
tions (tij). The prior probability distribution,
denoted by PO(Tij), describes the probability of
obtaining the ●atrix of flows Ti .

1
With this, and

using Bayes’ theorem, the poster or probability is
given by

PUij)a ~tij ITu)P” (’1’u) (12)

The conditional probability component of Equation
12 has already been stated by Equation 4 (for the
binomial model) or Equation 9 (in the case of the
multinominalmodel). Thue the prior probability dis-
tribution component pO(Ti ) must be specified.

AIn the absence of ot er information, it may be
assumed that the probability of observing a certain
matrix (Ti )

2
is proportional to the number of ele-

mentary ev nta (microstates)from which it can arise
(~). If all elementary events are equally likely,
it can be shown.that

(13)
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Therefore, the posterior probability distribution
function can be written as

p(TU)a ; f [l/(Tij-tU)!] (binomial model) (14)i=l j=l

or

P(TU)= fi ~ (Tijtu/Tij!) (multinomisl model)
i=l j=l

(15)

Frcm here on, the procedure follows the logic ex-
plained in the section Problem Formulation and Solu-
tion. A search is made for that matrix T;
atakesthe posterior probability in Equations 14 ‘%:
15 as large as possible. Again, by ueing the method
of Lagrange multipliers and Stirling’s approximation,

T~=tti+~~ (binomialmodel) (16)

and

T~=exp(tJT~)~q (mukinomialmodel) (17)

Note that when tij = O, both equations prrwiuce
the same result (Tij = AiBj), which is also the gen-
eral solution for zero aemple (6,11). In this man-
ner the discontinuity problem n~a~the origin (Fig-
ure 3) is eliminated.

Examination of Equations 16 and 17 reveals that
the first is easily solved. squation 17 requires a
ccmplex iterative algorithm. Seth equations were
used to obtain O-D estimates for the case of the
street section described in the previous section.
For sampling rates of up to 50 percent, both models
produced almost identical estimates. For higher
sampling rates, however, there is a difference be-
tween them. This can be illustrated by considering
the extreme case of a 100 percent sample. At this
point, Squation 16 givee the natural result T~j = tij
(which is the same as Equations 7 and 10). However,
Equation 17 leads to different estimates.

The effect of sampling rate on the level of ac-
curacy, by using the maximum-likelihood procedure
(Equations 7 or 10) and the Bayesian procadure
(Bquations 16 or 17), ia presented in Figure 4. It
can be seen that for sampling rates of up to 30 per-
cent, the Bayesian method improves estimation accu-
racy. The maximum-likelihood procedure is appropri-
ate for the higher sampling rates.

Fl~m4. EffectoframvlimsralioonMEofti-*@nfJti
maximunwdihoodemdd2eBsyzdemprooedura.
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TWO coherent methods for the estimation of O-D flows
froa traffic count ●nd license-plate survey informa-
tion are presented. The first astlmetion method
identifies the momt likely aet of flowe that agreee
with the obmerved intersection approach flow counts
on a stretch of road and the results of a sample li-
cense-plate survey.

The effect of the saaple size on the accuracy of
O-D flows obtained by this procedure ia examined by
using data froa ● comprehensive license-plate survey
conducted on a stretch of road in Toronto. As was
●xpected, ●ccuracy increases with sample size. How-
ever, for ●all ●saple#t better accuracy can be ob-
tained by estlmting from traffic counts only.
Therefore, a second procedure baaed on the Bayesian
approach haa been developed. This procedure signif-
icantly Improves the accuracy of O-D flow eatimatea
obtained froa traffic count and small eample li-
cenme-plate survey information. The procedure iz
capable of producing relatively aatiafactory eati-
aates froa saall samples and thus is an aid in the
performance of a coaaon taak In practice.

It appeara that this procedure ia preferable be-
cause of it8 conaiatency and capability, whereaa the
maximum-likelihood procedure should be used when
high sampling rates are available at all survey ata-
tions. The Baye8ian procedure described here was
●pplied only to simple ayatama, such a= street sec-
tions, freeway ●ecttons, and subway or bua lines.
Further research ia required for the application of
the procedure to cameo in which there are multiple
petha between an O-D pair.
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Trip Table Synthesis for CBD Networks:

Evaluation of the LINKOD Model

ANTHONY F. HAN andEDWARD C.SULLIVAN

Oriiindzstinztion(0-0)synthesismetfrrslsdezlwithtfwproblemofderivissg
tripO.Dpztternsfromtrzfficoorsnts.A rzlidsleO-Dsynthwismodelfor
smellwss[e.g.,osntrdbwsinwrdistrkt(Cm)]spplkatierwhe,greet~n-
tisltohzlpwziuetedtwnztivetrenrportationsystemnw~snt msetures.
Amensv~ri~s*I$ rwiti, LIFJKODwes8dwtedforirr4mfrevsfudvn
bsczuseofitsqrpzrentsuitsbil~forCBD epplkatbnt.A 1976SanJose,
Glifornia.CBD O-Ddetzsetwithtrzffkrountrsstintstedbythomkruzrsigw
rnentmodelwasusedtotesttheperfermmnwofLINKOD.Signifiszntdiffer.
awes*m foundbztienthzsynthesizedtriptsbbwtdtheWe triptsb(e;
nsvzrttwbss,Men zssigrwdtothenetworkbydw misrezmipnnwntmodal,
bth triptzbbsprsdiotzdsimilzrflowpsttsrrw.Bswdw thtiWW, LINKOD
w hk# tobs●nszwptabbtoolforprewssztksppliratbnsinCBDS.An
extensivemrwitivitymtzly$isofthepsrformznszofLINKODww elsomsde
toinvestigatetheeffwtsofdifferentinitialtergettriptsbleszndimzornpkte
linkvohrnwqtmts.Altktou@LINKODperfonmadbeatwithdateon100pzr.
rantofthetumi~movements,itwasfoundthstwith2Speresntsovsrzgz
(PIUSailzordon-stationvdunwammtdthereexitionly● 10to20psrosnt
lossinsyntheticO-Dtzblezcourzq.ItwsszhodstermirwdthattheP
pmphicpztternofthztrsffiscounttiztezffssmdtheoutaomssonsirhrsbiy.
BsseurzabetterCBO detaM isinditpenssMeforoondr@rtg● morezorn.
PIetavzlidztionofO-Dsynthesisrnodzlsw wellzrodwrtrzffkmodds,s
=rWzhensiwCBD travddsts-zohotiorreffortsppewswarrzntsd.

In the past the standard technique to obtain origin-
destination (O-D) information was to conduct an O-D
field survey. These O-D surveys were expansive and
sometimes disruptive.. Such difficulties caused many
different investigators to seek techniques for
deriving O-D information from routinely collected
field data such as traffic counts. These substitute
approaches, which do not require an O-D field sur-
vey, are generally called O-D ayntheeis techniques.

Potential applications of O-D synthesis tach-
niques can be divided into three categories (~)a
single-path, corridor, and multipath applications.
This categorization ia based on the relative com-
plexity of the route-choice problem. For a single-
path network, such as a section of urban freeway,
there is only one path between each O-D pair; thus
these O-D synthesis techniques do not have to con-
sider route choice. A multipeth network, such as
the street system of a central business district
(cSD), contains a large number of paths for each @D
pair and thus requires an O-D synthesis technique
with a carefully selected route-choice assumption.
Corridor application are between these two ex-
tremes, and solution techniques are often hybrids of
the single-path and multipeth approaches.

Among multipath applicationsr the CBD is among
the most complex of operating environments for ap-
plying an O-D synthesis technique. It ia a smell,
heterogeneous study area with a potential for eig-
nificant congestion, numerous route and modal-choice
options, and a hIgh percentage of external tripe
among the total trips observed within the study area.

The recent emphasis of plannere and traffic en-
gineers on improving the performance of the CBD
transportation system has caused a great dermandfor
improved analytical tools. High-impact transporta-
tion system management (~M) measures, such as bus
malls and automobile-free zones, must be evaluated
with respect to their impacts on local circulation
and ultimately in terms of the ●economic health of
the CBD. However, available tools for analyzing the
performance of the CBD street system [such as micro-
assignmant (~-~)1 require a great deal of detailed
O-D information. This requirement has inhibited the

wide use of such analytical tools. Thus an O-D syn-
thesis technique appropriate for CSD applications
has great potential to help imprwe decision making
for TBN measures.

Among the many existing O-D synthesis models that
were reviewed (9-13), a model called LINKOD, which
was developed f=r-the FSWA, waa selected for in-
depth ●valuation, pristcipelly because it was
slesignedspecifically for smell and congested ares
analysis (~). The objective of this study was to
evaluate the performance”of LINICODfor CSD applics-
tions. The study considered only the ability of
LINKOD to synthesize an O-D table of vehicle trips
from available trip-generation estimates and to link
vehicular traffic counts.

The remainder of this papar is organized as fol-
lowe. First, the etructure of the LINKOD model is
briefly reviewed. Second, the validation of LINKOD
by using a 1975 San Jose, Callforniar CSD O-D data
set together with traffic counts ●stimated by the
microassigttmantmodel is described. Third, a sensi-
tivity analyais of the performance of LINROD Is pre-
sented. Finally, conclusions and suggestions for
further research are qiven.

LINKOD NODEL STROCTUM

The overall structure of the LINKOD computer pro-
grams Is ehown in Figure 1. As input data, the user

F~rsl. LINKODntedsletswaSIm.

m-MTA

m
-&l

-=5
Iaivd

E
must vrovide a coded network, contain~ in a load-
node file and s link file. The load-node file qives
the node types (e.g., boundary or internal) and aB-
eociated trip productions and attractions. The link

file includes the length, t~r n-r of lanee~ and
observed traffic volume for each link. Although the
theory underlying LINKOD calls for traffic VOIU~
information on 100 percent of the links, the model
has the ability to insert artificial counts for
those links where actual counts are unavailable.
(The impact of using incomplete link count data will
be discussed in a later section.)
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Three principal steps are involved in using
LINKOD to develop a trip table from available data.

1. Prepare a network representation of the study
area transportation system. Optionally, this
involves coding turning movements aa network links
(program PRNP).

2. Create a target trip table that subaaguently
will be adjusted to confors to the observed traffic
counts. This step is performed by using a special-
ized small area gravity model that incorporate
numerous adjustment factors to deal with high pro-
pxtions of external and through travel (programs
TRES and SMALD).

3. Through an iterative procedure, uae available
link counts to adjust the target trip table such
that observed link counts are reproduced when the
adjusted trip table is assigned to the transporta-
tion network by using an equilibrium traffic assign-
ment procedure (prcqramODLINK).

LINKOD alao contains two utility prcqrama
(CONVERT and ODEVAL), which are used for managinq
data files and generating printed reports, reapec-
tively. FSNA documents (6,7) should be consulted
for details of the LINKOD ~l~orithma and their theo-
retical baaes.

INITIAL VALIDATION

A 1975 San Jose, California, CBD data base was used
to evaluate the performance of L2NKOD. Secause of a
lack of full coverage of actual traffic counts and
turning movements, a well-validated set of traffic
counts estimated by the microassignment model (3,4)
was used to create the input link file. A 1975 ~r~p
table that contained data updated from a 1964 O-D.

FiwJre2.SmJonCSDnetwork.
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microasSi9rUnnt
to be the best

available estimate of the true trip table, it was
used as the base table against which the synthetic
trip table .waacompared.

The San Jose CBD network is shown in Figure 2. It
includes about 69 city blocks and cwers about 1
miles. To convert the data from the microassign-
ment format to the LINKOD format consistently and
correctly, turning movamenta were defined as sepa-
rate links. These are indicated by the dotted links
in Figure 2. The coded network includes S57 one-way
links, 233 netmrk nodes, and 156 load nodes. Among
them, 113 are internal load nodes, each of which
representa a block face. The network includes both
arterials and local streets, many of which are one-
way streeta. For the initial validation, 100 percent
of link counts and turning movements were provided
as input. Trip productions and attractions used to
estimate the target trip table were obtained by sum-
ming the rows and columns of the base trip table,
respectively.

Several goodness-of-fit statistics were used to
measure the cell-to-cell differences between the
synthetic LINKOD table and the base table. Specifi-
cally, four cell-by-cell comparison statistics used
are defined as follows. For the mean absolute error
per cell (MABSE\cell),

MABSE/ceU=~ ~(lTij_T~l/F4) (1)

For the mean absolute error per trip (NABSEltriP),

MABSE/ttii=ZZ(lTij -T~l/T) (2)
ij
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For the root mean square

RMSE =
{[ 1}2Z(Tu-T:)2/N %

ii

error (R14SE),

(3)

And for the M4S3?,aa a ratio of average cell value
(SU4SE/AVGT),

RhSSE/AVGT=(RMSE/T) XN (4)

where

Tij =

Tfj -

N=
AVGT =

value (numberof trips in the ijth cell
in the base table),
correspondingcell value in the pro-
duced table,
total number of cells in both tables, and
average number per cell for the bane table.

In addition, a chi-square atatiatic waa used to nea-
sure the difference between two trip length distri-
butions. This statiatic ia defined aa follows:

X2=:, [(oi- T pi)2iTpi] (s)

where

Oi = number of trips in the comparison trip
table with length in the ith group (the full
range of trip lenqth ia divided into 11
groups),

T = total number of tripa in the comparison
table, and

Pi = percentage of tripa in length group i for
the base trip table.

To detect any ayatematic distortions in the
model, comparisons were made aeperately for differ-
ent O-D groupings baaed on whether one or both load
nodes were internal or on the study area boundary.
The results, which ara given in Table 1, were not

aatiafactory. Significant differences existed be-
tween tha two trip tables. However, without knowing
tha true O-D table, a definite conclusion cannot be
reached.

As a second besia for comparison, both the syn-
thesized O-D table and the baae O-D table ware input
to the sticroeaaignmentmodel and the differences in
the aaaiqned traffic flows ware meanured. The data
given in Table 2 indicate that the aaaigned traffic
flows from tha two O-D tablea were close to each
other. From thie viewpoint, the LINKOD software
package ia crwtaideredto be an acceptable tool for
pragmatic application. Detailed descriptions of tbe
data and results of this case study can be found in
Han et al. Q).

SENSITIVITY ANALYSIS

Sensitivity analysis wae performed to determine
which featuree of the model are most critical to
successful application and to assess how the model
reacts to variations in input. The San Jose data
aet was used to investigate the sensitivity of
LIlll(~ to different aodel parameter values, to
changes in the initial target trip table, and to the
extent and coverage pattern of available traffic
counts.

Sensitivity to Control Parameters and
Adlustmant Factors

Four runs were mada to find appropriate values for
the control parameters that determine the number of
program iterations. Little improvement, In terms of

eynthetic trip table accuracy compared with the baae
O-D table, resulted from all-ing the program to ex-
ceed 3 equilibrium assignment iterations and 10 link
flow correction iteration. Tbeae parameter settings
can save appreciab& computer time relative to the
values proposed in the published documentation (~).

Six runs were made to test model sensitivity to
adjuatmant factors of the small area gravity model
(SMALD) used to creata the target trip tebla. Vary-
ing fixed penalties and directional change factors
were found to have little impact on tbe final trip
table. However, the dafault valuee for these adjust-
ment factors appeared to be slightly bettar than
other values tasted.

Sensitivity to Different Target Trip Tables

The accuracy impact of different target trip tables
was aleo investigated. The modular structure of
LINROD (Figuie 1) makes it an eaay matter to run the
program with other than the built-in gravity model.
For convenience, T5 and T7 are used to denote the
target trip table and the final trip table, respec-
tively [these notationa are adopted from the LINKCD
user”a manual (~)]. Sesides tbe internally generated
T5, denoted by S- T5, two alternative target trip
tablas, GSAV T5 and AVG T5, were used and evaluated.
GRAV T5 denotes an O-D table generated by a simple
origin-constrainedgravity modal that uses the input
trip production and attraction data as internally
calculated node-to-node travel times. AVG T5 denotea
a trip table in which all cell values are equal to
the average number of trips per call.

Let SMALD T7, GRAV T7, and AVG T7 denote the
final trip tablea created fra the tar9et triP
tables SMALD T5, GRAV T5, and AVG T5, respactivaly.
The performance of theea final trip tables, in terms
of the four error measures defined earlier, is shown
in Figure 3. As seen in the figure, SMALD T7, the
final trip table that results from the internally

Tzblel.G00d2tae.0f4ttstztbt!=2@t2tiCWM21bSIStdPtZbi0.

No,ofTrips
MeanAbsoluteError RootMcznSquurError

Saee Satio’ C12i-square

TriP Table ODLS10 (%) (Ilf=lo) PzrCell PzrTrip RMSE RMSE/AVGT

Internel-to-boundary3,977 3,s44 89.1 122.2 1.6441 1.0096 4.0019 2.4634
Internal+ointemd 141 1,039 736.9 196.9 0.0982 8.0426 0.U7S 36.6398

Scwrdery+o-htrt.iary10,309 10,234 99.3 516.8 15.283S 0.6849
Sourrdary404ntornel

34.8227 1.5606
1,753 1,599 91.2 309.8 1,0302 1.2835 4,9478 6.1643

Total trips 16,180 16,416 101.5 480.4 0.8694 0.8937 6.2770 6.4S24

%latlo= (ODLS 10/bass tsble)X100Percent.
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Tsble 3. Synthetic link fiowr versus goundcounts:theSecondStrsatscrwn
tins.

Difference
Direc- Base O-D

Street
LINKOD

tion’ Table O-D Tableb No. Percent

Reed EB 27s 282 +7 2
w 261 285 +24 9

Wdliam EB 24 14
WB

-10 42
20 19 -1 5

San Salvador EB 92 68
WB

-24 26
200 213 -13

San Carlos EB 633 521 -112 1:
WB 358 353 -5

San Fernando WB 410 368 42 li
Santa Clara EB 785 816 +31 4

WB 492 494
St. Johns

+2 0
WB 304

St. James
285

EB
-19 6

1,019 1,0~6
JuJian

+57 6
WB 522 473

Subtotal
49 9

2,828 2,777 -51 2
E 2&7 2*O 33

Total 5,395 5,267 -128 2

~LXrect&n b divided into eastbound (EB) and westbound (wB).

LINKOD O-D table with 100 percent tumins movements.

Fipirs3.Acurrsryimpsctoftargsttriptablesenfinaltripfables.

Legand
raAmcf7
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mswMof7
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although incomplete, can generate satlafactory solu-
tions.

Note that in a micronized network, such as that
shown in Figure 1, each link represents a single
through or turning movement. For simplicity, the
terms turning movements (which also include through
movements) and links are used interchangeably in the
following discussion.

To define a strategy for collecting link-count
data from a network, two factors must be included:
location (where the surveyed links are) and coverage
(the percentage of links counted). Relative to loca-
tion, three sampling strategies were considered:
random sampling (R), major link selection (M), and
geographic pattern schemes (GP). R means that the
counted links are randomly selected from all links
of the network. When the M scheme is used, only
links that carry the highest traffic flows are
selected. Links selected by a GP scheme form a par-
ticular geographic pattern, e.g., a cordon or screen
line(s), or a combination of these two.

These three link selection schemes, together with
different coverage levels, were used to define the
16 experiments sutmnarizedin Table 3. Here the nurz-
ber associated with each experiment specifies the
percentage of links for which link volumes were in-
put. For example, R30 is the experiment that used a
link file that contained turning movement volumes
for a randomly selected 30 percent of the links of
the network. Brief descriptions of the geographic
patterns associated with the six GP experiments are
given in Table 4.

Accuracy measured by ItMl? and by NABSE/trip for
the final trip tables produced in the 16 experiments
are plotted in Figures 4 and 5. As shown in these
figures, the GP scheme is the preferred sampling
strategy because it yields the closest match to the
base O-D table for almost all link coverage levels.

Tdle3.Expsrimsrrt$withdiffsrentzsnrplingst’mtssies.

Percentageof
Observed Turning Random MajorLink Geographic Pattern
Movements’ Samphng Selection Schemeb

0-15 –c -c GP13
16-29 –c M25 GP25
30-39 R30 M3O GP37
40-59 R50 M50 GP50
6049 R60 M60 GP60
70-79 R75 M75 GP75
80-89 -c M85 –c

generated target trip table, 18 consistently and
significantly closer to the base O-D table than the
others. The trip length distributions of the final
trip tables were also ccmpared with that of the base
trip table. Results again showed that SMALD T7
yielded the closest comparison.

Therefore, it wes concluded that the internal
SMALD performs better than alternatives such as the
simpler gravity model and the maximum entropy model
used in this study. Until a more cost-effective al-
ternative is found, the user is advised to use the
internal model.

Sensitivity to Incomplete Link Data

The accuracy impact of incomplete link data has been
analyzed for the.single-path network case (~ and
for small multipath networks (~). HoWaver, practical
guidelines for real-world application have not been
developed. Thue a systematic investigation of the
sensitivity of LINKOD to incomplete link volume data
wan made in this study to provide guidelines to help
users collect and prepare efficient data sets that,

lTuroins movements Include through mowmemh
b

See Ttble 4 for a more detailed descriptkm of aach GP experiment.
cNot tested.

Tabfo4.hs0ri@kww0ftfIssix~ptS2trtM2.

Experiment Description of Geographic Pattern

GP13 A broken cordon including some turning links
GP25a A complete cordon with about half of thetumingliiscon-

nectingto the cordon

GP37 GP25 plus thethmugh movements onthree screenlirres

(Mafktt, SanCarlos, andSantaClara)

GP50 GP37 plus one more screenline (San Fernando), alJ the

turning movements between the four screenlines, and the
otherfrsJfoftumin6Iirrka●ttJtecordon

GP60 GP60plus three more screenlirres(Vine, Almaden, and
Notre Dame) andallturning movements btween ties
three streets and sII other acreerdines

GP75 GP60 plus three more screenJines (St. James, William,and
Third) with theif turning links

“see Fipre 8 for Iocatiom of the links selected.
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On this basis, the MOE is defined as follows:

r3-

-$M-.T&._.-._._.-.-,

9- ‘a
RANDOM SAMPLING

0-

7-

6
0 43 k Ki& oflumingcowra Data

MOEi=@ercentage improvement irrRMSE) + (percentage

improvement in MABSE/trip)

={ [(~SEo - RMSE,)/RJiSEO]+ [(MABSEO

-MABS~)/MABSEo]} X I@)%

where

140Ei. cmbined MOE for eXPSritIMnt i,

RMSEi = RMSE of the final trip tsble produced
by experiment i,

~EIJ = 9.5438 = SMSE of SMALD T5,
MASSEi = MESE\trip of the final trip table

produced by experiment i, and
MAESEO = 0.9527 = MASSE\trip of E@fALDT5.

It was also found that when the link file con-
tains turning counts for more than 60 percent of the
links, the final table T7 produced by the GP experi-
ment is closer to the base table in both -E and
MAEBE/trip than the target trip table SMALD T5.
However, when the link file containe less thsn 60
percent of the total turning counts, the reeults are
ambiguous. In such cases the final table has a bet-
ter R14BEand yet a worse MAESE/trip than the SMALD
TS. This is shown in Figures 4 and 5. It impliee
that a target trip table generated from a complete
load-node file BSy be even better than a final trip
table adjusted to correspond to a ecanty link file.

When comparing the final trip table (T7) against
the target trip table (SMALD T5) within the range of
40 to 60 percent availabla turning counts, the gain
in the RMSE measure is much larger than the loss in
the MSSE/trip meaeure. It implies that, in this
range, the correction procedure tende to correct the
bad cells in the trip table while sacrificing come
overall goodness of fit.

Because both error measures are meaningful, the
alternative data-collection schemes beeed on a
single measure cannot be evaluated. Although the
trade-off between these two error measures is still
unclear, a combined ueasure of effectiveness (~~)
wae defined based on the following assumptions:

1. The users are more concerned with the rela-
tive (percentage) improvement rather than the abeo-
lute improvement in the error measures, and

2. Seth error meaaures are of equal importance.

(6)

The combined t40Eafor the various experiments are
plotted in Figure 6. It is clear that the geographic
pattern scheme is the zmst effective data-collection
scheme among the three teated. It can also be ob-
served that, when using this link aalection scheme,
a minimum of 15 percent turning count data is re-
quired to produce a better final trip table than the
initial SMALD T5.

Suppose that the data-collection coet is propor-
tional to the number of links for which counts are
available. The horizontal axis of Figure 6 then
eerves as a proxy for cost. The effectivenesslcost
(E\C) ratio can thus be illustrated for each experi-
ment, as ehown in Figure 7. Again the six GP experi-
ment are more coet effective than the others. ~ng
these experiments, GP13 haa a negative E/C ratio,
presumably because less information is contained in
the link file than ia provided in the complete load-

Q 2s 54 75
Porcmtagooflumirm COuntsOti

100

~m6. OverdleffeaUvansncfdWhfentdtstivSS.
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node file. Finally, the alternative GP25, in which
the selected links located along the cordon of the
study area are emphasized by black lines in Figure
8, is found to be the most cost-effective data-col-
lection scheme.

The ccmplete results of each experiment and a de-
tailed description of this sensitivity analysis can
be found in Ran et al. (~, Chapter 7).

SUl@lARY AND CONCLUSIONS

O-D synthesis techniques deal with the problem of
deriving trip O-D patterns from traffic counts.
Among the many applications considered for O-D syn-
thesis, the CSD is among the most complex because of
the potential for congestion and its varied choice
alternatives (Including routes, modes, and vehicle
occupancy). In this study the performance of a
leading O-D synthesis technique was examined when it
was applied to the estimation of vehicle trips in a
1 miles portion of a major California CSD.

Among various models reviewed, the LINKOD model
that was designed primarily for small and congested
area analysis was selected for in-depth evaluation.
A 1975 San Jose CSD O-D data set with traffic counts
estimated by the microassignment model was used in
the ●valuation. Significant differences were found
between the synthetic LINKOD trip table and the base
trip table. However, when ansigned to the network
that used the microassignmentmodel, both O-D tables
produced similar flow patterns. LINKOD is thus con-
sidered as an acceptable tool for pragmatic applica-
tions in CBDS.

An extensive sensitivity analysis was also made.
Among three alternative target trip tables, the in-
ternal SMALD performed much better than a simpler

gravity model and a naive maximum entropy distribu-
tion. It wss concluded that the trip-distribution
model internal to LINKOD should be used whenever
possible. The sensitivity of the model to incom-
plete link volume sampling strategies was tested to
find the most effective way to collect this tYp8 of
data. The alternative that ueed traffic counts
solely along the study area cordon was found to be
the most cost-effective data-collection scheme of
those tested.

In the realm of future research, there are sev-
eral topics that merit further investigation.

1. A comprehensive data-collection effort should
be launched for a CBD study area. The data collat-
ion should include a field survey of vehicular O-D
patterns and simultaneous collection of travel time
and traffic volume information. Such a data set
would be vastly superior to the San Jose data set
used in this study, which was model derived. With
this improved data set, the following topics can be
investigated in greater detail.

2. Further research should be undertaken regard-
ing O-D patterns of external vehicle trips traveling
through a CBD. Techniques for estimating the ●xter-
nal trip O-D based on minimal external network data
should be investigated, aa well as techn@ues for
forecasting the changes in external trip O-D pat-
terns that result from TSM measures in the internal
network.

3. A cost-effective combination of manual turn-
ing movement counts and machine volume counts needs
to be determined. The current research focused on
turning counts on,ty.Initial attempts to investigate
the trade-off between turning counts snd machine
counts were inconclusive and require further inves-
tigation.

Fiwm8. LinkssslsctedinHrunGP2S.
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4. The effect of inaccurate traffic counts on
the accuracy of the synthetic O-D table needa to be
examined. The current research dealt with consis-
tent, accurate count informationonly.

5. Finally, research ia needed to expand the
equilibrium framework to permit estimation of multi-
modal trip tablea and the analyaia of ahifta in
vehicle occupancy.
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Estimating Trip Tables from Traffic Counts: Comparative

Evaluation of Available Techniques

YEHUDAJ. GUR

Methods for estimating trip tsbles from trsffic aounts are potentially useful
because of their relative efficiency in data requirements. Two techniques for
estimating existing trip tables in urban highway networks-the information
theory (IT) teshnique and the LINKOD modal-ara msalysed in this paper.
The eeparatadwrription of the tw techniques is followd by a formulation
of ●n algorithm that is designed for ●pplication of the two tedwsquas as well
m othar variations. BYusing the algorithm, axtansiva axperimentstion with
the various tedwriques is mada by using artificial data. Seth tha convergence
speeds and the ability of tha techniques to stay dose to tha target trip table
are waluated. Tha main contribution of the paper is its presentation of tha
two major terhniquas within an aasily understood, unifiad format. It opans
a WSYfor extending tha IT techniques for equilibrium assignment problams.

Much work has been done In recent years in develop-
ing procedures for estimating trip tables from traf-
fic counts. These methods are potentially useful
because of their efficiency in terms of data re-
quirements compared with the available alternatives.
Chan et al. (~) and Willis and Chan (~) recently
compiled a comprehensive survey of tha various esti-
mating methods and the types of problems that they
solve.

One type of problem is dealt with in this paper--
estimating an existing trip table for a typical urban
highway network, based primarily on traffic counts
on many links. Two different approaches to the
problem have been reported. The first is the infor-
mation theory (IT) approach, developed independently
by Van Zuylen (~) and by Willumsen (~), and later
described by Van Zuylen and Willumsen (~). The
second is the network equilibrium approach proposed
by Nguyen (6-8) and extended by Gur et al. (~) into
the LINKOD ~y~tem.

The two methods have been developed independently
from each other. Both have been developed primarily
(but by no means exclusively) for estimating trip
tables for “windowsm in city centers. Recently, van
Vliet and Willumsen (10) have reported the testing
of the IT model on data from the center of Reading,
England. Test application of LINKOD in downtown
Washington, D.C., is reported by Gur et al. (~).
Recently, a large-scale validation of LINKOD on data
from downtown San Jose, Cal~fornia, has been re-
ported by Han et al. (11).

The purpose of thi~paper is to present the two
methods by using a ccsmaonbasis, and to evaluate
them comparatively. As a result of the evaluation,
a third methccl, which uses some elements of each, is
developed and tested.

DESCRIPTION OF PROB~

Consider a road network that consists of nodes con-
nected by links; some of the nodes are load nodes,
where trips originate or terminate or both. It iS
asaumed that trips between the load ncdes are the
only cause for traffic on the links. Given volume
counts on some of the links, the problem ie to find

the true trip table ; = (~i) that is served by the
network. (Note that for simplicity of notation, ti
denotes the ith cell in the table, givin9 the numr
of tripa between two load nodes, e.q., k and (t).

There are three important attribute inherent to
the problem. First, the solution requires assump-
tions regarding the assignment rule, which describes
how travelera aelsct their paths. TWO different
types of assignment assumptions are possible. The

first is the proportional assignment where link
volumes are directly proportional to the inter-
changes served by them. This happena where path
selection does not depend on link volume, as in an
all-or-nothing assignment. Alternatively, with
nonproportional assignment rules, path selection is
a function of link volumes as in equilibrium assign-
ment. Proportional assignment aasumptiona make the
solution process simpler, but this assumption might
he unrealistic in congested networks. The main body
of this paper deals with all-or-nothingassignments.

A second important attribute of the problem is
that in most cases there is no accurate solution;
i.e., there is no trip table that, when assigned
(according to the assumed assignment rules), satis-
fies exactly the given set of counts. This can
happen both because of data imperfections (e.g., the
counts are taken in different time periods) and
modeling imperfections (e.g., the aaaumed assignment
rule only approximates the actual route selection).

Third, in moat cases the problem is underspeci-
fied; i.e., if there exists one table that satisfies
a given set of flows, then there exist many other
tables that, when assigned, produce those same
flows. A complete solution method must address all
these issues. It must be based on a realistic as-
signment assumption~ it must be robust enough to
withstand data inaccuracies and to estimate a table
that approximates (rather than duplicate) the
counts. It should alao identify the best table
among those that satisfy the counts.

Both the IT and the LINXOD models satisfy these
requirements; although LINKOD can operate for both
proportional and equilibrium assignment aaauraptiona,
the current version of the IT model operates only
for proportional aaaignment. The problem of multi-
plicity of solutions is addressed in the two modele
in a similar way, i.e., the input to the model in-
cludes a target trip table--a trip table that de-
scribes the best estimate of the true table witbout
traffic count information. The LINKOD a8)delCOrrSCtS
this table as little as possible to approximate the
observed flows. The IT model looks for the most
likely, closest table to the target trip table that
approximates the observed flows.

INFORMATION TNEORY -EL

Willumsen (~) developed a solution method based on
entropy maximization considerations. The model (as
well as a variation of it) is described by Van
!zuylenand Willumsen (:). The problem is to find
the maximum entropy trip table among those that
satisfy the observed flows. Entropy of a table ia
defined as the number of micro states associated
with it, weighted by probabilities that reflect the
target trip table.

van Zuylen and Willumsen (~) indicate that for
the all-or-nothing assignment, the solution to the
problem in of the form

tr=fl ● rrscr,Xs (1)

where

t? - ith element of the final trip table,
fi = ith element of the target trip table,
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r~ -

‘a =

set of links that are included in the path
of the ith interchange,and
link-specificperimeters.

Van Zuylen and Willunaen auggeet that Equation 1
can be solved [i.e., the valuea of x = (xa) can be
found] by using iterative proportional fitting and
an algorithm that will be described later. They
note that even though the convergence of the method
has not been proven, numerous experiments with arti-
ficial data failed to show a case of nonconvergence.
Aa will be shown
found, which wan
algorithm.

LINKOD APPROM2H

The LINROD model
by Turnquiat and
by Nguyen (6,7).--

later, a case of nonconvergence waa
rectified by a minor change to the

is described by Gur ●t al. (~) and
Gur (~. The theory was developed
Nquyen specifies a nonlinear opti-

mization problem; it is ahown that any solution to
that problem ia a trip table that, when asaigned by
using equilibrium assignment, replicates the ob-
served flows. The optimization problem is similar
to the problem connected to equilibrium aaaignment
with elaatic demqnd.

As in any other equilibrium aaslgnment problem,
the LINKOD model uses volume-delay functions. Iiow-
ever, here both the link volume and the impedance at
load are known. It can be shown that the correct
solution to the problem la arrived at regardless of
what function is used aa the volume-delay function,
aa long as it ia a strictly increaeinq function and
it gives the correct impedance at the observed load.
For convenience, LINKOD uses linear, or bilinear,
functions,e.g.,

c,(v,)=t.+b,(t.-Va) (2)

where
Ca(v) -

ea =
&a -

ba .

hpedence of link a at voluam v,
observed voluxe,
Ca(?a) = impedence at the observed
volume, and
a peraxeter.

Those functions operate like error functions, where
the error measure ~a - Ca(v) is directly related to
the difference between the observed and assigned
volumes●

Another @ortant ●ttribute of the xodel is that
the theory does not prwide for a unique solution to
the problems) i.e., ●ll the trip tablea that satisfy
the observed flows have exectly the s- value aa
the objective function. To overccme this problem
the solution algorithm wae designed to keep the
final trip table as close as possible to an input
target trip table. T%us the LINKOD nodel ●ctually
corrects the target trip table ao that it approxi-
mate, as close ae possible, the observed flows.

AWoRITNM FOR SOLVING TNE ALL-oR-tWTNINGPROBH

In spite of the different theoretical beckqrounds of
the IT and LINKOD xodela, their solution algorithms
are similar. The following algorithm describes the
solution process by the two nodels and various pos-
sible combinations of thex. This versien of the

LINKOD model is a special case, where it can be
aasumed that only one path is used for ●ach origin-
destination (O-D) pair (for ●xample, traVel on an
expressway).

1. Given the target trip table (P), the observed

volumes (~), the link impedence at load (~), and the

TransportationResearch Record 944

link error (voluae-delay) functions [Ca(0)],deter-
aine the minimum impedence path for each O-D pair.
Denote by ri the set of all links that serve the

ith O-D pair and determine the skim trees at load ~:

Ui=2.,,,c- (3)

Assign the target trip table to the network and
obtain Vn.

2. Setm=O, vO=0,Tn =F, andTO.O.
3. Svaluate the solution (Vn,Tn). If it iS

satisfactory,go to step 10.
4.Set 9 = n + 1, @ . p, TO . Tn, and

Cn = C(vn).
5. Calculate for each link the link error mea-

sure2

Y.=Y[f.,#,cao] (4)

(The definition of y ia given later.)
6. Calculate a correction factor for each in-

terchange:

si=s(y,;=ri) (5)

That is, the interchange correction factor (s) is a
function of the volume errors of the links along the
path that serves the interchange. Calculate a cor-
rected or a correction trip table:

t; =t(sJ (6)

7. Assign @ and get *.
8. Find x such that

W=(I-A)V”+AV’ (8)

where o < I < 1 and i minimizes the value of

the objective function.
9. Go to step 3.
10. The solution to the problem is the trip

table +. Stop.

In the LINKOD xodel, steps 5 and 6 uae linear re-
lations:

Y}=15.-c.(fl) (9)

In cases where c(*) is linear (Squation2):

(9a)

(lo)

and

tf=t;{l+2*[sJ(ui-lli”-$J]} (11)

where ~ ia the akin trees that use the imped-
ances

c:=c,(o) (12)

In WilluDzen’s IT aodel, rzultiplicativerelation-
ships are used, i.e.,

(13)

%w=%eri)f (14)

(15)
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This formula is simply the reciprocal of the aum

of the modal impedances, scaled to represent suit-
able values. The second formulation nuns the expo-
nential of the disutility function for all modes?
takes the reciprocal of the sum, and takea the nat-
ural logarithm of this reciprocal. l%is is called
the log aum method, and is described as follows:

Income Coefficients

Group Automobile
Automobile Drive Alone (1, I) (G, I)

Income Accezz Penalty
Group’ (I) Coefficient Coefficient t-Ratio Coefficient t-Ratio

IC.I.=K*lzt C/i~,exp[-A(i)]
I

(2)Home-based
work trips
1
2
3
4

Hems-bssed
other trips
1

1.4]65
1.0683
0.4943

-0.2245

1.4014
0,7979

-0.0750
-0.6783

13.74
8.24

-0.32
-6.59

1.6733
1.2677
0.8939
0.6140

21.14
18.89
10.01
7.83

Both of these functions meet the criteria previ-
OUSly described, but little was known about the
ability of either to perform as a meaaure of spatial
separation. Therefore, both measures were tested by
calibrating the home-baaed work trip-diatribution
fnodel twice, each time by using a different nea-
sure. The choice would then be made on the basis of
whichever formulation provided the closer match to

observed conditions, based on average trip length
and other such measures.

CALIBRATION TECHNIQUE

The Ne”wOrleans distribution model uses the standard
gravity model form (~). This model postulates that
the number of trips for a given zone interchange ia
proportional to the number of trip productions at
the origin zone and the number of trip attractions
at the destination zone, and invereely proportional
to the travel impedance between the two zonea. The
relationship with impedance is generally deecrikted
by a nonlinear function that relatea impedance to a
nondimensional F factor (also called friction
factor).

The usual calibration process involves determin-
ing the relationship between the impedance values
and the F factors such that the distribution of es-
timated trips by impedance matches that of the ob-
served trips. Additional adjustment factors (K fac-
tors) are used to help match observed and estimated
trips by geographic stratification (such as dis-
tricts). For this project, separate models were de-
veloped for each trip purpose and for each of four
income levels. Observed person trips came from the
home interview survey.

Initially, it waa assumed that the UTPB program
Am, operating in the so-callti SAC mode, would be
able to automatically calculate the proper F fac-
tors. However, this function of program AGN was not
operating correctly at that time and an ad-hoc
method of calibrating the F factors waa develop@.
This method ueed essentially the same technique aa
described in the AGN program documentation. F fac-
tora are calculated by using a gamma function, i.e.,

F(l)=A*IB*EXP(G*l) (3)

2.9661
2.3095
1.9305
1.4125

0.0934
-1.1802
-2.1397
-2.9294

9.06
-21.00
-30.61
-38.33

-1.5281
-2.2168
-2.7419
-3.1109

-24.40
-35,62
-44.41
-50.70

2
3
4

Non-home-
baaedtrips
1 -1.3447

-1.9311
-2.6904
-3.0689

-11.73
-17.53
-24.48
-27.S7

-1.3496
-2.]027
-2.5040
-2.7298

–11.52
-17.19
-21.67
-2335

2
3
4

Note: See Table 1 forequstions used for bizscoefflcienta.

●Income g?oup8are divided ufoUowz: 1 =Iow, 2=low.middle, 3=high-middle, and
4= hi@

TW03. Vari&laauszdinmod.a14miozral ibrztion.

Acronym Description of Variable
units of
Measure

Transit variables
TRN RUN hr-vehicle time from the transit network, not

including automobile access time
Automobile access time from the transit

network
Waikaccess time from the transit network
Transitboardizzgtimeforthefmt transitvebi-

clefrornthetramdt network
Time spent transferring from the transit

network
Number of transfers from the transit network
Transit fare
Dummyvariableaignifying ifanautomobile

was required to access the transit system
(Oisno,lisyes)

Percentage of regional employment within 25
minof total tranaittime from destination
zone

Minutes

Minutes

Minutez

AUTO ACC

WALK
WA2T1

WAIT2

TXFER
FARE
AUTO CONN

Cents
—

Percent

Minutes

Minutes

Cents

Cents
Cents
Cents
Minutes

TRNDACC25

Highway varizblea
H~ RUN 1 Highwayizr-vehicle timefromhighway network

for one person per car (drive alone) trips
Highway in-vehicle time for group automobile

trips(sameasHWY RUN1 pluaanadditional
time for each passenger)

Highwayopcrating costforonepersrm percar
trips

Highway operating cost for group trips
Avg parking cost for one person per car trips
Avgpazkingcost forgrouptzips
Timespentparkbrg andunparkingan automo-

bile; the sum of highway terminal time at the
origin zone and the destination zone (also
called highway excess or terminal time)

HWY RUNG

HWYCSTI

HWYCSTG
PRK CST1
PRK CSTG
HWY EXC where

F(I) = F factor for impedance value I,

A,B, and G = calibrated coefficients, and
EXP = exponential function.

This function was judged to be adequate because
there is considerable documentation that it siztu-
lates the relationship between F factors and imped-
ance adequately. Calibration of a distribution
model consists mainly of fitting this curve. This
wae done an follows.

C.L=Wi~,[A(i)+C] (1)

where

C.I. =
A(i) -

c=

K=

value of composite impedance,
modal choice disutility function for mode i
(i = 1,2,3),
constant chosen such that all A(i)gs are
poeitive, and
constant chosen such that all C.I.’S are
between 1 and 127, inclusive.

1. Apply program Am in-the apply-and-calibrate
(AC) mode, which reports the observed and estimated
trips stratified by each unit of impedance.

2. The observed and estimated tripe and the F
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Tablea 1 and 2. Aa the equations in Table 1 indi-
cate, travel disutility itIa linear function of the
time and coat of the transit, drive alone, and group
autcsnobilemodes, and other service characteristics
such as number of tran8fers and transit accessibil-
ity. Also, the income level of the traveler ie a
prime influence on perceived dleutility. The dif-
ferential effect of walk accese to transit versus
automobile access to transit on modal choice la de-
fined through the uee of an automobile access pen-
alty dummy coefficient in the transit disutility
equation. The variablee are described in more de-
tail in Table 3. For the work trip purpose, peak-
hour impedance valuee were uaad; for home-based

other and non-home-ttaeadpurposes, off-peak values
were used.

The mode and variable definitions for these equa-
tions are similar to other modal-choice models re-
cently developed for Minneapolis-St. Paul (~), Seat-
tle (I&), Houston (~, St. Louis (~, and Buenos
Aires (13). The group mode coneiets of persons in—
automobiles with two or more occupants. A separate
logit eubmodel ia used to estimate the proportion of
two-person, three-person, and four or more person
tripa in.order to determine the average group occu-
pancy for each interchange. The transit and highway
variables are created from standard Urban Transpor-
tation Planning System (~PS) network analysis pro-
grasta (~) and special submdels are used to esti-
mate accessibility, terminal time, and parking
cost. The calibration data consisted of a compre-
hensive, home interview origin-destination survey
conducted in the New Orleans region in 1960.

The coefficients and the final list of variablee
were developed by using ~IT on a eample of the
survey file, followed by disaggregate validation and
adjustment by using the full survey file. The coef-
ficients are comparable to coefficients from other
citiei, exhibit internal consistency, and have ac-
ceptable t-ratios (see Tablea 1 and 2). The “follow-
ing observation support the reasonableness of these
equations:

1. The out-of-vehicle time coefficients ●xceed

those for in-vehicle time~
2. The model is much more sensitive to aut~-

bile access time to tranait than to time spent on
the transit vehicle$

3. The ratio of the time coefficient to the cost
coefficient, which is the implied value of travel
time, ia approximately one-third to one-half the av-
erage 1960 regional income in cents per atinuteland

4. The inctnne bias Coefficient itiicate that as
income level increaaes, there is a lower propensity

to use transit, and within the automobile mode, a
higher propensity to be a driver rather than a pas-
senger.

COMPOSITE IMPEDANCB CALCULATION

The previous section describes how impedance is de-
fined for each mode. The remaining challenge is to
combine the three impedance into one value. rnr
this task, the following condition must be ❑et.

1. The combined value must decrease as any of
the modes becomes better, i.e., declines in time or
cost.

2. The combined value must increase if a mode is
not available [i.e., an interchange with even unsat-
isfactory transit service must have a better (lower)
impedance than one with no service at all].

3. The value must lie between 1 and 127, inclu-
sive. The OTPS program Am assumed that the input
impedance values are stored as l-byte matrix ele-
❑ents. The highest value that can be represented in
this format is 127.

4. The distribution of values within this range
should @ reasonable; i.e., they should not be con-
centrated at the top or bottom of the range.

It was ascertained that at least two mathematical
formulation meet these criteria. One formulation
is a variation of the harmonic mean function:

T6M01.Modsl+aedisutilitysquation,.

Mode Eutmtion

Honae-baaedwork tfipS
Transit disutility

Drive-alone disutility

Group automobile disutility

Home-baaed other trips
Tranaitdkutility

Drive-alone disutility

Group automobile disutility

Norr-hom&baaed tfipa
Tranait disutility

Driwrlone disutility

Group automobile disutility

0.0332 ● WALK+ 0.0769● WA2T1+0.0319● WA1T2+0.0078● FARE+ 0.014S● TRN RUN+ 0.1005● AUTO ACC
(4.07) (20.21) (8.S5) (10.45) (6.72) (2.59)

+0.0588.TXFER + Auto Access Penalty (I) ● AUTO CONN
(3.59)

0.0693● HWY EXC +0.0]45.HWY RUN1 +0.0078*HWY CSTI+0.02145● PRK CST1 + Income Coefficient (1, 1)
(4.94) (6.72) (10.45) (10.45)

0.0174*HWYEXC +0.0145 *HWYRfiG +0.0078 *HWYCSTG +0.02145 *PRKCSTG +lncomeCocfficient (G,l)
(1.74) (6.72) (10.45) (10.45)

0.0165*(WALK+WAITI+WA1T2)+0.0116*FARE+0.0066●(TRNRUN+AUTO ACC)-O.0183*TRNDACC25
(7.45) (9.55) (-22.91)

+AutoAc~Peraalty(I)oAUTOCONN

0.3403● HWY EXC +0.0066● HWY RUN1 +0.0116● HWY CST1+0.0319● PRK CST1 + Income Coefficient(1,1)
(25.98) (7.45) (9.55) (9.55)

0.2828*HWYEXC +0.0066*HWYRUNG +0.0116 .HWYCSTG +0.0319*PRKCSTG +lnromeCoefficient (G,l)
(28.50) (7.45) (9.55) (9.55)

0.0328*(WALK +WAfTl+WAIT2) +0.0047* FARE+O.O131O (TRNRUN+AUTO ACC)+O.0750* TXFER
(9.41) (2.75) (9.41)

+2.7472*AUT0 CONN
(4.91)..

0.2423● HWY EXC+0.0131● HWY RUN1 +~O04J● HWY CSTI+ fzo~:;● PRK CST1+ IncomeCMffi~t (1.1)
(20.14) (9.41)

0.3048.HWYEXC+0.0131.HWYRUNG +0.0047*HWYCSTG +0.0291”PRKCSTG +lncomeCoeffiient(G,l)
(25.58) (9.41) (2.75) (2.75)

Note: DkautUltiaa must ba muttlpliad by -1 bcfora tabinc the expcmwntkal in the torkt aquatkon. Numb- kn parenthaaaa mpraaant t-ratlm T-ratiaawarenot calcutsted far the
Wrk and othar automobile sccu psnalt y coefflckanas, or the non-home-baud coefficient on TX FER. Sae Table 2 for oxpluutkomof bku coaffidenaa uaadfortha ●W@kOU.
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Trip Distribution Using Composite Impedance
.

WILLIAM G. ALLEN, JR.

In this papar the thaorv ●nd results of a trip-distribution modal that uses a
multimoshl romposite definition of impadwsw as its mazsrm of wpsmtion,
instead of highway tima, ●re praantad. Tha diatribwtionmodal is part of a
cmmplste traveldemmwl model chain developedfor the New Orleansregion.
This model chain is briefly described, and its special fssturas of inaome strati-
fication assl connartivity among programs ara cmphaaizad. The disutility
functions of a thraa-mode Iogit modd-choica modal are uaad to develop
modal impadanra values. The structure and coefficients of these equations ●re
discussed. Two ●lternative methods for combining these modal impedances
●re presented: harmonic mean and log sum. A special technique for cali-
brating tho F faotor curves was developed to circumvent shortcomings in the
urban transportation planning system (UTPS) software. The results of the
alibration are prwantml. Thaaaresults indiwted that the log sum formula
produczd batter results than the harmonic mean formula, baaed on various
observed and estimated comparisons. In addition, the log sum mmposite im-
psdmma-bsaad model prosed suitable only for homa-bsaad work trips. Un-
sztiafaotory results for tha other trip purposes lad to the use of off-peak
highwsy time for those purposes. Rssulta for home-based other ●nd non-
homa-baaadmodels ere also presented. The conclusions of this analysis ●re
that ● distribution modol can be suoaaaafullycalibrated by using composite
impedance; that. at last in this case, the log sum formula worked better than
harmonic mean; ●nd that a successful alternative to the standard AGM gravity
modol calibration process can be deve(~.

The theory and results of a trip-distribution model
that uaen a composite definition of impedance as its
measure of sreparation, instead of highway time, are
presented in this paper. The premise that such a
model is inherently logically superior to a gravity
model baaed on highway time ia accepted as a given.
This superiority involves a composite impedance-
based model that is sensitive to the characteristics
of all modes and provides for improved connectivity
between the distribution and modal-choice models.
This should, in theory, produce more reasonable ●s-
timates of trip distribution. The dietribution
model is part of a complete travel-deazandmodel
chain developed for the New Orleans region. Previ-
ous work is reviewed here~ the accompanying logit
modal-choice models are deacribed; and alternative
methods of conrhining.impedances, a diffarent tech-
nique for calibrating gravity models, and the final
results are presented.

PRIOR RESEARCS

The use of composite impedance in distribution
models is not new. For example, an early reference
to a generalized rasistanca formulation for the
gravity model is a 1973 paper by Nenheim (~) based
on hla earlier work (~). Wilson s) also describes
a composite generalized coat function. Much of the
recent work in this field has focused on the joint
choice type of model. By combining destination
choice and modal choice (and often triP frWuencY)
into a single model (generally by using a logit
structure), this type of model effectively incorpo-
rate the impedances of all zrrsdeaand the socioeco-
nomic etatua of the traveler into the trip-distribu-
tion process. There are numaroua references to and
examples of this model type in the literature (~,~),
with perhaps the beat known of these being the Met-
ropolitan Transportation Crmvmiasion (MTC) model aet
(3).

However, the New Orleans model chain uses the
traditional sequential application of models, and
there appears to be but one previous attempt at us-
ing composite impedance in this context. In 1975 a
similar aet of models was developed for the Regional
Transportation District in Denver (~). That study
used modal-choice logit coefficients to define im-

pedance. Alternative methods
antes were reviewed, and a
(harmonic mean) formulation waa

of combining imped-
parallel resistance
selected.

Basically, the New Orleans distribution medals
are a direct extension of the Denver ~rk. The
major changes are that separate models are developed
for each income level and the log sum method of com-
bining impedances was used. The log sum method,
which is simply the natural logarithm of the denonti-
nator of the modal-choice logit equation, was also
used in the San Francisco NTC models (~).

NODEL CSAIN

The distribution model can beat be described by
placing it In the setting of the entire travel model
chain (see paper by Schultz elsewhere in this Rac-
ord). The New Orleans model chain consists of the
traditional generation, distribution, and modal-
choice nsodela. What distinguishes these models is
that they are entirely income atratified and highly
connected with each other. The generation mrsdela
use an elaborate cross-classification structure, in-
cluding the capability of aatimating trip produc-
tions and attraction for each of four income levels
(quartiles). The modal-choice models conaiat of a
three-mode logit structure, which contains bias
variables baaed on Income level.

One of the criticisms of the traditional type of
travel-demand models 1s that the models are applied
sequentially, independent of each other. It ia gen-
erally recognized that actual travel decisions are
seldom made in this faahion. Rather, decisions on
frequency, destination, mode, and route tand to be
interrelated. The uae of composite impedance ie an
attempt to address this concern. The modal-choice
and distribution models are tied together because
the coefficients of the logit models are used to
define the composite impedance value. Therefore,
the distribution of trips ia sensitive to both high-
way and transit service levels, travel cost as well
as time, and the income level of the traveler. The
high level of transit service in New Orleans makea
this multimodal definition of impedance especially
meaningful. This multimodal sensitivity ia also es-
sential to one of the goals of this model chain: to
be able to respond more accurately to the existence
of transit guidewaya, high-occupancy vehicle (IK3V)
facilities, and a wide range of transportation pol-
icy variablea.

The rasults of the model calibration indicated
that the composite impedance formulation was suit-
able only for the work trip purprrae. For the home-
based other and non-home-based trip models, composi-
te impedance could not successfully be used, and
thus highway time was used. For the work model, the
log sum method of combining impedance gave better
results than the harmonic mean formulation. Fi-
nally, all three modele were calibrated to a high
degree of accuracy, with K factora used sparingly
and only for trips creasing major geographic bar-
riera.

MODAL-CHOICE DISUTILITY FONCTIONS

Aa previously mentioned, a three-mode logit zsodal-
choice model was calibrated for each trip purpose
(~). These models are defined in terms of their
disutility equations for each tie, as 9iven ‘n
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residual of 70 after 6 iterations, and a residual of
15 after 15 iterations.

4. The three multiplicative versione of the
model always resulted in similar trip tablea, which
tended to be slightly different than that of the
LINKOD algorithm.

5. Adding the 1 weighting (Equation 8, model
3) increased the convergence speed only slightly.

CLOSENESS OF FINAL TRIP TABLE TO TARGST TRIP TABLE

The data in Table 3 give the value of t for the
final and target trip tables for the different algo-
rithms and target trip tables. Figure 3 shows the
ratios of c for LIWKOD (model 1) and the square
root vereion of the IT algorithm (model 4).

1. All the algorithms succeed in producing final
trip tables that are close to the target tables.
Different target trip tables result in completely
different final trip tables that, nevertheless, are
similar in their ability to reproduce the obeerved
flows.

2. The different multiplicative algorithms re-
sult in final trip tables whose distances from the
target trip-tables are similar. This is particularly
significant relative to the algorithm with the i
weighting (model 3); its divergence from the basic
form of the IT model (Equation 1) does not appear to
harm its performance.

3. In most cases the multiplicative algorithms
result in final trip tables that are elightly closer
to the target trip table compared to LIWKOD. This
can be seen clearly in Figure 3.

4. In caaes where the algorithms show conver-
gence difficulties (Table 2f), the final trip table
is not the feasible solution closest to the target.
TO confirm this point, a systematic eearch for the
closest solution was made by using linear combina-
tions of the eight basic solutions. The best trip
table had @ = 0.274 compared with @ = 0.553 for
the final trip table of the algorithm. In all cases
without convergence difficulties, only slight dif-
ferences between the two t’s were found.

CONCLUSIONS

In this paper the two major models for estimating
trip tables baeed on traffic counts that have been
verified in full-scale applications are compared.
The analysis concentrates on all-or-nothing assign-
ment problems. It is ehown that the two models are
similar, both in the structure of their algorithms
and in their performance. LIWKOD uses additive
terms for the table correction.steps,whereas the IT
models use multiplicative terms. The different
versione of the IT model produce eimilar reeults.
They tend to produce final trip tables that are
elightly closer to the target tables when compared
with LIWKOD.

The target trip table is shown to have major
effects on all aepects of the eolution. It dictates
the structure of the final trip table and the speed
of convergence. In any application of the model,
the eelection of a target trip table should be made
with care.

The standard IT algorithm (model 2) failed to
converge in one case. It should be used with care.
All the other algorithm performed satisfactorily in
all cases.

A significant reeult is the successful perfor-
mance of model 3--multiplicativecorrection with A
weighting (Equation 8). The a weighting step is
an essential element in any equilibrium aseiqnment
algorithm; the success of the model that includes
this step gives a strong itW3iCati0nthat it can
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perform Successfully under equilibrium assignment
aeeumptions. Development work in this direction is
under way.
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small enough to permit complete analytical solu-
tions.. Out of the 15 cells in the trip table, 4 are
always zero because of the 8tructure of the network.
The 10 volume counts provide 8 independent equa-
tions. Those equations, when combined with non-
n~ativity constraints on the cells of the trip
table, can be solved with eight different basic trip
tables, each with eight positive cells, which sat-
isfy the observed flows. The data in Table 2b mark
the cells that can be zero. The data in Table 2C
are an example of a basic solution. Every scaled
linear combination of the eight basic tables also
satisfies the observed flas.

There exist a nuatberof measures for the distance
between two matrices. These measures are described
by Willis and May (lJ). For the present project,
the following distance measure was selected:

4J=(l/zj~)zi[tr* lloE(ti’/fi)ll (18)

where F is the target trip table and ~ is the
final trip table. This measure is a normalized
equivalent to the distance measure used in develop-
ing the IT model.

The extent to which the final trip table approxi-
mates the observed flows was measured by two vari-
ables: the LINKOD objective function and the sum of
absolute volume errors, i.e.,

For the main body of the experiments, a number of
different target trip tables were specified, and a
set number of iterations (5 or 15) were run by using
the different models. The statistics of the dif-
ferent runs were used for model evaluation. The
major results are shown in Figures 2 and 3 and are
given in Table 3.
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The data in Table 3 give the values of the various
error measures that use different target trip ta-
bles. Residual errors after each iteration for two
sample tables are shown in Figure 2. The main con-
clusions are as follows.

1. At least in one case (target table as speci-
fied in the data in Table 2d), the simple IT algo-
ritluh (number 2) failed to converge. The other
three algorithms always converged.

2. The LINKOD algorithm tends to improve the
solution more than the IT algorithms during the
first one or two iterations. However, the multipli-
cative algorithms tend to be more efficient when the
errors are small. In general, after five or more
iterations, all the algorithms show similar residual
errors.

3. The speed of convergence depends strongly on
the target trip table. It is interesting to note
that all of the algorithms display convergence dif-
ficulties exactly for the same target trip tables.
The data is Tables 2e and f give the two target
tables whose convergence patterns are shown in Fig-
ure 2; these patterns display that behavior. Al-
though the data in Table 2e give a residual of about
4 after 6 iterations, the data in Table 2f give a

Fi~ra3. Dirfancemt400for LlNKODandlT models.

. I

Residual Srror (VOLER’) Distance from Target (@b)

Ir [r
T6rget IT (square IT (squ6re
Table LINKOD with root ) LINKOD with root)

25 22 28 0.159 0.157 0.158
k 29 28 31 0.154 0.138 0.138
3 20 15 15 0.289 0.284 0.284
4 60 56 56 0.426 0.410 0.415
5 13 4 0.300 0.292 0.292
6 26 17 2: 0.363 0.371 0.356
7 16 10 0.476 0.488 0.481

4 : 4 0.131 0.131 0.131
: 12 4 13 0.553 0.555 0.557

10 70 66 65 0.467 0.446 0.452
II 9 8 7 0.195 0.195 0.195

Note: netable prewntsvdues of thepefiormance meWrmafiw~efi_8t~~

%OLERlsthe aumofabmlute linkvolume~&s. VOLER= Z1.. -.:l.

bOisdeflned stdescrlbed in24uat&n 1S.

CBY uskng malytkat techrdques, Solutions with @of 0.130 and 0.268 mm found for
tartet trip tables 8md 9,respectkvely.
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Another difference between the two algorithms is
the need for the i weighting (step 8). In the
LINROD model the table T= is a correcting trip
table that points to the direction of the needed
correction in any iteration. Therefore, the i
weighting is an ●ssential part of the algorithm. In
the IT algorithm # is a corrected trip tablet
thus the x wetghting is not s necessary part of
the algorithm; it might ●ven be harmful.

Note that in the IT algorithm, without i weight-
ing (x from Equation 1) is

The
Figure 1. Tsst nstwswk. was

~==my:.m (16)

where ~Cm is the value of y from Equation 13
at the mth iteration. However, if i weighting is
used, then the wlution trip table (Tn) cannot be
expressed in terms of Equation 1. Thus it im doubt-
ful whether the solution with the A weighting is
the best solution, ●s specified by the IT criteria.
In the pure IT MOdel, 1 in Equation 8 iS always 1.

EXPERIMENTATION

Tst401. Tettnotworkattrbtaa.

Node A NodeB c, b, %

4
5
6
6
7
7
8
8
8
8

8 6.9
8 9,2
s 31.0
7 19.6
I 8.0
8 13.9
2 13.5
3 12.0
4 11.4
5 6.5

0.03 130
0.04 130
0.05 20
0.04 290
0.05 60
0.03 230
0.05 170
0.03 200
0.06 90
0.05 30

TablaZ TtitriPtsbkh

algorithm as described in the previous section
programed, and a set of experiments with the

a. Asolution (anexsmple) b. Structureofa solution

!M :ii+!

60 170 200 90 so 570

Note: -meansit muslbezero.Omewu ii
can be zafo, and x msana it must be positive.

d. A targetthatcannotronws’gewith
c. Abasicsolution(anexampie) algorithm 2

‘w ‘m
e,A quickly converging target f. Aslowly mnvergingtsrget

~w ‘m

two models and some other variations were performed.

The ●xperiments were designed to answer the follow-
ing questions.

1. How do the various algorithms perform in
terms of speed of convergence to a trip table that
approximates the observed flowm? Are there cases
where the algorithms fail to converge?

2. ROW do the various algorithms perform in
terms of finding a solution that is close to the
target trip table?

The experimentation started with three models:
(a) LINKOD, (b) IT with a = 1, and (c) IT with
optimal i (step 8 of the algorithm). After a few
experiments, it was found that in certain circum-
stances the standard IT model overcorrectm the trip
table and fails to converge. A fourth version of
the model was added, where Equation 13 was replaced
by Equation 4:

Y:’=SQRT(%M) (17)

and A - 1.

The experiments use the network shown in Figure
1, with the link attributes given in Table 1. The
dats in Table 2a give an example of a trip table
that satisfiem the observed flows. The problem is



,,.

Transportation Research Record 944 121

factors used in that run were then keypunched into a
file that could be used by Statistical Package for
the Social Sciences (SPBS) program (MJ.

3. The SPSS subprogram REGRESSION was then used
to obtain a leaat aquare8 fit for the coefficients
A, B, and G (after auitablg transformation of the
varieblea).

4. Mew ? factora were calculated by using the
new coefficients, and program A= waa reapplied.
The obeerved and eatimeted trip lengths were then
~redr and if the re3SUltawere inadequate, atepa
2-4 were performed again.

Tzbie6,Compssisonoftwocompo4itzimpsduNaforsarS~ higlmrzyrurwti~
urns (mIn).

HsrrrronicMem Log Sum

Income E3ti-Percent Esti- Percsnt
Group’ Observed mated Error Observed mated Error

1 10.17 10.67 4.92 10.17 10.82 6.39
10.18 11.02 8.25 10.18

:
10.59 4.03

10.87 11.59 6.62 10.87 10.97 0.92
4 11.16 11.87 6.36 11.16 11.26 0.90

AU income 10.68 11.39 6.65 10.68 10.94 2.43
groups

Note: Ttwsemlu= reprmwrtthe hrrme-bswd work purpose srwttYm odelmm,w Whorrt
Kfactors.
‘Jnarmesroups aredMdedssfoUoww l=low,2= lowmid~e, 3-tih.middle, ad
4=lrl@.

The results were judged by a visual inspection of
the impedance distribution and by CoaParing the av-
erage values for coapoaite impedance and trip
length. By using this technique, a satisfactory aet
of ? factors could be obtained in between aix and
nine iteration.

Tti6. Comparbonofmvocornpoditzimpedmosforfnulss: hirJtwzy
&tznaa (mild.RESULTS

The reoulta of the impedance calculation are given
in Table 4. The ~aite impedance valuea differ
markedly by income level and are biaaed in the
proper direction. That ia, the lower-inmme levels
are associated with higher impedance. This reflects
the fact that lower-i~ persona tend to have
lower mobility (for example, they are leaa likely to
own automobile). The ccapoaite valuea also indi-
cate a larger apreed than the the valuea, which uay
auggeat more specific relationshlpa between com-
posite hpedance and ? factora. These atatiatics
indicate that the crezpoaite iapedance formulation
behavea mathematically. This increaaea the confi-
dence with which it can be used in gravity model de-
velopment.

HannoNcMean Log Sum

Income Esti- Percent Esti- Percent
Groupa Observed mrrted Error Obs.med mated Error

1 4.29 4.53 5.59 4.29 4.64 8.16
2 4.29 4.70 9.56 4.29 4.52 5.36
3 4.72 5.15 9.11 4.72 4.80 1.69
4 4.91 5.29 7,74 4.91 4.96 1.02

AUincome 4.61 4.99 8.24 4.61 4.75 3.04
groups

Note: ~~@uwrew*ntthetim*b-Wrkpur~UtfitYmdelm~ without
Kfsctorx.
%womesrouparedtvld~ssfolioww l=low,2=low-mlddle, 3=h@b.middle, -d

4=bl@.

Tzblz4.Stsmrtmryofobtamzdhnpzdznavztuss.
Tabi07.Compzriwnoftwowrnpodtzimpodanre formulas:numbsrof
intrzrmdtfip4.

—.
HarnronicMesn Log Sum

Income Esti- Percent Es& Percent
Groupa Observed mated Error Observed mated Error

Purpomutdhrcome Aversge Lowest Hipbest Standard
Ix@’ Vslueb Vsluec Vthrec Dcvistion

Home.bascdwork trips
1
2
3
4

Homc+ssedothsr trips
1

62.189
56.338
47.171
38.063

44
38
29
21

111
98
84
77

9.908
8.695
8.596
8.670

936 882 -5.77 936 857 -8.44
: 2,202 1,854 -15.80 2,202 2,396 8.81
3 2,89S 2,471 -14.6S 2,895 3,437 18.72
4 3,113 2,374 -23.74 3,113 2,866 -7.93

AU income 9,146 7,581 -17.11 9,146 9,556 4.48
groups

Note: Theuva3ues reprWntthe hom*basedwork purpase CrWitymodelruna.tithout
K fmton.

‘brnme~uwmdtidadufoUow. l=low,2=low-mAddle, 3=hlsk-midrUe,mId
4=rd#rr.

7.s79
7.965
8.214
7.692

1
1
1
1

43
39
44
44

4.942
5.334
6.118
5.679

,4

3
4

Non-homebssed trips
1 5.263

5.451
5.392
5.130

7.720
7.671
7.710
7.520

1
1
1
1

36
43
39
39

2
2
4

.lnr.ornelmlkdMdcdssfdow#: 1=low.2=low-nddrUo. 3=hktr-nriddle,snd4=
highway travel the and distance considerably better
than did the harzmnic mean formulation, except for
the lowest inccae quartile. When intrazonal tripe
are ~redt the log aum anrmch iS superior for
total trip estimation, but slightly inferior for the
low and high-middle income quartilea. In comparin9
major trip patterna, such aa tripa acroas the Mia-
aissippi River, the harmonic mean model overesti-
mated the observed data by 69 percent, whereaa the
log am model overestimated by only 44 percent (be-
fore K factora were applied, in both caaea). In
additione a cotaperiaonwaa tie of the n-r of
district interchange (there are 20 diatricta) fOr
which the difference between observed and emtimeted
tripe wan greater than 100 tripe and the percentage
difference waa greater than 15 Percent. The har-

monic ■ean model had 68 such district interchan9ea*
whereaa the log aum tiel had 56.

w
bl’bovsluuforbom+bsacd workmpmwatlnssumronrpodtainrtredmm..Ulothor
vshrumprowmtk34fswsytlrrraAf31dghvmytirmsrwodwsreoff-p.skhlshwaytima
Whbouttarmiasl Urrlm

cN3sbutsndlowat nlucsthstcantdrr obswvdtrips.

The reaulta of calibrating the home-based work
●odel with both acts of c~aite impedance func-
tions are given in Teblem 5-7. These compariaona
indicate that the log sux re8ulta are superior to
thoee obtained with the harwnic mean fornula. The
baaic philosophy of theme comparieona waa that, if

the model oould be calibrated by using one type of
impodanoe ●nd could be shown to properly replicate
the mmna of a different (but related) tYPe of ~-
pedance, the calibration would be considered ●uc-
ceaaful. The log ●um formulation eathatea average
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Based on this analysis, the log sum formulation
was chosen to complete the calibration of the dis-
tribution model. Because the log sum formula worked
well for home-based work trips, this method waa used
for home-based other and non-home-based tripa as
well. An F factor equation for home-based other
trips was calibrated, and the model was applied for
a validation check. However, in this case, in com-
paring observed and estimated tripa with respect to
highway time and distance, the estimated trips
showed a much higher trip length. The estimated
trips were considerably less than the observed trips
in the 1-, 2-, and 3-reintime range and considerably
higher in the 4-, 5-, and 6-rein time range. At
times greater than approximately 7 rein,the two dis-
tributlona were similar. Considerable thought was
given to correct this imbalance in distribution, but
no methodology appeared to offer any reasonable
chance of successful calibration. Because of these
results, the hcme-baaed other distribution atcdel was
calibrated by using off-peak highway travel time
rather than composite impedance.

Similar results were obtained for the non-home-
based avxlel calibration, leading to the same solu-
tion; uae of off-peak highway time instead of com-
posite impedance. Off-peak highway time was also
used for the remaining models (taxi, internal-
external, and truck).

There is speculation that the lack of success in
using composite impedance in the nonwork models is

related to the nature of nonwork trips compared with
work trips. Work trips are methodical and repeti-
tive, and the commuter may actually have more knowl-
edge than the nontwxk traveler about his modal op-
tions and their associated impedances. Wonwork
tripa are less structured, and perhapa less thought
is given to alternative modes for such trips. That
is, coat considerations and the availability of
transit service may not strongly affect nottworkdes-
tination choice.

The calibrated F factor equations for all trip
purposes are given in Table 8, with the F factors
being defined by the three coefficients of the gartma
distribution. All coefficients are statistically
significant, and the correlation coefficient (Rz),
which comparea the required F with the calculated P,

was greater than 0.90. The regression program equa-
tions have been adjusted, where necessary, to ensure
that the highest F value is not storethan 999,999,
in order for the data to be acceptable to A@l.

Tsblc8.Ffzsforequztiorv:.

EquationCoefficientValuesb
PurposeandIncome
Group’ A B G

Home-basrdwork trips
1 4,296,752 0 -0.09300397
2 EXP(26.82271) -3.153498 -0.0836755
3 EXP (34.10976) -6.800698 -0.024841
4 EXP(28.39026) -4.819197 -0.041024

Home-based other trips
1 1,064,302 -1.0s5559
2

-0.1054066
1,070,772 -1.292004

3
-0.09307232

647,077 -1.838836
4

-0.03701391
1,033,560 -1.838298 -0.05231526

Nort-hom*based trips
1 663,504 -0.6655663 -0.1231575
2 869,114
3

-0.9009789 -0.1125171
267,378 -0,9540237 -0.1127642

4 371,881 -0.7850539 -0.138105

‘Income mourn am dMded u foUoW: 1 = low. 2 = low-middle, 3 = hkh-middla, ●rd
4=hEdr: “

bF fmtom sre ulctited by udnr the equation: F(I) = A*lB*EXp(G*I); where 1 b the
compodte Impedance for work trips and hL@waY tkme f.x the other trip Purpoceh

The primary reason for calibrati~ the distriti-
tion models by income quartile waa the hypothesis
that tripmakera in different income levels would
react differently to the impedance measure. Al-
though the gazssafunction coefficients are different
for the four income levels, It is hard to ascertain
the true difference because the F factors are rela-
tive, and the mean composite istpedanoevalues are
different by income level. lb test the hypothesis
that the F factors are truly different by income
level, a set of normalized F factors were calculated
by using the mean composite impedance values and the
standard deviation from the mean. Wornalized F
factors were developed by adjusting the constant
term (the A coefficient in the g.ztmnaequation) so
that the F factor would (arbitrarily)equal 100,000
at a composite impedance value, which waa 2.5 stan-
dard deviations less than the mean value. This com-
parison is shown in Figure 1. In essence, the ~-
parison shows that F factors for the lower incams
are less sensitive to the impedance values. It
would not appear reasonable, though, to use this
ccsoperisonto draw the conclusion that poorer people
like to travel sore than richer people. Perhaps a
better explanation is that the lower-income traveler
has fewer destinations to choose fron, thereby re-
ducing the impact of travel impedance on travel be-
havior, at least on diatrihution.

Most calibration reports on distribution models
give the observed and estimated trips stratified by
highway travel time. For distribution models cali-
brated by using highway time, these comparisons nor-
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reallyindicate a great deal of agreement between the
observed and ●stimated trips, which is only reason-
able because the F factors are directly related to
highway time. Becauae the spatial measure used in
this model was ccaposite impedance, of which highway
travel time was only one caponent, a comparison of
the observed and eathated trips meaaured againat
highway travel tine would be a useful validation
test, am mentioned previously. These comparison
are shown graphically in Figures 2-6. AS can be
seen from the data in these figures, the estimated

Figum2.Comps2i30noft2ipdi3tributionafo210wiwms
home—bamdworktips.

6,000

5,000

Fieum3.Compuisos30ft2ipdistfibsstiomsfor~ium
insomshonwbmed worktriw. 9,0C0

am

1,WR7

6,030

5,W0

4.WO

K’
E.

trips agree with the observed trips extremely veil.
The ccmpsrieons by income level are similar to nor-
mal gravity model trip-distribution comparisons.
When the trips for all incomes are combined (Fi9ure
6), the observed trip pattern is much smoother and
the estimated trips compare extremely well with the
observed trips.

After calibrating the F factora, the next step in
the calibration procedure was to aacertain the trip
movements that were inadequately simulated and that
had specific attributes that would be identifiable

ESTIMATED
TRIPS
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Figum4.Um~dmnoftrip tifihdonstihi@#um
inoonw horno-bawd work trips.
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Figure 5. Comparison of trip distributions for hi#r inmrne
homebnsed work trips.
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35,0W

30,W0

25SO0

m,ooo

15.000

in the future. The two most important movements
meeting theme criteria were the water crossings,
specifically the trip movements across the Missis-
sippi River and the Navigational Canal. Aa can be
seen from the data in Tablen 5-7, even the log sum
approach overestimated these trip movements for work
trips. River crossings are traditionally difficult
to estimate because there ia a psychological factor
associated with crossing this type of barrier. The
calibration method to estimate the K values was to
s~rize the observed and estimated tripe crossing
the barrier and calculate the K value as a rstio of
these two values. Because the K value appears troth
in the numerator and the denominator of the distri-
bution formula, this formulation does not estimate a
correct K ‘factor in one iteration. Several itera-
tions were required to develop K factors that pro-
duced adequate results. The final K factors are
given in Table 9.

TaMe9. Finzl Kfaz@n.

,

\
I

--—ESTIMATED TRIPS

.-_ OBSERVEO TRIPS

I I

K Factors

Purpose=dlnoome Aorom Across
Group’ MiniaippiRiver Navigational Canal

Home-bascdwork
1
2
3
4

Home-bamdother
1.
L

3
4

Non-horn-based

1
2

3
4

0.496
0,463
0.703
0.660

0.197
0.184
0.241
0.241

0.365
0.316
0.368
0.351

0.798
0.962
0.896
0.895

0.972
0.897
0.899
1.000

0.702
0.860
0.818
0.805

Note: Fortripc thstcrom bc.thwnt~y8, tlu MHpQl K’arnuMd.

‘b-marouwue&ddufoUow: l=low,2=low-mlddle,3 =Malr-msddle,and
4 = hlrh.

5 10 15 20 25 3a 35

PEAK HOUR HIGHWAY TRAvEL TIME
(MINUTESI

Once the F factors and K values were calibrated,
the full distribution model was applied by using
A(W. The resulting trip table was then compared
with the observed trip table by using several
tests. The results of these tests for the work trip
purpose are given in Tables 10-12. A primary check
on the distribution model was to ascertain if tbe
estimated trips had the same distribution as the ob-
served trips when the impedance rrteaaurewas highway
time or highway distance or both. For the work trip
model, this comparison was excellent. Total esti-
mated work trips had an average highway travel time
and highway distance that differed from observed
trips by lese than 0.2 percent. When the average
travel time was compared by income level, the re-
sults were slightly less accurate but well within
normal limits of acceptability. The number of irt-
trazonal trips was also compared, and the results
were favorable. Three screen-line checks were
made: trips across the Mississippi River, trips
across the Navigational Canal, and trips between
Orleans Parish and Jefferson Pariah. The model
overestimated the latter by L.44 percent, and most
of this error was in the lowest income quartile.

The hcae-based other and non-home-based results
are given in Table 13. The average travel time and
distance for observed and estimated trips were sim-
ilar. The model tended to undereatimete intrazonal
trips, but estimated travel acrosa both major water-
ways (the Mississippi River and the Navigational
Canal) ●xtremely well. However, the movements be-
tween Orleans Parish and Jefferson Parish were over-
estimated.

The income-related sensitivity of the home-based
other models to travel time is similar to that of
the work models in that low-income travelers are
less sensitive than hi9h-income travelers, as sh~
in Figure 7. However, this sensitivity is less pro-
nounced than for work trips.

Similsr models were calibrated for ir3ternal-
externel person tripe, taxi vehicle trips, internal-
externel truck trips, and internal-internal truck
tripn. They are discussed in the more detailed re-
port on distribution models for New Orleans (~).
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Table 10. Firrslcalibrationreurltaofhorns-basedworkgravitymodal:averagaim~-.
— .—

Highway Running Time Highway Distance Composite Impedance
—

Percentage Percentage Percentage
Income Groupa Observed Estimated Error Observed Estimated Error Obsen’ed
——

Estimated Error

1 10.17
.

10.56
2

3.83
10.18

4.29
10.31

4.49 4.66
1.28

62.19
4,29

62.18
4.35

-0.02

3 10.87 10.77
1.40

-0.92
56.34

4.72
56.14

4.68
-0.35

4 11.16 11.04
-0.85

-1.08
47,17 46.85

4.91 4.84
-0.68

-1.43 38.06 37.8S
All income gIOUPS 10.68 10.70

-0.55
0.19 4,61 4.62 0.22 48.94 48.73 -0.43

‘Income group$ are divided ssfoito.us: 1 = low, 2 = Iow.middle, 3 = hiah. middle, and4 = hish.

Table11.Finelcelibrationramdtaofhome.baaad ——— —.— ——__

vmrkgravitymodel:numberofintrazonaitripa. hrtrazonal Tripsm aPercentage

Income
of “rOtalTrips

Percentage
Group’ Observed Estimated Error Total Trips Observed Estimated

1 936 884 -5.56
~

61,994 1.51
2,202 2,438

1.43
10.72 105,327

3 2,895
2.09

3,477
2.31

20.10 120,191
4 3,113 2,906

2.41
-6.65

2.89
127,533 2.44 2.28

Allincome 9,146 9,705 6.11 415,045 2.20
groups

2.34

—— —___
aIncome asoupsare divided as follows: 1 =Iow, 2=low. middle, 3 ‘high-middle, arrd4= high.

Tabla 12. Final calibration resulti of horns-bzaadwork gravity nrodel: major
movement comparison.

Observed Estimated Percentage
Movement Trips Trips Error

Across Mississippi River 25,269 26,639 5.42
Across Navigational Canal 38,770 39,985 3.13
BetweenOrleans and 71,143 72,164 1.44

Jefferacm Parishes

SUMMARY

A complete set of distribution models was calibrated
for the New Orleans region. The original intent of
this calibration waa to prepare a set of distribu-
tion models stratified by inccinelevel and using a
combined impedance measure that would adequately re-
flect the travel time and coat of all models. This
design proved to be feaaible for home-baaed work
trips, thus producing an excellent trip-distribution
model. The log sum method of combining irapedancea
yielded batter results than the harmonic mean method.

For home-based other and non-home-baaed trips,
ehe use of a combined impedance measure produced a
model that overestimated long tripa. For this rea-
son, these models were calibratti by using off-peak
highway times. For the hosze-basedwork and horrte-
based other distribution models, the income strati-

fication produced F factors that were substantially
different by income level, but were logical, in that
the higher income strata were more aenaitive to
travel impedance. The F factora for the non-home-
baaed model showed only minor differences among in-
ccme strata. In all casea the F factors were cali-
brated by using the function described in the
documentation of program AQ4 and by using standard
statistical regression techniques. A set of K
values was required for all models for trip move-
ments across the Mississippi River and the Naviga-
tional Canal. The final screen-line checks were
quite accurater with the exception of the hoese-besed
other trip movements between Orleans and Jefferson

Tabla13.Finalaalibratfonmsultaofho~ otharandnon4rome-baaadgravitymodeb.

pariehes.
With respect to model validation, the results of

aPPlYin9 the models to 1980 conditions proved quite
satisfying. As reported by Schultz (see paper else-
where in this Record), the changes between 1960 and
1980 in New Orleans have been aubetantlal. Nonethe-
less, the 1980 eetimates of vehicle miles of travel
were within 5 percent of the observed data, which
indicate that the distribution (and modal-choice)
models performed adequately.

ACRWWLEO-T

The results given in this paper are frcm a study

performed for the Regional Planning Coanziasion(SW)
of Jefferson, Orleana, St. Bernard, and St. Tammany
parishes, Louisiana, which waa funded in part by

Homo-BasedOther Non-Home Baaed

Percentage Percentage
Measure observed Estimated Error Observed EstimatedError

Highwaymnningtime (mist) 7.891 7.864 -0.34 7.630 7.642 0.16
Highwaydiatance (mile) 3.186 3.225 1.22 3.089 3.118 0.94
No. of intrazonal tripa 90,632 72,593 -19.90 17,827 17,817 -0.06
Major movements

Across Mississippi River 14,941 15,022 0.54 5,520 5,575 1.00

Across Navigetiorra.1Canal 39,288 39,51s 0.58 7,746 7,825 1.02
Between Orleans and Jefferson Parishes 56,631 68,044 20.15 21,512 23,678 10.07
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Fi9urz7.Home-bNed
othzrnownalizedF IOo,ooo
fzotorsplotteda@rwt
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Development of a Travel-Demand Model Set for the

New Orleans Region

GORDON W.SCHULTZ

A completesetof travalderrramimodels wze cslibrzted for the New Orleans
region by using the 1S60 origindwtinstion survey. The general form of the
model set was szquentizl, with zzre being taken to iiwlude trenepotiion
system ohzrzzteristics in all submodsls of the modeling sat. Other unique fee-
tures of the model sat ware thzt (a) ell submodeis ware strztifii by income
quartilee; (b) the distribution modal used a composite impederrw that rom-
bined treval time and rests for sll modes, (c} the generation model used ac-
cessibility wsd Iozationel maeeuree,end (d) the exogenous input date, mquirzd
in forecasting, were limited to six dats items. The zalilemted models were ep-
plied to 1SS0 oondition$, and the resdting trzvel ●etimzses were tempered
with ground counts. This comperieon indiated dszt the model set oould
produze reaeonzbly ecaurate 20-year forezaets.

In 1980 the New Orleans Regional Planning Commission
(RpC) decided to update its travel-demend W.Sling
procedures to support ongoing transportation plan-
ning in the New Orleans region. A previous set of
models was developad in 1972. A review of these
models indicated a number of deficiencies that made
them inappropriate for the current planning environ-
ment, especially with respect to the modeling of
substantial new transit service and high-occupancy
vehicle (IN3V)incentives.

Because of limited resources available for this
model update, it was necessary to use an existing
home interview survey, which was taken in 1960,
rather than to conduct a limited new or igin-destina-
tion survey. A conservative estimate of the cost of
a limited survey Indicated that more than a third of
the available resources would be required to conduct
this survey. It waa alao observed that a set of
models based on the 1960 survey would allow the
study “teem to immediately make a 20-year forecast,
i.e., to 1980, which could be validated by using
existing ground counts.

It was judged that the available resources were
sufficient to develop a set of sophisticated models
that could be applied by using the standard trans-
portation planning computer programs. An initial
decision was made that the model aet would be imple-
mented by using the Urban Transportation Planning
System (UTPS) developed by UMTA and FEWA. Another
initial decision was that the general model struc-
ture would be the sequential model form (generation,
distribution, mode choice). It was believed that
this model structure gave the best assurance of suc-
cessfully calibrating the model set within the re-
sources available, and that by proper specification
most of tbe shortcomings of a sequential model
structure could be overcome or minimized.

In this paper the general philosophy and struc-
ture of the New Orleans travel-demand model set are
described, and the results of applying this model
set to the 1980 conditions are presented.

MODEL STRUCTUSX AND PHILOSOPIW

The goals of the New Orleans travel-demand model up-
date were to develop a model set that would include
transportation system characteristics for all major
travel functions, would be reasonably easy to apply
in the forecast mode, and would require a minimal
amount of ●xogenou.edata in the forecast mode. The
goal of incorporating transportation syetem char-
acteristics into all major travel function submodels
(i.e., generation, distribution, and mode choice) is

a fairly standard objective for a travel-demand act,
but in many cases the goal is not realized. The
ease-of-application goal is reasonable and obvious,
but there are many urban area umdel acts that re-
quire extremely large amounts of computer resources
and person hours to implement.

In many waye the goal of minimizing exogenous in-
put data is the key to producing logical forecasta
with a reasonable amount of resources. Model aeta
that require extremely detailed exogenous data
simply shift the possibility for errors to other
modeling efforts, impose a large expenditure of re-
sources on other planning groups, and contribute to
the phenomenon of adjusting the data so that the
answer is correct. It was the objective of this
study to constrain the ●xogenous input data to ele-
ments that are normally forecasted and can be eval-
uated for reaeonableneas by using other forecasts or
by using standard reasonableness checks.

The stated goals for the New Orleans travel-de-
mand model update led to the establishment of the
following objectives:

1. The trip-generation element of the model aet
should include not only socioeconomic and land uae
data, but it should also include locational measures
that describe the transportation system and the ur-
ban form of the area;

2. The distribution element of the model set
ehould incorporate all relevant transportation sye-
tem characteristics for all ❑odes of travel;

3. The modal-choice element of the model set
should be properly sensitive to transportation sys-
tem characteristics, socioeconomic measures, and
land use form, and the model should be applicable to
planned HOV incentives;

4. All elements of the model set should be
stratified by a socioeconomic characteristic that
measures the wealth of the traveler;

5. The model set should require a minimal amount
of exogenous data in the forecast mode, and this
data should lend itself to reasonablenesschecksf ancl

6. The procedures for forecasting with the model
set should use straightforward computer progrsme,
either UTPS programs or programs compatible with the
UTPS systeee,and these programs should be relatively
easy and inexpensive to apply.

There are two general types of model forma that meet
the first three objectives and that have been
developad in other urban ●reas: direct-demand
models and sequential modele. The direct-demand
structure is theoretically the better etructure for
including transportation system characteristics in
all elements of the model set. For this study,
though, it was believed that the resources required
to calibrate a direct-demand model set.would prob-
ably exceed the project’s budget, and that a sequen-
tial structure could be developed to meet all the
objectives. In addition, the sequential structure
allowed the project to have a fallback position in
the event that the initial-model spacificstions were
impossible to implement within the budget con-
straints (the fallbeck position being the standard
sequential model specification).
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The objective tO Stratify all
ments--generation, distribution, and
a socioeconomic characteristic that

the model ele-
mode choice--by
measures wealth

is not a unique proposal. Most trip-generation pro-
duction models use this type of stratification, and
many modal-choice models also have a stratification
based on wealth. The deficiency with most of these
model sets is that the distribution model is not
stratified by the weslth measure, and therefore
there is no connectivity among the submodels with
respect to the wealth measure. By performing a ccm-
plete stratification by the wealth measure, the
model set would have complete connectivity with re-
spect to this measure. That is, low-wealth trip ends
would be distributed by using a low-wealth impedance
measure, and these person trips could then be allo-
cated to each ❑ode by using a low-wealth modal-
choice formulation. The development of a distribu-
tion model stratified by a measure of wealth
presented no theoretical or practical problems. The
major impediment in the development of a fully
stratified set of travel-demand models was the
development of a stratified trip-generation attrac-
tion model. It was hypothesized at the beginning of
the project, though, that a wealth-stratified at-
traction model could be developed if proper atten-
tion was given to locational variables.

The last two objectives--minimal data inPUt and
ease in application--wereessential if the model set

was to be frequently used in the forecasting mode.
Model sets that require extremely large resources,
both in person hours and computer costs, have little
usefulness, regardless of their level of accuracy,
because most planning organizations have constrained
resources and tend to implement these expensive
model sets only once every 2 or 3 years. It should
be the intent of all organizations developing
travel-demand models that these models can be rea-
sonably used at least three or four times a year.

In summary, the philosophy for developing the New
Orleans travel-demandmodel set was to (a) develop a
sequential set of models completely stratified by a
measure of wealth, (b) have transportation system
characteristics present in each submodel, and (c)
require a minimal amount of exogenous input data.
Locational measures were anticipated to be signifi-
cant varisbles in the trip-generation model, and
measures representing time and cost for all modes
were to be explored as independentvariables for the
distribution model. Care was to be taken in the
development of the models to ensure a reeource-effi-
cient application methodology.

MODEL DEVELOPMENT

The final New Orleans travel-demand model set con-
sisted of three major models--generation, distribu-
tion, and mode choice--and six auxiliary models. The
study team was able to develop a model set by using
only six socioeconomic and land use data items along
with the normal set of transpatation system data
items. The following list gives a summary of the
exogenous dats input items:

1. Socioeconomic and land use data (at the zone
level)--population, households, retail ●mel-ntf
nonretail employment, area of zone~ and mean zonal
household income;

2. uighway system data (link 8Pecific)-~is-
tance, facility type, number of lanes, and toll; and

3. Transit system data--distance (link spe-
cific), facility type (link se=ific)~ travel time
for norrlocalroute links, headway (route specific),
and fares (interchangespecific).
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The use of Population and household to estimat~
travel demand is normal. The study teem would have
preferred to use a more detailed classification for
employment than retail and nonretail, but the baae
year data did not allow any finer stratification.
Traffic analysis zones were used to calculate grose
density measures, such as employment par acre. The
mean household income of a zone was chosen as the
only exogenous socioeconanic variable and was pri-
marily used to estimate the number of household in
each income quartile by zone. The project team con-
sidered whether to use income or automobile owner-
ship as the primary socioeconomic variable. Although
automobile ownership appears to have a greater ef-
fect on tripmeking and mode choice than income,
automobile ownerehlp was not choeen for the follow-
ing reasons.

1. There are many variables that influence auto-
mobile ownership. Some of the obvious variables are

household income, the availability and magnitude of
the transit system, the structure of the city in

terms of density, and general economic conditions.
The uee of automobile ownership aa a variable would
require a fairly detailed forecasting model (includ-
ing the use of an income measure), which was con-
sidered to be a difficult model to calibrate.

2. There are a considerable number of indepen-
dent forecasta of national and regional incrme
levels that can be used to evaluate the income esti-
mates used in the forecasts.

3. A recent study (~) hae indicated that houee-
hold trip rates are declining over time for a given
level of automobile ownership. In SOSIS casea the
decline ie more than 30 percent in a 10-year period.
This lack of temporal stability suggests that auto-
mobile ownership and trip generation may not be as
firmly related as previous studies indicated.

Becauee the model set requires only six eocbeco-
nomic and land use data items, the effort required
to develop forecaats should be minimized, thereby
allowing for a more rigorous asaesament of the input
data.

The specification of minimal exogenous data means
that this model set had to include a set of auxil-
iary models that would estimate values of variables
that in other model sets are simply specified as re-
quired data inputs. A suimary of these auxiliary
models is given in Table 1. The data developed fr~
these models include parking cost, highway terminal
time, an area-type classification, the stratifica-
tion of households by income quartile and family
size, and network speeda. Perhaps the moat important
auxiliary model was the procedure to stratify zonal
households by family size and income quartile. This
model was calibrated by using data from the 1960
origin-destination study and the 1960 census; the
model consisted of a set of stratified curves and a
procedure to ensure that the regional household and
population totals were balanced. The area-type
model claaaified zones into five urban area types:
central business dietrict (cBD), csD frin9e, urban
residential, suburban residential, and exurban. The
technique used to assign area types to zones was
developed with the sid of discriminant analysis (~)
and a standard statistical computer software package
(~). These area types were used in developing high-
way and transit link seeeda. The auxiliarY ~els
also contained procedures to estimate both highway
and transit link speeds. The highway network used
the UTPB program UROAD speed-capacity tables, which
allowed the user to specify highwsy speeds by area
type and highway fscility type. Transit speeds were
developed siailarly, in that local transit speede
were a function of area type and the highway facil-
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Tabla 1. 8umrnaryofWxUieryrnodals.

Model Measures Estimated Independent Variables Estimated Meaaures Are Usedin

Parking cost model Daiiy smd hourly parking cost Employment density
Highway terminal tune model

Modal~hoice model
Production and attraction terminal Employment and population Modal+hoice model

times density
Area-type model Stratification of zones into five Employment and population Highway and transit speed models

types of areas density
Income and family size stratification Stratification for each zone of Households, population, and Tripgeneration model

model households by income quartde mean household income
and family size

Transit speed model Peak and off-peak transit speeds Area type and highway facility Preparation of transit networks
for local transit routes type and travel times

Highway speed model Offjreak highway speeds Area type and highway facilky Preparation of h~hway networks
type and travel times

ity type. A special program was required to imple-
ment this model.

The trip-generation models were calibrated by
using a combination of cross-classificationanalysis
and regression analysia. The normal socioeconomic
and land use data were used In the model, but ac-
cessibility and locational variables were also found
to be aignlficant. The accessibility measurea were
defined as the number of jobs or households within a
given highway or transit travel time. The loca-
tional variable used waa the number of jobs or
householda within 0.75 mile. This waa interpreted
as a meaaure of the potential of a traveler to use a
noruttotorizedmode, i.e., walk. Obviously, as the
potential for using a nofuftotorizedmode is in-

creased, the probability for using a motorized mode
should decrease. It was found that for almost all
of the trip-generation submodes, this locational
variable had to be Included in the model to obtain
logical coefficients on the accessibility measures.
It was also found that the accessibility and loca-
tional measures were essential in estimating attrac-
tions by income level.

A detailed deacrlption of the trip-generation
model would be too long for this paper, but a short
description of the final home-based work trip equa-
tions will illustrate the use of the locational and
accessibility measures. The home-based vmtrk produc-
tion equations are given in Table 2. There are five
linear equations, one for each household size qroup;
each contains a constant, three income quartile dutst-
my variables, and three locational variables. The
constant and dummy variables are analogous to a
cross-classificationmodel with family size and in-
come quartiles being the independent variables. The
locational variables are (a) the number of jobs
(employees) within walking distance of the house-
hold, with the walking distance being defined as
0.75 mile; (b) the percentage of all joba within 30
min of highway drivinq tlme~ and (c) the percentage

Talrla2. l+omz-basadwor kprodurtio nzqtsztions.

of all jobs within 25 mln of transit travel time.

The walk potential measure (i.e., employees within
walking distance) will reduce the number of motor-
ized trips as the number of entployeee increase,
whereaa the two accesalbillty measures will chow an
increase in the trip rate as the accessibility in-
creases.

Point elasticities were calculated for each of
the three locational variablee for each strata of
houeehold size and income. Although these elastici-
ties varied for each strata, In general the walk po-
tential variable and the transit accessibility mea-
sure had the same elasticity (with, of course,
oPPosite si9nS)r whereae the highway accessibility
elasticity was approximately 3 times as large as the
other two elaaticitles.

To estlatate home-baeed work attraction by income
quartile, it was firet neceaaary to estimate the
employment by income quartile. The equatlone for ea-
timeting thie employment are ae followe (note that
in application, eetimated employees by income
normalized to total employment):

ESTIEMP(l)=TOTEMP X 0.09562+0.02S532[DURAT(I)]
+0.046435[ACRAT3(1)]

EST1EMP(2)=TOTEMP X 0.19560+0.021294[DURAT(2)]
+0.056881[ACRAT1(2)]

ESTIE~3) =TOTEMP X 0.25138+0.073811[DURAT(3)]
-0.028823(DURAT)
+0.052197[ACRAT1(3)]

EST1EMP(4)=TOTEMP X 0.21657-0.004334(DUILiT)
+0.042297[ACRAT4(4)]

where

ESTIEMP(i) =
ToTm4P =

DURAT(i) =

eetimate of income i employees;
total zonal employment (mean =
881.15);
ratio of income i dwelling units
within 0.75 mile to employtnent

Income Dummy Varmbles’
Famdy
Si2e Constant 1 2 3 EMPwK2b PHWYACC3’ PTRNACC1*

are

(1)

(2)

(3)

(4)

I 0.1215 -0.20750 0.01960 -0,07919 -43.000001949 0.0040951 0.0038508
1.2614 +.73882 -0.23995 -0,03878 -0.000012201

:
0.0040951 0,0038508

1.8393 -1.07462 +.45938 4.24010 -0.000019252 0.0040951 0.0038508

4 1.7926 43.94112 -0.25897 4.16738 -0.000012401 0.0040951 0.0038508

>5 1.9193 -0.87939 -0.50307 4.24072 43.000014707 0.0040951 0.0038508

‘Income dummy vuiables redefined as follows: 1 =Iowest income quartile, 2=medium-tow mcnmequsMle,and 3=me.
dium.high income q”uejke.

b EMPWK2 = eMploYeEs within 0.75 mfle (mem = 5962.2).
~PHWACC3= percentage ofr~ti”al employment within 30.m~peak h&bwaythe (man= 92.77).

aPTRNACCl =percentaae ofreaioml employ me"ttithti 25.mtipesktranut time (mean =22.38).
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DURAT =

ACRATl(i) ●

ACRAT3

ACRAT4

i) =

i) =

wlthln 0.75 mile (weighted means:

income 1 = 0.2172, income 2 =
0.2077, Income 3 = 0.1932);
ratio of dwelling units within 0.75
mile to employment within 0.75 mile
(weightedmean = 0.8082);
ratio of percentage of income i
dwelling units within 25-reinpeak-
hour transit time to percentage of
all dwelling units within 25-rein
peak-hour transit time (weighted
means: income 2 = 1.0449, income
3 = 0.9113);
same as ACRAT1(I), except for 35-rein
peak-hour transit time (weightedmean
for income 1 = 1.1253); and
same as ACRATl(i), except for 40-min
peak hour transit time (weightedmean
for Income 4 = 0.9273).

These equations use two types of locational vari-
ables: (a)-the ratio of dwe~~ing units within walk-
ing distance (0.75 mile) to the number of employees
within walking distance, and (b) the ratio of one
income strata of household to all households within
a given transit travel time range. These independent
variables are relative variables In that they de-
scribe the mix of land use rather than the absolute
value of the land use. The walk petentlal variable--
the ratio of dwelling units to employees within
walking distance--deacrlbes the mix of residential
units and employment within a given area. For the
lower income categories, the employment for these
categories increases as the number of households in
these categories increases, whereas for the highest
income quartile the employment will decrease for
this category when the number of total households
increases. In other words, the model is showing that
there Is a relationship between low-income employ-
ment and low-income households, but the high-lnccme
e~lo~nt tends to be In areas with little or no
residential units. The accessibility variable--the
ratio of one income strata of households to all
households for a given transit travel time range--is
always positive; that la, as the number of house-
holds for a given inccme group increases, the number
of employees for the same income qroup increases.

When the number of employees for each income
quartile is known, estimating home-based work at-
tractions by income quartile is fairly simple. The
equations for this model are as follows:

ESTATR(l)=EMP(l)X{1.3279-2.6367x10-’[DUWLK(1)]}

EsTATR(2)=EMP(2)x{l.3463-1.4483X10-S[DUWLK(2)]}

●
ES’TATR(3)=EMP(3)X{I.3419-5.8307x10+[DUWLK(3)]}

ESTATR(4)=EMP(4)X{I.3573-1.7085X1O-5[DUWLK(4)]}

where

ESTATR(i) =

EMF

DUWLK

i) =

i) =

estimated work attractions by
i employees,

(5)

(6)

(7)

(8)

income

number of income i employees (weiqhted
means: inccsne1 = 132.59, income 2 =
225.14, Income 3 = 254.20, income 4 =
269.22), and
number of income i dwellinq unita
within 0.75 mile (weiqhtedmeans:
income 1 = 2604.3, income 2 = 1140.7,
income 3 = 1075.6, income 4 = 1122.5).

This model Is a set of linear equations that con-
tains a constant and a locational varisble--percent-
age of dwelling units within walking distance. The
constant can be considered the average number of at-
tractlona per employee if no households are within

walking distance. The locational variable has the
correct sign, in that, as the number of households
inCreaSeS, the number of motorized work attraction
decreases, but it does not contribute significantly
to the trip rate; at the mean, the change in the
trip rate is less than 2 percent.

The distribution model was specified as a normal
gravity model. Attempts were made to use the modal-
choice model equations to calculate a composite
impedance by combining travel times and costs for
all modes. This attempt was extremely successful
for the home-based work tripa, but it was not ccal-
pletely successful for other trip purposes. Highway
travel time was thus used as the impedance measure
for these other purposes. All the distribution
models were stratified by Income quartiles, and it
was found that the low-income travelers were less
sensitive to the impedance meaeure than were the
high-income travelers. The modal-choice model was a
multinominalloqit model that used three modes: tran-
sit, drive alone, and qroup automobile. A submodel
was used to split the group mode Into integer auto-
mobile occupancies (two persons per automobile,
three persons per automobile, and so forth). The
initial modal-choice model was calibrated on a dis-
aggregate level by usinq the UTPS program OLOGIT and
then validated at the aggregate level. The use of
integer automobile occupancies allowed the applica-
tion methodology to be configured in a manner that
would allow HOV incentives to be explicitly con-
sidered.

Because of the model specification, the normal
forecasting procedure sequence (i.e., generation,
distribution, and mode choice) was not applicable.
For the New Orleans model set, the modal-choice
model must be applied before distribution in order
to generate the composite impedances; the general
flow of the model application is shown in Figure 1.
The modal “probabilities, generated by the modal-
choice model, can be saved and used to split the
person trip distribution or, if computer time is
less costly than storage, the modal-choice model can
be applied again after the distribution model. Al-
though the entire model set Is fairly Intricate, It
does not use excessive computer resources. The
central processing unit (CPO) time for the entire
chain (468 traffic analysis zones) Is approximately
1.5 hr on an ISW system 370 model 158.

In summary, the New Orleans travel-demand models
were developed within the framework of the goals and
objectives specified for the model act. The de-
veloped models are unique in that all models are
stratified by Income quartiles, the generation model
includes accessibility and locational measures, and
the hrsue-beeadwork distribution mmdel uses a ccm-
posite impedance measure. The goal of using trans-
portation system characteristics in all major sub-
models was essentially met, although the inability
to use the composite impedance measures for the non-
work trip-diatribution models was somewhat disap-
pointing. The development of six auxiliary mcdels
minimized the number of exogenous data items re-
quired for the model set, thereby reducin9 the ef-
fort required to apply the models and maximizing the
objectivity of the forecasts.

K)OEL APPLICATION RESULTS

A practical advantage of calibrating a travel-demand
model set by using an old origin-destination survey
was that the first forecast could use data for the
present year and this forecast could be validated by
using ground counts and other data sources. The Wew

Orleans model set, which was calibrated by using the
1960 origin-destination survey, was aePlied for the
year 1980. The resultinq estimates compared quite
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favorably with actual
census data.

The comparison of
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ground counts and preliminary The Louisiana Department of Transportation and
Development developed a 1978 estimate of daily ve-

the 1980 estimated data with hicle miles of travel (vMT) primarily from ground
observed data ia given in Table 3. The number of counts, and this estimate ie approximately
households and the population for 1980 had been es- higher than the model estimates. The model
timeted before the publication of the preliminary mated traneit tripe by approximately 3
1980 census data, and theee eetimetee appear to be Theee rather gross comparisons indicate
slightly low (approximately5 percent for households model aet waa able to forecaat trips for
and 1 percent for population). time period with a reasonable degree of
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although there is some indication that
slightly underestimated.

In the past 20 years there has been a
change in travel patterns in most urban

VMT may be

significant
areas. The

data in Table 4 present some travel measures indica-
tive of these changes. The estimated increase in
travel per person is approximately 16 percent,
whereas the average trip length has increased by
more than 20 percent. More significantly, the aver-
age VNT per person is estimated to have increased by

aeeroximatelY 100 Percent during the past 20 years.

Table4.Comparinwrof1880datawith1880d-m.

Percentage
Item 1960 1980 Change

Perrnntripsper person
Person trips per household

Avg trip length (miputes

ofhighwaytime)
DailyVMT perperson
Percentagetransit(total)
Percentage transit (CBD)
Vehicle occupancy (total)

Vehicle occupancy (CBD)

1.41 1.63 +1 5.6
4,62 4.75 +2.6
8.44 10.36 +22.7

3,71 7.44 +100,5
25.43 12.53 -50.7
54.14 36.71 -32.2
1.477 1.480 +0.2
1.487 1.365 -a .0

This growth, which represents approximately a 3.5
percent per year increase, was so substantial that
growth rates from other urban areas were obtained to
ascertain the reasonableness of this increase. The
annual growth rate of VMT per person for the Vir-
ginia suburbs of Washington, D.C. (the counties of
Arlington, Fairfax, and Prince William) was deter-
mined to be approximately 2.3 percent per year be-
tween 1968 and 1978 (4,5). This increase is not
quite as large as the–f&tcasted New Orleans in-
crease, but It is in the same range. Transit rider-
ship as a proportion of the total travel market
decreased significantly between 1960 and 1980. The
percentage of transit for the region decreased by 50
percent, whereas the percentage of transit to the
CBD decreaaed by more than 30 percent. The model es-
timated only minor changes in vehicle occupancy,
which was unexpected. Higher gasoline and parking
coste probably account for the stable vehicle occu-
pancies, in spite of rising incomee.

Vehicle assignments were compared with ground
counts for five screen lines. In all casee the as-
signment volumes were lower than the ground counts.
‘fhisoccurred, in pert, because highway assignments
cannot always replicate double screen-line croseings
and short (intrazonal) trips; the 1960 survey data
revealed a 10 percent difference in assignment ver-
sus ground counts for one of these screen lines. The
available ground counts were also simple tube
counts, with no correction factor for multiaxle ve-
hicles. The study teem identified a range of errore
that could be associated with the ground counts and
the computer assignments, and two sets of error cor-
rections were prepared. The ratio of assignments to
ground counts for five screen lines, with the two
error ranges, is given in Table 5. Perhaps the sig-
nificant element of the screen-line compariaone ia
that the ratio of assigned volumes to ground counts
are similar, which indicates that the model eet es-
timated the distribution of travel correctly.

In summery, the Wew Orleane model eet, calibrated
on 1960 data, wae used to estimate 1980 travel. This
is equivalent to a 20-year forecast. The reeulting
travel patterne were similar to obeerved data,
thereby providing regional planners with greater ae-
eurance that this model aet could be ueed to fore-
cast future travel.

Tablg5. ~Wn.line cempari~n$.

Assigned VolumetoGroundCountRatio

With f-east With Nighest
Screen-Line Forecast/ Error Cor- Error COr-
Deacription Ground Count rection rection

MisaissipplIUvercrossings0.870 1.086 1.206
Navigational Canal 0.746 0.930 1.034
Jefferson Pariah– 0.717 0.894 0.993

OrIeansPariahBOundaw
on East Bank

Harveycanal 0.603 1 0.753 0.836
DOnnerCanal 0.714 0.890 0.989

CONCLUSIONS

A complete set of travel-demand models was cali-
brated for the New Orleans region by using 1960
travel data. These models were successfully applied
to 1980 conditions within a reasonable degree of ac-
curacy, although the observed data were only avail-
able at an aggregate level. Although the physical
changes in the transportation system between 1960
and 1980 were not radical (consistingprimarily of a
few freeway additions), the changes in aggregate
travel patterne were substantial. The average VNT
per person increased by approximately 100 percent,
whereas the transit market share decreased by 50
percent. There was also a substantial change in
econcmic conditions between 1960 and 1980. The con-
sumer price index increased by more than 170 per-
cent, whereas per capita income increased by more
than 60 percent, in constant dollars. Most as-
suredly, changes of this magnitude would be con-
sidered significant changes for any forecast. The
successful application of the model to 1980 condi-
tions, coupled with the substantial changes in the
travel petterns and economic conditions between 1960
and 1980, would imply that an appropriately speci-
fied travel-demand model set may indeed be tempo-
rarily stable (within reason), and that the use of
old eurvey data is not appropriate in investigating
travel behavior and in calibrating travel-demand
models.

The calibrated travel-demand model set is fairly
unique in that all submodels were stratified by in-
ccme quartiles. Other noteworthy especta of the
model were the use of a composite impedance measure
in the distribution model, the use of accessibility
and locational factore in the tr@-generation rncdel,
and the uee of minimal exogenous input data.

A~

The data in this paper are based on the results of a
study performed by the RPC of Jefferson, Orleans,
St. Bernard, and St. Tammeny parishes in Louisiana.
This research was funded in part by U14TA,U.S. De-
partment of Transportation. I would like to thank
Dennis 1).Striz of the RPC and Poster de la Housaaye
of the Mayorcs Office of Transit Administration,
city of New Orleane, for their aeeistance, comments,
and support in the completion of the work reported
herein.
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Estimation and Use of Dynamic Transaction Models of
Automobile Ownership

IRITHOCHERMAN, JOSEPHN.PRASHKER,AND MOSHE BEN.AKIVA
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EazhstratumwasdrawnatrandomfromUror-o populationofthoHdfs
urbanizzd●rea.Themodelscstimatadintfrigpzpsr●rsszndtii.tcattributztof
thetypeofosr,housaholdZlrarsoteriatizs,sndaooarribilitybypublictrantit
W@ privatzcar.Thsmcdolstzkscxplieit8ooountofthswzrwzationocrtithat
areinwrrsdwhwropzrztirrgintfrsoarmarlmt.

The purpose of this paper is to develop and test a
dynamic demand model for automobiles. Understanding
the demand for cars has always been an important
consideration in transportation studies. In recent
years the crmpcsition of the car market has become a
key factor in the evaluation of energy-consumption
policies. The relative roles of purchase price and
usage costs in determining car choice are of inter-
est to policy decision makers. This is especially
true in a country such as Israel, where cara and
fuel are taxed at high levels. ~us changes in the
structure of these taxes can be used to achieve
policy goals, such as increasing the share of smell
cars. In Israel, car purchase and use also affeet
the balance of payments, because almost all the cars
sold and all the oil consumed are imported.

The market for private cars in Israel is charac-
terized by two major aspecta. First, the level of
ownership ia relatively low compared with North
America and Western Europe, where a third of the
households (40 percent in the major urban areas) own
cars, and of these only about 6 percent (2 to 3
percent of the total population) own more than one
car. Growth of the private car fleet still occurs
mainly by purchase of a first car.

The second important characteristic of the
Israeli car market lies in the ccmpcaition of the
car stock. Most of the cars in Israel are small
European cara, with only a smell percentage of U.S.
made cars, one popular Japsneae brand (Subaru)~ and
two domestic models that are asaetabled in Israel.
The Israeli car fleet ia heterogeneous and includes
scores of different makes. The typical car in Israel
is older than in the United States. About 60 percent
of all cars are more than 5 years old, with 20 per-
cent more than 10 years old.

These characteristics imply that the usual cate-
gorization of cars into subcompact, compact, and so

forth, used in some models of car type choice (~,~)
is not valid for the Israeli market, as almost all
cars fall in the subcompact category. Also, the
relevant ownership levels are zero and one. Owner-
ship of two or more cars may become of interest in
the future, but any attempt to model this phenomenon
now will require special data-collectionefforta.

In ~ry, a practical model of the Israeli car
market may confine itself to zero- and l-car house-
holds should deal with holding or purchase of all
cars, new or old; and should be able to describe the
determinants of growth in the market.

MODELING APPROACH

The model developed in this study is a disaggregate,
dynamic transactions model for level of ownership
and type of car owned. As its name implies, the
decision process involved in buying or replacing a
car at the household level is the model studied.
The model is dynamic in the sense that level of
ownership and type of car owned during the previous
time period are assumed to influence decisions about
transactions made during the current (modeled) time
period.

The key aspecta of the model developed here are
aa follows.

1. The model is dynamic. It uses data on pre-
vious car holdings and includes a detailed treatment
of transaction costs.

2. It ia a transaction model that concentrates
on changea in automobile holdings.

3. It Is a nested lcgit model of the decision to
transact and then the choice of car type given a
transaction.

4. It describes the Israeli ●arket, which may be
more representative of conditions in some European
or developing countries than in North America in
terms of type, composition, and levels of ownership.

THEORETICAL ~Rl(

Previous Disaggrwate Automobile ownership Models

The development of the discrete choice econometric
techniques facilitated a disaggregate approach to
the modeling of car ownership. The first studies
dealt with level of ownership, usually as a joint
decision with mode to wrk ~-~).

Leve and Train (4) studied the choice of new
vehicles by size clasm. Manski and Sherman (~)
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developed a car type choice model where the car
alternatives were defined by make, model, and vin-
tage. ?lenaherand J4anefield(~) suggested a nested
logit model of automobile acquisition and type
choice and presented some preliminary results. The
car types were grouped into three claases according
to fuel consumption. A different approach to model
automobile market shares was applied by Cardell and
Dunbar (~ and by Soyd and MeUmen (~. They
estimated a logit choice model with random coeffi-
cients by using aggregate market share data (~.

Almost all the studies mentioned used etatic
holding models. Manski and Sherman” (Q) used an

a99re9ate estimate of the proportion of cars pur-
chaaed during the previoue year as an external
estimate of a conntant transactioncost.

Rationale for a Dvnemic Model

The importance of a dynamic model structure stems
from the following observations.

1. Transaction coats: With time, the car owned
by a household gete older and come of ita attributes
change, and the car may no longer match the require-
ment of the household. Also, the characteristics
of the household may alter, thereby causing further
changes in the relative attractiveneee of the var-
ious car alternatives. Nevertheless, cars are usu-
ally kept for a number of years (in Israel the aver-
age holding period is 3.5 years). The reaaon for
this phenomenon ia that the process of selling and
buying a car involves significant transaction costs.
A static model assumes a perfectly competitive
market with no transaction costs. A dynamic model,
on the other hand, allows for the inclusion of vari-
ables that measure these costs.

2. Brand loyalty: Brand loyalty is a well-known
marketing phenomenon, which is apparent in the car
market. It is revealed in the tendency of households
to buy a new car of the same make, or ●ven the same
model, as that of a previous car. Brand-loyalty
reflects lower information acquisition coete and
idiosyncratic tastes. Allowing for a brand-loyalty
effect in the car type choice model imposes a dy-
namic structure.

3. Income ●ffect: The money received from sell-
ing an old car may be used toward the purchase of
another car, ao that, all else being equal, a house-
hold with a car during time period t - 1 may be able
at the t to spend more money on its new car than a
household without a car in the previous period. In
general, knowledge of the choice made in the last
time period provides useful information for the pre-
diction of the choice during the current period.
This information can easily be obtained in a house-
hold survey. Omitting such information may not only
weaken the explanatory power of the mode~, but also
may induce biases in the esthetes of the parameters.

on the other hand, a dynamic model introduces
econometric difficulties. If the error terms of a
model are serially correlated, then the error term
will be correlated with lagged explanatory vari-
ables. This means that the use of a dynamic model
structure requires the assumption of serial indepen-
dence.

It was assumed that there was no serial correla-
tion, thus allowing for the use of a dynamic model.
This decision ia justified if the biases caused by
violation of serial independence are small compared
with the advantagea of a dynamic characterization.

Behavioral Framework

follows. Every time period (a year was chosen to
avoid the effects of seasonal variationa and also
because new car models come out yearly), each house-
hold evaluates its current car holdings and decides
whether to tranaact in the car market or not. A
transaction may mesn buyhg, buytng and selling, or
just selling. If the decision involves buying a
car, then the type of car in terms of make, model,
and vintage is also decided on.

The household is assumed to act as a utility
maximizer, that is, the household assigns a utility
value to each of the alternatives based on the at-
tributes of the alternative and the costs involved,
including the transaction costs. The alternatives
that the households face are either do-nothing or
transact in the car msrket by buying a specific type
of car or selling the exieting car or both. The
household will decide to transact when the utility
of one of the poaaible alternative is greater than
the utility of the current state.

The decision to transact and the choice of car
type are aaaumed to be based on last year’s holdings
and current socioeconomic status. This results in a
first-order Merkov process. This is not an essential
assumption to the model, but it is imposed by data-
collection limitations and the relative eaee in
using the model for predictions.

The dependence on only last year’a holding may be
justified by realizing that, because of the rela-
tively long car-holding period, the most recent car
holding has the strongest impact on the current
decision. Furthermore, some of the influence of
past history is captured by the laat holding.

Future expectations probably influence the deci-
sion process; for example, a household ueually pur-
chases a car with an a priori intention of keeping
it for a fixed number of yeare. Also, expectations
about future earnings and use of the car may enter
the process. Unfortunately, it is difficult to
collect reliable data on future expectations.

In the models presented the possible transactions
are either buying (for households that did not own a
car last year) or replacing (for households that
owned a car). The possibility of buying a second
car is omitted because, aa previously mentioned, in
Israel more than 95 percent of the households have
zero or one car.

Another option that is not considered here is
selling only. l%is restriction stems from the nature
of the data. In reality, this type of transaction
is rare in Israel. However, it can still be allowed
in the aggregate, for example, as a function of age
of head of household, when the model is used for
prediction.

Model Structure

Formally, the model can be stated as follows. Let
jli ’indicatethe transition from owning a car of type
i in time period t - 1 to owning a car of type j in
time period t, where i = O is the state of not own-
ing a car at time t - 1. Assume that

Ufi@=V~li)+6J (1)

where

u(jti) = random utility of the (jIi) tran-
sition,

V(jli) = average utility of the (jli) tran-
sition, and

rj = a disturbance that represents unob-
served utility-of alternative j.

The error terms are assumed to have the following

The behavioral framework assumed in this study is as joint probability distribution:
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Nei,,ej,. .,ck$...)=CX{CXp(ppC~C~

(2)

This is a apaclal case of the generalized ●xtreme

value (GEV) family of distribution functions devel-

oped by McFadden (~. The marginal distributions
of c

k
and ck for all k are guabel (0,11).

T e firat term inside the brackets [-exp (-IICi)l
refers to the alternative of no transaction; the
second term ([.texp(-ck)]u)refera to all the alter-
natives that involve a transaction~ and u is a
measure of similarity of the unobserved attributes
among the transaction alternatives.

It has been shown by McFadden (1.2)and Ben-Aklva
and Francola (13J that the assumption of the GBV
distribution on the error terms results letthe fol-
lowing choice probabilities:

FYjli)= P(jltr, i) P(trli) (3)

I
l/{l+exp[-*(V~,lO+ IJ]),fOri=O

P(trli)= o</.4)<l;o<ul<l (4)

l/{lieXP[-P~(V~~li+I,)]J,fori*O

~ Itr, 1) = eXp(vj lL)/k~iCXP(vk I i), J # i

where the expected maximum
car types is Ii = in Zexp

Ir#l

(5)

utility from available
(vkli); and Vtrli is an

averqe utility component of the transition from
state i that is equal for all alternative transac-
tions (where tr denotes transaction). The subscript
O denotes no car owned at time t - 1. The subscript
i for i # O indicates that one car of type i was
owned at time t - 1.

The choice probabilities describe a dynamic
nested logit model with two declslon levels. The
first level decision la whetter to transact or not,
and the second (lower) level decision ia on the type
of car to be purchased, which la conditional on a
daciaion to transact.

The choice probabilities of the first stage have
a logit form with scale parameter u and with Ii
(a composite variable frorsthe lower-level model).
The choice probabilities of the second level have
the logit form with scale parameter normalized to
equal one. The particular form of the GNV distribu-
tion that was assumed was chosen because it imposes
a nested structure in the choice probabilities,

which la behaviorally reasonable and computationally
feasible.

Aa mentioned before, two distinct typSS Of trans-
actions are allowed in the model, depending on the
level of ownership at time t - 1: buying a first car
or replacing an existing car. To enable different
specifications for the utilities associated with the
two types of transactions, two different tranaac-
tiona models were assumed. The two models can be
viewed as one aodel with all variables specific to
either of the two transaction types. Because the
two transactions are mutually exclusive (i.e., each
household has only one type of transaction in its
choice act), the estimation can h done separately.

The utilities of the automobile type choice model
are assumed to have the same functional form for all
households, regardless of their level of car owner-
ship at time t - 1. However, the specification may
include variables that are specific either to first-
time buyers or to previous owners. Thh assumption
simplifies the estimation process significantly. It
IMY he justlfled by realizing that once the decision
to transact was made, the household faces the same
set of alternatives, whether or not a previous car
was owned. The structure of the suggested model is
shown in Figure 1.

SPECIFICATIONOF TRE MODEL

The utility that a household derives from buying or
replacing a car 1s a function of the attributes of
the purchased car, the transaction costs, household
characteristics, and previous car characteristics.
In the following sections the variables in each of
these groups that were used to specify the model are
described.

Household Characteristics

Household characteristics affect car purchase deci-

sions in three ways:

1. The income and wealth of the household affect
the amount of money it ia willing or able to invest
in buying a car)

2. Some household characteristics, such as resi-
dential and work place locations and household size,
influence the need for a car and the type of car
suitable for the need8 of the Iiousohold\and

3. There exist household car choiea preferences
that can be modeled with variables such as age and
education.

In this study in-e was measured in four cate-
—

Figulvl.Stnkctursoftlwrrkodzl. t-1 ownership level and type o l,i

,onothin~udonothiq~eplace

first decision

A htype 1....j....k

second decision
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gories. Also used were proxy variables for income
and wealth, such as education, age, and work status.

Household characteristics that affect the need
for a vehicle can be divided into two groupa: vari-
ables that affect the relative utility of owning a
car compared with not owning one, and variables that
influence the relative utilities of different types
of vehicles. The first group consists mainly of
accessibility measures for work and other trips.
The characteristics that affect the type of car
chosen are household size and composition and the
need to use a car for work-related purposes. Indi-
vidual preferences were characterized mainly by
interacting age and education of the car user with
car attributes such as performance and age.

Attributes of Previous Car

The attributes of the care owned during the previous
time period affect the decision to replace a car and
the choice of car type. The replacement model in-
cludes the following attributes of the previous car:
age, engine size, number of years owned by the
household, and average mileage. Engine size serves
as a meaeure of durability, and mileage is a measure
of use.

Attributes of the previous car were also aseumed
to affect the car type choice. Purchase price for
each type was defined as its market price minus the
sale price of tbe exieting car. Brand loyalty was
captured by a dummy variable, which is set to 1 if
the type is of the same make as the previous car.

Attributes of Alternative Cars

The car attributes are of special interest because
they characterize the alternatives that a household
faces when choosing a car, thus enabling predictions
of the effects of policy and technological changee
on the market. The car attributes were selected
According to two criteria: (a) the attribute has to
be familiar to prospective car buyers, and (b) a
reliable data source for the attribute exists for
all the alternative car types. The following attri-
butes were selected: cost--retail price and fuel
efficiency; size-dimensions, weight, luggage space,
and engine size; performance-acceleration (measured
by HP/kg) and maximum speed; and other--age, manu-
facturing country, and number of cars of the same
type in the market.

The alternative-size variable (i.e., the number
of cars of the same type in the market) is also of
special interest. In the type choice model, each
type represents a group of elemental alternatives--
all the cars of the same make, model, year, and body
type on the market. All of these cars have identical
observed attributes. In this case it is necessary
to add to the utility of an alternative a normaliza-
tion term equal to the logarithm of the number of
elemental alternatives (fJINj).The coefficient of
UINj is a measure of the variation of the unobserved
attributes among cars of the eeme type. It is rea-
sonable to aesume that ae cars get older, the heter-
ogeneity among them increases. To enable different
coefficients for car types of different agee. the
alternative-eize variable wae introduced in the
model as a group of age-specific variablee. Four
type size variables were ueed for cars: 2 to 5, 6 to
9, 10 to 14, and 15 or more years old. The type-size
variable ie not used for new car types. The choice
probability for new cars does not depend on InNj

becausa the buyer faces only one new car that he
orders from the dealer. AS described in the next
section, the type-size variable ie also a proxy for
search cost so that the coefficients of these vari-

ables capture the total affect of alternative size
on the utility.

Transaction Costs

Transaction costs arise from two main sources:
search costs in terms of time and money that are
incurred in the process of searching for a car, and
information costs that are caused by inc~lete
knowledge of the attributes of alternative cars.
Thie model includes a detailed specification of the
transaction costs, eqreesed as functions of the

attributes of the previous car, the purchased car,
and the nature of the transaction.

In the process of teeting alternative model spec-
ifications, some simplifying and generalizing
assumptions had to be made with respect to the spec-
ification of transaction costs (TC). The specifica-
tion of TC in the car type utility function is as
follows:

where

6j,i =

:; :

‘~ -

6v~=
j

! 1, if make (j) = make (i)

[O, otherwise
number of cars of same make as j,
number of cars of same type ae j,
age of car j,

{

1, if vintage of car j belongs to
vintage group 1

0, otherwise

and al, a2, a3t and a41 are unknown parameters.
The first term represents brand loyalty. The

second term captures the market-size effect of all
cars of the same make. The third term captures the
effect of the number of cars of the same type on
search costs and the basic correction for alterna-
tive size of the utility. These effects are allowed
to vary with the age of the vehicle. The fourth
term represents the effect of the age of the vehicle
on the information acquisition costs through a num-
ber of age-specific dummy variablee. This effect is
measured relative to new cars.

The average TC for each of the two types of
transactions appears in the respective transaction
modele as pert of the alternative specific constante.

SAMPLING STRATEGY ANO ESTIMATION PROC!SDORE

The estimation of the models was carried out by
using the data from a sample of households that were
collected in the Haifa urban area during 1979. The
nested etructure of the model dictated the sampling
strategy. The upper-level (transaction) model re-
quires a sample of buyers and nonbuyers, with and
without a previous car. The lower-level (car type)
model requires for its estimation the households
that bought a car during the study year. A random
sample of households would not provide enough such
purchases unless it is large, because only 40 per-
cent of the households own care and less than one-
third of these houeeholde are expected to purchase a
car in a given year.

The eempling strategy used was choice based or
endogenously stratified, where the stratification
was based on the transaction decision. The total

se.mpleconsisted of a random sample with one sem-
pling quotient of households that did not transact
in the car market during the study year, and another
s~le with a greater quotient of households that
purchaeed a car during that year. About 500 houee-
holde that did not buy a car during the study year
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were surveyed, aa well as 700 households that pur-
chased a car in the same year.

The estimation of the model was carried out in
two atepa. First, the lower-level or conditional
model of car type wae estimated by using the data of
the purchase sample alone. Then the two samples
were combined, and the expected maximum utility from
all car types waa calculated for each household by
using the results of the type choice model estima-
tion. The combined choice-baaed sample was then
used to estimate the coefficients of the upper-level
models of transaction choice. The alternative spe-
cific constants were then corrected to produce con-
sistent estimates.

ESTIMATION RESULTS

TYPS Choice Model

The type choice model describes the choice of a car
type,which ie conditional on the decisio~ to buy a
car. The alternative cars are defined by make,
model, body type, and vintage; the choice set during
1978 consisted of 950 alternatives. To reduce the
cost of model estimation, a sample that included the
chosen alternative and 19 randomly selected alterna-
tives was selected for each household. This sampling
procedure results in consistent estimates of the
parameters (~).

The eatireation sample had 786 households that
purchased a car in 1978 in the Haifa area. The
estimation results are given in Table 1.

The coefficients of the cost variables indicate
that, all else being equal, a low price is a desired
attribute. The effect of price on the utility de-
creases as the householdra income increases. The
cost coefficient for households whose head is 45
years of age or older is not negative, but the over-
all effect of price and other variables is still
negative at all income levels. The only exception
is a small group of households of disabled drivers
that are exempt from taxes. These households are
allowed to sell the car at market price after a few
years of ownership, so that a higher cost means for
them higher gains. The last two d- variables in
the cost group measure the preference of older
people and people with higher incomes for more ex-
pensive cars. Age here is probably a proxy for
accumulationof wealth.

The effect of fuel efficiency of a car on its
choice probability is measured separately for owners
who pay for the fuel costs themselves and for owners
who are reimbursed by their business or employer.
Seth groups preferred fuel-efficient vehicles but,
as expected, the first group placed higher weight on
this attribute.

The data in Table 2 give the marginal rates of
substitution between purchase price snd fuel eoon-

Ov ● To understand these figures, consider an aver-
age travel rate of 2000 km per month. Savings of 1
I.L. (Israeli lira) per 1000 km amounte to 24 I.L. a
year. Por a used car with an average depreciation
rate of 10 percent a year, these savings are equal
to an increase of 240 I.L. to the purchase price.
For a new car that is held for 2 years and depreci-
ates 35 percent during this period, the savings are
equal tO an increase Of 420 I.L. These rough cal-
culations indicate that the marginal rates of sub-
stitutions obtained from the model for households
that pay for car operating costs sre reasonable.

TWO performance variables were tested during the
model estimation prrtcesa:maximum speed and acceler-
ation (measured by lIP/weight). 14eximum speed waa
found to have no effect on choice probabilities.
Acceleration was found to be a positive attribute
for users younger than 45 years of age, but it had
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coefficient A$ymptc.tk
varisblee Estimate t-Statimic

cost’
Coatwhen income <10,000 I.L.per month -0.148
Cost whenimcome l0,000-20,0001L. permontlr -0.137
Cost whenincome 20,000.30.0001 .L. oermonth -(.093
Coatwhenincome>30,000I~L.per m&rth
Coatwhenincome unknown
Cost when head of household> 45 years old
Cost when tas exempt
Dummy forhighincome sndexpermivecerb
Dummyforage45 orolderandexpenaive carb

Fuel efficiency
Literper1000km forowncrawhodo notget

full maintenance and opemting coat coverage
Literper1000km forownarswhoget full

maintenanceaod operating cost coverage
Sise

SizeofcarCfor5 ormorememberhouaaholds
Engineaire forreceivem offuflmaintensnce

coatsoraelf+mployed
Dummyforsmall cd snd l-to2-rrremher

households
Luggagespats when car not used for work
Luggagespace whencaruavdforwork
Performance
HP/weightwhen user <30 years old
HP/weightwhenuaer 3045yearsold

Transaction costs and alternative sire
Brandloyaltydummy
!?rrnumberofcaranme makex100
Qrralternative sire for cars aged 2-9 yrara
!?nalternativeaise fOrcanaged10-14 yean
!hralternstivesire formaged150r moreyedrr
Dummyforcars aged 150rmoreyears
Dummyforcsra aged 10-14years
Dummyforcarsaged 2-9yeara

Other
Age of w when main user< 30 years old
Ageofcarforfti car
Dummyforcararnade inlmsel

-0,072
-0.086

0.0029
0.214
0.723
1.19

-0.0224

-0.0092

0.0111
0.0564

0.470

-0.0059
0.0034

0.872
1.89

1.48

0.248
0.868

K).493
0.904

-3.67
-4.76

-6.64

0.0S6
0.107
0.583

-5.36
-8.40
-5.22
-2.70
-3.31

0.134
6.62
1.97
4.38

-4.69

-1.15

1.38
2.69

2,28

-1.89
1.05

1.72
4.41

10.6
4.48

15.8
6.79
6.60

-5.80
-10.1
-17.8

2.47
S.40
4.15

Note: NumWrofhounholds .786, rntmber ofobwrvmt&ru =14,834, C~=-l,S43.79,
and-2(20-f@ =1,609.7.

%ostiadcllrwdss purchanprktor rmdep#iaoofprcvIous SM.
bExp.mtvsrar.au Wfthpsrahswvafu@3d6hertlmntbcma31u!(120,000LL.).
~Cudm. kr13thx wfdtb(in cm)/1000.
smst3ar=*r@n*duupt01300ss.

Price Premium (1.L.) to Save 1 IL per 1000 km in Fuel Costs

FuUCarCrmt,Not Covered Full CarCoat, Covered

Income <45 Yeua >45 YVUX <45 Yesra >45 Yesrs
(LL. 000s) Old old Old Old

<IO 199 202 83 85
10-20 215 219 90
20-30 321 329 132 1?:
>30 341 426 170 178

no effect on the decisions of older users. This
attribute has a stronger weight for users in the age
group 30 to 45 than on younger users. A possible
explanation is that the latter group, which has more
limited resources, views acceleration as a luxury
and puts more emphasis on other, more essential
equalities. It is interesting to note that in the
14anskiand Sherman model (~), acceleration had nega-
tive coefficients for all age groups.

All measures of the transaction ooeta have highly
significant coefficients. The coefficients of the
type-sise variables are positive and smaller than 1,
as expected. The highly significant and negative
coefficients of the three vintage dumy variables
represent the effect of lower trsneaction costs
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involved in purchasing a new car, as well as the
effects of other desired qualities of a new car,
such as reliability and prestige. The different
magnitudes of the three coefficients represent the
effects of unmeasured attributes that are related to
either age or vintage of the cara.

The other two age variablea meaaure the prefer-
ence for old cars dieplayed by young buyers and by
first-time buyera. In part this represents more
limited resources, but it may also indicate a leeser
concern for reliability on the part of inexperienced
buyers and young users.

The last dummy variable for locally assembled
cara represents a preference for these cars that
cannot be explainad by their lower prices.

To examine the goodness of fit between the eeti-
fnetad and obaervad aggregate choice probabilities
for the sample, the 95o car types were groupad ac-
cording to engine size and vintage. Generally, a
satisfactory fit between the estimated and observed
probabilities was revealed, and none of the differ-
ences was greater than 3 percent.

Purchase Model for Households Without a Vehicle

The purchase model for households without a vehicle
describes the purchase decision in year t for house-
holds that did not own a car in year t - 1. The
model was estimated with a sample of 618 households,
about half of which came from a random sample of
households in the fiaifaarea and the other half from
a random sample of car buyers from the sensearea.
The eatiraationresults are given in Table 3. All
coefficients In the model have the expected signs.

Tds103.Etimtionr-lti+lWitmddofmrWtiawd-isiafor
households without vahidsa.
—

Coefficient Asymptotic
No. Variable Estimate t-Statistic

One-adult hou8ehol& -1.04 -2.96
; Income >10,000 LL. 0.498 1.92
3 Income not reported, head of household -0.06 -0.15

employed
4 Hradofhouashold self-employed 0.699 1.52
5 Occupation of hsad of houarhold- 0.624 2.31

academicormsnagerkal
6 Educetionofhaad ofhouashold-more 0.416 1.88

than 12 ysara
7 Age of head ofhousehold when older -0.0093 -2.56

thsn 50
8 Use of car on Saturday (1 = ysaand -0.409 -1.63

2 = no)
9 Travel time to work by bus 0.0185 3.S6

10 Traveltimetoworkbycar -0.0131 -1.70
11 Walkingdiatanceto busstop (inrninutes) 0.142 4.41
12 0rrmmyf0rpurd2asa alternative -6.5 -3.55

(rorrected)-
13 Expected maximum utikity from the car 0.512 3.22

type choice (!2s3sum)

Note: Number of obsssvstlnns = 618; t~ = -339.S6; ●nd -2(f,0 - t~) = 177.60, df.13.

Attributes 1-6 represent the financial ability to
purchase a car; they include income and some socio-
d.amographic descriptors that are correlated with
potential earninga. Attributes 8-12 represent the
need for a car. They include the following accesal-
bility measures: travel time to work by car and by
bus, walking distance to the nearest bus stop, and a
proxy to the need for a car for leisure trips, that
is, traveling on the Sabbath, when public transpor-
tation service is significantly reduced.

The variable age of head of household when older
than 50 representa the tendancy to change that is
associated with age as well as the increasing dif-

ficulty of acquiring a driver’s license. The last
variable ia the expected maximum utility that the
household derives from the car choice, given that a
decision is made to own a car.

The data in Table 4 demonstrate the influence of
socioeconomic and accessibility attributes on pur-
chase probabilities. The effect of the relative
accessibility by bus and by car ie especially sig-
nificant; for example, when travel time to work ia
10 min by car and 30 min by bus, the purchase proba-
bility for a blue-collar employee (column 3 in Table
4) iS 0.08. When travel time to work by car in-
creaaes to 20 min and by bus to 60 rein,the proba-
bility that the same household will purchase a car
more than triples to 0.26 (column 6 in Table 4).

Ttble 4. Expactad purahzaaprobabilities rnmputad for hwaahohks with
variousattribtttas ttmtdidnotown arzrirrthepravinus period.
—

Attribute Values by Household Number

Attribute 1 234567

No. of adults in house-
hold

Houaeholdincome
Workstatus of head of

household
Occupation of hesd of

household
Education of hsad of

household
Age of head of

household
Use of car on Saturday
Travel time to work by

bus
Travel time to work by

car
Walkingdistance to bus

stop
Inclusive value

Purchass probability

2

;E

AM

15

45

Yes
o

0

2

6

0.14

2

;E

AM

15

45

Yes
30

10

3

6

0.22

2 12

1 1
EMP EMP ;E

BC BC AM

10 10 15

45 55 45

Yes Yes Yes
30 30 60

10 10 20

33 10

666

0.08 0.02 0.54

2 1

1 1
EMP EMP

BC BC

10 10

45 55

Yes Yre
60 60

20 20

10 10

66

0.26 0.07

Note: SE . sstf employed, AM = ●UdemIc or msmgsrlst, EMP=employee, and
LW=bluecolisr.

Purchase f40delfor Households Already
Owning a Vehicle

The purchase model for households already owning a
vehicle describes the probability that a household
will replace its car during a certain year, given
the socioeconomic descriptors of the household and
attributes of the existing car. The estimation
results are given in Table 5.

AW unexpected finding waa that high income re-
ducee the probability of replacing a car. This

result is strengthened by the negative coefficients
of other attribute that are correlated with @xx6e,
such aa ●duration, work atatusp and =vera9e of car
operating and maintenance coste.

Age of head of household hae a negative effect on
the probability of replacing the car. So does being

a one-adult household, especially if this adult is a
woman. It is possible that women and older parsons
face higher transaction coats. As expected, house-
hold that are exempt from taxes have a higher pur-
chase probability. The exemption ie generally given
to disabled people who need a reliable vehicle and
therefore replace it often. Accessibility measures
were found to have no effect on the replacement
decision. This iS expectadn becauee reelacin9 a car
will have only a small effect on accessibility.

The attributes that deecribe the previous car
have the expected effect on replacement choice. The

replacement probability increaees with age and use
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Table5.AnimationreW1O-elqitmAd ofrarpur~wdwi$ionfor
householdwithavehicle.

Coefficient Asymptotic
Variable Estimates t-Statistic

One-adult houaehoid
Woman head of household
Income <10,000 I.L., head of household
employed
lncoore>20,000I,L.,head of household

employed
Income not reported, head of household

employed
Head of household self-employed
Full car maintenance coat covered
Exemption from car taxes
Education ofheadof household–more than 12

years
Ageofhead ofhousehold35 years of younger
Age of head of household 50 years or older
Monthly Irilometerage exceeds 2000 km
Previous car charscteriatics

Year
Engirre size smsller than 1300cc
Engine size larger thsn 1800cc
No, of years car was owned by household
Dummy for purchase alternative (corrected)
Expected msximum utility from car type choice

-1.52
-1.23

0.45s

-0.550

-0.919

-0.0654

-0.150
1.51

-0.494

0.816
-0.721

0.960

-0.0907
0.699

-0.829
0.076
6.5

-0.092

-2,3S
-1.77

0.816

-2.00

-2.15

-0.14
-0.30

2.03
-2.18

2.71
-2.65

2.37

-2.55
2.30

-1.59
1.49
3.67

-0.625

Note: Number ofobUmation. =582; lu=-267; and-2 (L~-[6)=271, d.f. 17.

of the vehicle and with duration of holding, and
decreases with engine size (a proxy for durability).
The positive effect of duration of holding on re-
placement reflects the decrease in relative utility
of the existing vehicle with time.

The coefficient of the expected maximum utility
in this model is negative but smell. It ie not
significantly different from zero. This means that
given the aocioeconoeeic characteristics of the
household and the attributes of the existing car,
the utility from the car type choice waa not found
to have an effect on the replacement deci6ion. In
other words, the decision to replace a car is inde-
pendent of the type choice.

This result deserves an explanation because it is
expected that the replacement decision would be
dependent on the characteristics of available cars.
Two reasons may account for this effectr and both
reasons are related to the fact that this model is
based on cross-sectional data. First, exogenous
variables such aa fuel coats and microecon~ic con-
ditions do not vary across the sample. Thus any
possible effect of the variables is contained in the
transaction-specificconstant. Second, technological
changes in the car industry are not so dramatic as
to cause a major shift in choice from one period to
another. Thus the expected maximum utility from all
car types is well represented by the attributes of
the existing car and household characteristics, and
those attribute are represented in the replacement
model.

Forecasting Results

The model developed in this study was used to eval-
uate the automobile-demand effects of the following
two scenarios:

1. A change in tax rates that will result in an
increase of 20 percent in the price of new large
cars with an engine size larger than 1900 ccr and a
decrease of 20 percent in the prices of new small
cars with an engine size smaller than 1300 cc (it IS
assumed that the changes in the prices of new cara
will cause price changea of similar proportions in
the used car market), and

2. An increase of 100 percent in fuel prices.

As expected, the price changee CKeated a relative
advantage for small cars, which resulted in an in-
crease in purchases of these cars and a correspond-
ing decrease in purchases of larger cars. An inter-
esting finding is that the increase occurs mainly in
the purchases of new cars in the engine-size cate-
gory that benefited most from the tax changes,
namely, cars with engine sizes of 1100 to 1300 cc.
Apparently, for households that intended to buy a
small car, the price reduction enabled the purchase
of a newer or a bigger car within the ssme category.
On the other hand, the price changes caused scare
potential buyers of intermediate or large cars to
choose a smaller car, and the savings thus gained
could be used to purchase a newer car. The net
effect of theee shifts is an increaee of 38 percent
in the category of new cars with engine sizes be-
tween 1100 and 1300 cc, and a 10 percent decrease in
the demand for cars with engine size larger than
1400 cc.

The assumed changes in car prices did not affect
the purchase decision. Thie result ia obvious for
households that already own a car and consider
whether to replace it, because according to the
model the replacessentdecision is independent of the
car type decision. For households without cars, the
purchase decision is affected by the expected maxi-
mum utility from all car types. However, these
values are not changed much by the proposed price
changes, and the predicted aggregate effect is neg-
ligible.

The increaee of 100 percent in fuel price in-
creased the demand for fuel-efficient vehiclee (with
engine volumes of up to 1000 cc) by 16 percent and
caused a corresponding decrease In the demand for
bigger cars, especially for gas-guzzelers in the
1900 cc or larger category. The choice of a smaller
car ●nabled the buyer to purchaee a newer car with
the same budget, so that the overall demand for new
cars increased by 7 percent.

The 100 percent increase in fuel price was found
to have a strong impact on the probability of buying
a first car. The estimated number of purchases
decreased by 47 percent as a reeult of the fuel
price hike. However, the implied assumption that
the car prices will remain unchanged in the face of
such changes in demand is unrealistic, and the real
effect of a large increase in fuel price on purchase
probabilities of first care is expected to be
smaller.

S~Y AND fX3NCLUSIONS

In this work dynamic transaction models for car
ownership were defined and ●stimated. The main
advantage of theee modele is their dynamic struc-
ture-+arkovian of the first order-which provides
for a direct account of transaction costs and char-

acteristics of the previous ownership level as well
aa the attributes of cars in the choice set. The
nested structure of the logit model used in this
study provides for an efficient data-collection
effort and ●ases the estimation procees.

Specification of the models includes @icy-sen-
sitive variables such as characteristics of car
types, socioeconomic variables, and accessibility
variables.

The use of the wdele to support policy decisions
was demonstrated for two scenarios involving changes
in purchase and operating costs. For a more compre-
hensive policy analysis, the models developed here
can be easily supplemented to includ. all the trans-
actions that are possible -in the car market (e.g.,
transaction in multicar households and transactions
that result in a reduction in level of car owner-
ship). A full set of such models can be incorporated
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into a system of equatiorm to represent equilibrium
conditions in a car market. A general structure of
ouch equations is deecribed by Manski (~. It is
believed that the uee of the dynamic models devel-
oped in thie work, in the framework of equilibrium
equatione, can provide a ueeful system for the anal-
ysis of policiee that affect the car market.

The research reported here wae performed at the
Transportation Reeearch Institute, Technion--Ierael
Institute of Technology, Haifa. The study was epon-
sored by the Israeli Ministry of Transport, and we
would like to thank @!uritStraue, the project mon-
itor, for her continuing support. Partial support
was also provided by a grant froa the National Sci-
ence Foundation to the Naeaachueette Institute of
Technology to study the demand for autcaobiles. We
aleo greatly benefited from the enlightening discus-
sion we had with Charlea Manski.
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Experiments with Optimal Sampling for Multinominal

Logit Models

YOSEFSHEFFIAND ZVITAREM

Inthispspsr● rsssntlypublidredmethodforoptimklngtheszmpleusedin
sotinratingdieatete4roissmodelsb tested.7hetwwkieintendedtoidentti
wd oxplorcthzdzntwrt8thatirrflusrwstheeffsztivsnssrofthkmethodology
indesigningsamplingprossdumforzstltnztirtpImpitmodels.llrzirwatipz-
tioninolude9bothwwlyt&el●ndnunreridtests.l%emuttsindkztcthet
tlrassmplooptimizationmethodssnimprovothesoourseyoftheresulting
ntirnztes,m aompzmlwithrwdom tampk.

Data collection is, in many cases, the major cost
item in studies that involve the estimation of econ-
ometric models. Technique for sample deeign have
therefore been developed for many econometric and
statistical models (~). In this paper discrete
choice mrrdela,which are extensively used in travel-
demand analysis, are examined, and, in particular,
the multinominallogit (MNL) model is discussed. The

focus here is on a method for optimizing the sample
used to estimate discrete-choice models. The ap-

plicability of this sample optimization approach to
the collection of the sample points (the data) used
to estimate WNL models ie examined. Also examined

is the appropriate amount of effort that should be
invested in the sample optimization process.

The original development of the sample optimiza-
tion method, which is the subject of this PaPer~ is
from Daganzo (~). Daganzo’a method is a stratified
sampling technique. It assumes that the Population
to be sampled frcincan be partitioned into separate
groups (or strata) and that observations can be sam-
pled independently from each group. The objective

of the eaapling method is to determine how many ob-
servations should be drawn fr~ each 9rouP so that
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the total estimation error ia minimized. The esti-
mation error ia a composite meaaure of the error in
all the model parameters. Naturally, this minimiza-
tion ia subject to a budget constraint. This sam-
pling method attempta to determine the best alloca-
tion of the sampling budget. (The companion
problem, that of determining the minimum budget re-
quired to achieve a certain accuracy, is somewhat
more difficult. Ite solution, however, can be in-
ferred from the solution of the problem under con-
sideration.)

Three main points are diacuaaed in this paper.
The firat point ia the applicability of the approach
in terms of potential. The question examined in
this context is the sensitivity of the sampling er-
ror to different sample deqigns. The second point
ia that the solution of the eample optimization (SO)
problem requires prior estimates (or guesses) of the
valuea of the parameters of the model to be esti-
mated. The applicability of the whole concept de-
pends, naturally, on the required accuracy of these
prior estimates. The tests described in this paper
explore this point in some detail. The third point
is related to the first point. It has to do with
the question of the amount of effort that should be
invested in obtalninq these prior estimates. Such
an effort should be judged in comparison to the
level of effort of the entire study, which means
that the relevant question is the allocation of ef-
fort between obtaining the prior estimates and the
estimation itself.

This paper ia organized as follows. First,
DaganzoQs SO method is outlined. Then the applica-
tion of this method to the MNL model is reviewed.
Next, the question of the applicability of the SO
method is explored by looking at a simple one-param-
eter model and a two-parametermodel. Then the afore-
mentioned issue of resource allocation in the frame-
work of a small case study is diacuased, and finally
conclusions are given.

It should be noted that the conclusions of this
paper are baaed on numerical experiments, which
means that not all the results can be generalized in
all circumstances. The experiments are deecribed in
further detail by Sheffl and Tarem (~).

SAMPLE OPTIMIZATION PROORAM

Daganzogs SO method attempts to minimize the error
associated with the estimation of the parameters of
a discrete-choice model. The optimization problem
is formulated as a mathematical minimization pro-
gram, where a composite measure of the estimation
error serves as the objective function and the sam-
ple group sizes are the decision variables. This
aPProach assumes that the model under consideration
is estimated by using the maximum likelihood (ML)
method. It alao assumee that the distribution of
explanatory variables in each group is known. [This
information may not be available, In which case the
methods discussed by Lerman and ktanski (~) may be
used.]

The objective function of the SO program relates
the sampling error to the sample group sizes. This
expression can be derived from the Kramer-Rao lower
bound on the covariance matrix of ML estimators.
Lettinq ~ be a vector of explanatory variablee, y be
the dependent variable, and ~ he the vector of param-
eters for some model, this bound (z;) iS 9iven by

(1)

where L(”IO,O) is the *log-likelihoodof the sample
(Y,z) evaluated at ~, VeL(”) iS the e-~essian of
L(”). and E[*I denotes the expectation operator

that, in Equation 1, is carried out with respect to
both y and ~.

For stratified sampling, where all observations
are independent, the sample log-likelihood is given
by the eum

where

L (~

(2)

log-likelihoodof sample point n from
group k,
observed values at this point,
number of obaervatione in group k,
and
number of groups in the sample.

The FIeasianof this function ia

(3)

In stratified sampling it is assumed that all ob-
servations from a 9iven 9roup [k) are realization of
some underlying distribution f ‘)(y,JC)%x that charac-
terizes the group. Thus all t @Be observations have
the same expectation. The expectation of Equation 3
is therefore

(4)

where E(k) [o] denotes the expectation taken over the
distribution ~k~(y,~), and the designations n and
k are omitted ~rom the notation of the likelihood
function in order to clarify the presentation. The
final expression for the bound on the parameter co-
variance matrix is obtained by combininq Equation 4
with Equation 1, I.e.,

(5)

To minimize the estimation error, a scalar mea-
sure of the size of the parameter covarlance matrix
has to be defined. A family of such measures can be
defined by using a quadratic form of the covariance
matrix with a (column)vector of constants, ~, i.e.,

where F is the estimation error, ~ ia the true
parameter covariance matrix, and the superscript T
denotes the transposition operation. Because the
true covariance matrix ia not known, the approxima-
tion in Squation 5, which holds asymptotically for
maximum likelihood estimators, is used instead. Thus

F(y) =~TZ~(tJ)Z, where~ = (...rNk)...). The form of

the error measure used in thie paper uses a vector
z - (1,1,...,1), i.e., F(E) is the sum of the ele-
ments of the parameter covariance matrix.

The Optimal sample composition is derived ““v min-
imizing F(s) with KeSpSCt to the Nk’s. Tk ncon-
strained solution to the minimization is, ok XIsly,
to sample an infinitely large number of obse ations
from each group. The estimation error t -n ap-

proaches zero. The sample sise, houever~ is Imded
by the budget available for sampling, and ~auibly
by sops other physical sise constraints. The total

budget constraint may be expressed by

: ckNk<B
k=l

(7)
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where ck iS the COSt Of sampling One Unit fKOIII
group k, and B is the total budget available. Phys-
ical group size constraints may be expressed as

Nk < N~ax forwmegroupsk (8)

In addition, the constraint set should always in-
clude nonnegativityof the group sizes.

The SO program can be summarized as follows:

I I
-1

Min F=zT - f NkE(k)~:L@lY,&)] Z
Nk k=l

Subject to

JCkNk<B
k=l

(9a)

(9b)

O< Nk<N~’x forallk (9C)

Daganzo (~) indicates that this proqram has a unique
local minimum for any constant vector ~ and any form
of the log-likelihcd function L(qly,~). This
means that the problem can be solved by usinq stan-
dard nonlinear, constrained optimization methods.
The algorithm used in this work is baaed on the qra-
dient projection (~) method.

The exact form of the objective function dependa
on the specific model for which the sample is de-
signed. Sheffi and Tarem (~) formulate and solve
this program for several nmdel forms. In the next
section the derivation of this expression for MNL
models is reviewed. The remainder of the paper is
aimed at evaluating the usefulness and applicability
of the approach.

SAMPLE OPTIMIZATION FOR LOGIT MODELS

The logit formula is the most widely used discrete-
choice model because of the simplicity of its form.
A detailed description of the model can be found in
Domeneich and McFadden (~).

The logit model can be used to quantify some as-
pects of individuals’choice among a set of alter-
natives. The model can be interpreted In the freme-
work of random utility maximization by assuming that
each decision maker attaches a measure of utility to
each alternative and chooses the one with the largest
utility. The utility of alternative j to an individ-
ual randomly drawn from the population (Uj) iS

modeled as the sum of a systematic utility term
(Vj) and an error term that is assumed to be ran-
domly distributed across the population. The system-
atic utility captures the model specification in
terms of the relationships between the utility and
the explanatory variables; thus Vj = vj(g,x). The

specification of the random part determines the
family of models to be used. If these random terms
are aasumed identically and independently Gumbsl
distributed, the resulting model is the MNL mode.
The WNL model gives the probability that each avail-
able alternative is chosen (i.e., it has the highest
utility)--Pj(&,E)—as

P1@,~)=eXp[Vj@,&)]/,~l ew[v,(g,~)l (lo)

where I is the index set of the available alterna-
tives. In most cases the systematic utility is as-
sumed to be linear in the paremetera, and thus
Vj(g,~) = ~~~.

To develop the SO objective function for the MNL
model, the e-?lessianof the log-likelihti func-
tion has to be derived for such models. The likeli-
hood of a sample point n can be written as
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(11)

where ~ ia an indicator variable vector that con-
tains the observed choice, i.e., a = 1 if alter-
native j is chosen by the nth d~~ision maker in
the sample, and ~

t?
= O otherwise. The vector

% ‘n-cludes the explan tory varisbles for the nth o ser-
vation. The choice probabilities are given by Equa-
tion 10. The logarithm of Equation 11 is simply

L@lgn,&n)=i: %jkwp”] (12)

= p (~,~) for ease of notation. The sample
~~~~~jih~ includes the sum over n of .(~lfin,~),
i.e.,

(13)

where N is the total sample size.
The derivation of the e-Hessian of the sample

log-likelihood function is simple but somewhat
lengthy (~). The final result of applying the
Hessian operator to the log-likelihoodfunction is

V2L@lg,1)=-WT QW (14)

where W is the matrix of attribute differences for
an individual randomly drawn from the population,
i.e., row j of W is the difference ~j - ~1, where I
is the index of the last alternative (any other al-
ternative can be chosen as a base). Q is a square
matrix with the elemente,

[Q]ij=Pi(tiu-Pj)fori,j=l,2,....I-l (15)

where 6ij = 1 ifi=j, and O otherwise. After
inserting Equation 14 into the objective function of
the sample optimization program (Equation 9a), this
function becomes

-1

F=ZT -: NkE(kJ[-WTQW] z
~.,

(16)

Computing the expectations of E(k)[”l in Equation
16 requires prior knowledge of both the distribution
of the attributes in all groups and the values of
the unknown parameter vector (y). The latter is

required for computing the choice probabilities that
appear in the elements of Q. As previously men-

tioned, it is assumed in this paper that the attri-
bute distributions are known before semple optimiza-
tion. The main concern of this paper is with the
required accuracy of the initial parameter guesses.

Because the function under the expectation opera-
tor is complicated, a numerical Monte Carlo approach
for computing these expectations was adopted. With
this approach, M observations were drawn from the
distribution of the attributes and the average, where

(l/M)m~,[-WA QmWnrl (17)

was used as an approximation of the true expecte-
tions.

INACCURACIES IN INITIAL GUESSES: ONE-PARAME~R MODEL

In this section two of the issues that determine the
applicability of the SO approach are examined.
These questions are addreseed in the Context of a
simple logit model that includes only two alterna-
tive and a single parameter.

The usefulness of the SO method depends on two
separate questions. The first is whether SO actu-
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ally improves the accuracy of the resulting parema-
ter estimates. Although SO asaures minimum error in
estimation, the improvement relative to other sample
designs may be insignificant. In this case the op-
timization process is not cost effective. The sac-
ond question is the dependence of the optimization
results on the accuracy of the initial parameter
guesses used in the optimization. If the optimiza-
tion process requires accurste parameter values to
yield satisfactory sample composition, its useful-
ness will be limited because having such accurate
parameter values obviates the need for the estima-
tion process.

Thus, for the SO method to be useful, it is nec-
essary that the estimation error will decrease when
an optimal sample is used, but also that this opti-
mal composition may be obtained without an accurate
initial parameter guess.

The tests described In the following sections are
designed to determine if and when these conditions
can be met for a simple logit model, where the issue
can be addressed analytically. The simple logit
model chosen for this analysis includes two alterna-
tives and one parameter. The systematic utilities of
these alternativesare x18 and x29, respectively.The
choice probabilities have the form

P, = exp[(xl- xz)6]/{1 + exp[(xl- X2)OI]

= exp (WO)/[1 + exp(WO)]; P2 = 1 - P,

= 1/[1 +exp~fl)]

and the optimization objective
16) for this model is given by

.

F(N)= 1/; NkE(k)[W2Q]= 1/; NkEtkJ
k., k.,

+ [1+ exp(we)]’}

(18)

function (Equation

{W2 ex~WO)

(19)

The minimization of F(x) in Equation 19 is equiva-
lent to the maximization of the reciprwal of F(H),
i.e.,

MinF@) = MaxF’(~)= ; NkE(k)[W2Q]
Nk Nk k= I

(20)

For a problem with a simple budget constraint (such
as ~ation 9b), the solution of this SO program is
to sample all observations fran the group (k) with
the largest value of

~(k)= E(k)[W2Q]/Ck (21)

The total sample size will, of course, be B/ct,
where I ie the group sampled. From Equation 21 it
ia clear that if the expectations E(k)[.] are similar
in all groups, the sample should include observa-
tions from the group with the lowest sampling cost.
If the expectations differ considerably, however, a
group with higher sampling cost may contribute more
to the estimation accuracy and should therefore be
chosen for eampling.

The accuracy of the initial parameter guess, de-
noted by 9., needed in computing the a(k)~s Is impor-
tant only if it can cause the sampling from the
wrong group. In other words, as long ae the values
of a(k) computed by ueing 80 suggest the same choice
of group as would happen with the true parameter (0),
the optimal sample composition is not affected by
inaccuracies in e~.

For example, aeeume that there are only two
groups, and that the sam ling costs are the same in
both . %If the true E(l)[W Q] is 10 times larger than
the true E(2)[ldQl, computing a(k) with even a bad
gueee of e will still probably sugqeet samplinq

from
~(l)~wYoup 1“

If, on the other hand, the true

true )3(~~[$:], %~liti &~~cyl;~?~ m~h~v~~
the choice initiated by Equation 21. In thie case,
however, the contribution of both groupe to the es-
timation accuracy is similar, and sampling from the
wrong group would not introduce a large increaee in
the estimation error (F).

In sunsnary,Squation 21 indicates that if the
group attribute distributions (and hence the group
expectations) are considerably dissimilar, sampling
from the wrong group may cause a large eetimetion
error, but the correct group for eampling may be
relatively easy to determine. In casee when this
determination ia more difficult (i.e., when the
groups are similar), the cost of an error is not
high. Thue this analysie leads to the conclusion
that SO should be useful in this case, even with
questionable prior estimates of 8.

TNO-PARANETERMODEL

A eimilar analysis can be applied to a slightly more

c-licated tiel~ which includes two alternatives
and two parameter. In this case the choice pro-b.s-
bilities have the form

PI = exp(W181+ W202)/[1+ exp(wldl+ W202)];

P2 = 1/[1+ exp(W161+ W20J] (22)

where WI and W7 are the two elements of attribute
differen&es va&or ~ = (W1,W2). The
ftmction (Equation16) in this case is

where the single element of the matrix

SO objsctive
given by

(23)

Q iS

(Q),,, = exp(w,d,+ w2L9,)/[1 + w(w,O, + WT9Z)12 (24)

The general analysie of this case cannot be car-
ried out analytically because of the complexity of
Equation 24. The approach followed here was to ana-
lyze a specific sample design caee with known true
parameters. The problem eetup included two groups
with the following attribute distributions:

wfl)=~z)= ~;w~l) - N(05,0.25);W\2) - N(~,5,0.25)

The true parameters (see Equation 22) were set to
el = 02 - 1.0. The true group expectation can be
calculated by using the emulation method, explained
by Bquation 17, as follows:

E(I)[@w] =
[ 10.14960.0549;E(2)[QWTW] =

[
0.22344.122

0.05490.0545 4.122 0.11761

The budget constraint was set to t41+ N2 < 1, which
implies that c1 = C2 = 1 and that the N~s can be
looked on as sample shares rather than number of ob-
servations. Because the budget constraint is always
binding in theee probleme, the sample composition
can be represented by the single variable NII and
N2 can be replaced by 1 - N1.

The dependence of the ●stimation error on the
sample composition was determined by evaluating the
objective func,tion(Equation 23) at different values
of N1. Tbe resultinq curve ie ehown aa the dotted
line on Figure 1. The estimation error has a die-
tinct minimum at N1 = 0.908, which corresponds to
the value Pa = 17.567. It rieee sharply for values
of N1 less than 0.69 (the 10 percent deviation
mark).

Each sample composition is associated with a
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un@ue value of the objective function in Figure 1.
The sampling process, however, introduces a random-
ness that may cause the actual eetimetion error to
deviate from the one indicated in Fiqure 1. This is
because once the group size is determined, the ac-
tual observations are still randomly sampled within
each group. Thus different samples with the same
composition may result in different estimation er-
rors. To verify the relationships shown in Figure
1, a simulated data set was generated. Attribute
observations were generated from the previously men-
tioned distribution of the explanatory variables
withh each group. The chosen alternative was de-
termined by simulating the total utilities of the
alternatives to each individual and recording the
alternative with the largest utility as the choeen
one. This simulation was carried out by generating
a Gumbel-dietrlbuted random variable (by USinq the
cumulative distribution inversion method) and add-
ing it to the observed utility.

The logit estimation routine computes, apart from
the parameter esthetes, an estimate of the parameter
covariance matrix baeed on the sample. An approxi-
mate estimation error may be computed by suming the
elements of this matrix (see squation 6). Five dif-
fereti”sempleswere generated for each selected com-
position, and the estimation error wae computed for
each one by using that procedure. An interval of
probable values for the estimation ● rror wan de-

rived from the mean and

five measurements (i.e.,
average and Qw is the

145

standard deviation of the

F=~+uF, where ~ is the
standard deviation of the

five values). “ These intervals are also plotted in
Figure 1. As demonstrated in the figure, the sem-
pling results depict the same relation between the
estimation error and the sample composition as shown
by the analytical curve.

In the particular example solved here, Figure 1
demonstrates that the SO ia worthwhile even when the
randomness of the sampling prccedure is accounted
for. In general, however, this may not be the case
if the variance of the attribute distribution is
large. Such a case means that the groups are, sta-
tistically, quite similar. As in the one-parameter
case, this means that SO ia not cost effective be-
cause the (expected)cost of an error in the groups’
composition is not large.

The dependence of the optimal solution on the ac-
curacy of the initial guesses was determined by
solving the SO problem by ueing different values of
the initial Parameter 9uesses (SO) around the true
parameters (1). Figure 2 shows contours of equal com-
position over a range of values of ~ around the true
value of ~ = (1.0,1.0). The fiqure shows that in
most of the region, except for the upper right cor-
ner, the optimal coropoeitionis within 10 percent of
the best composition. The best composition is given
by Nl = 0.908, which was ccinputed by using the
true parameter values.

Figure 3 demonstrate the same point from a dif-
ferent angle. The relationships between the eetime-
tion error and the initial guessee used in the op-
timization procees can be derived by reading, from
Figure 1, the vslues of F that correspond to the
sample compositions shown in Figure 2. These valuee
can then be transformed to percentage differences
from the minimum error, F* = 17.567. Figure 3 de-
picts contours of equal percentage differences over
the same range of &o used in Figure 2. Ae shown
in Figure 3, most of the region analyzed lies within
10 percent of the minimum error. In summery, it can
be concluded that although arbitrary sample composi-
tions may yield lsrge estimation errors (as eeen in
Figure 1), the uee of SO, even with a wide range of
possible initial parameter guesses, limits the error
to small deviations from the minimum error obtained
by using the true parameter values.
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OPTIMAL BODGET ALLOCATION

The initial parameter gueaaes
tion rrroceaamav come from

used in the optimiza-
two distinct eourcea.

The f~rat one ia”an external source, such aa another
study or a aet of atudiea conducted elsewhere or in
the paat. The second one la an internal source,
such aa a pilot study conducted on the current popu-
lation. In this caae a small presample may he ran-
domly drawn in order to estimate lo. The final
parameter ●atimetion will be baaed on a combined
sample, including the obaervationa of the preaample
and the main sample. The relevant question here Is
what irJthe appropriate relative investment in the
initial sample that will yield the beat accuracy of
eatimetion when using the combined sample.

The procedure followed in this research for de-
termining the optimal allocation of the aempling
budget waa to first allocate some prescribed amount
(~) to an initial randa sample. The parameter
estimates baaed on this aemple were used aa initial
guesses in determining the optimal sampling scheme
for the main sample, subject to the remaining budqet

The main sample waa then drawn and combined
~?~h the initial one and used to estimate the
model. The estimation error waa computed from the
estimated parameter covariance matrix of this
model. The optimal allocation was determined by
parametrically varying the amount spent on the lnl-
tial sample.

The existence of an optimal allocation stems from
the fact that when the budget (Bl) spent on the
initial random sample ia emallr the resulting esti-
mates of the parameters are not accurate. Thus the
main aemple will not be close to optimelity, and the
estimation error can be expected to be larqe. On
the other hand, when most of the budget is spent on
the Initial sample, the resulting initial estimates
will be accurate, and the smell main sample ia close
to being optimal. The combined sample, however,
will include primarily the randan, nonoptimal asm-
ple, and the estimation error is again expected to
be larqe. Therefore, there may be some optimal al-
location of the budget such that the size of the
random semple is sufficient to prwide relatively
accurate estimates, but the remaining optimized sam-
ple is sufficiently large to reduce the error mea-
sure.

Transportation Research Record 944

This procedure was carried out by using a large
data set as a population. The data were extracted
from the 1977 National Personal Travel Study (NpTs)
data base. A simple model of automobile ownership
levels was used aa an example model in these tests.
The model included three alternatives: owning two
or more cars, owning one car, and owning no car.
The syatemstic utilities of the alternatives were
specified as

U,=e, +eq lNCOME +64 HHSIZE

U2 =@2 +03 INCOME

Uq = 0.0

where INCOME ia measured in $10,000 units, and
HSSIZE is the number of members in the household.
The population data set contained 7,393 observationa
partitioned into three groups along the income di-
mension, according to the following ranges:

Income

SzQ!4E Range ($) Observations
1 0-7,500 2,565
2 7,500-20,000 3,331
3 >20,000 &49J
Total 7r393

The diatributiona of the attributes (INCOME and
NNSIZE) were estimet’edfrom the data.

A budget size of ~, varying between 40 and

200, was allocated to the initial random sample (as-
auming a cost of one unit for all observations).
The composition of the main sample was determined by
solving the optimization problem with the constraint
N1 + N2 + N3 ~B2, where B2 = 200 - B1. The two sem-
ples were then combined to yield a sample of size
200, and the ●stimation error waa computed from the
combined sample. This procedure was repeated five

times for each value of B1. The interval ~ t uF of
the five measurements is plotted versus B1 in Figure
4. A shallow minimum can be observed around B1 =
80, which means that 80 observations should be sam-
pled at random. The results of this estimation
should be used to optimize the composition of the
remaining 120 observations. The ahape of the rela-
tionship shown in Figure 4 auqgeats, however, two
hypotheses.

1. The optimal size of the initial sample is
fixed, probably because it corresponds to the mini-
mum sample size that yields reasonable initial eati-
metes for the optimization. In this case the opti-
mal initial sample size (~) ia independent of the
total sample sise (B).

2. Optimizing a larger sample requires more ac-
curate initial guesses, which implies a larger ini-
tial sample. In this case the optimal initial saro-
ple size (Bl) is a fixed proportion of the total
sample size (B).

To test these hypotheses in the context of the
examples analyzed in this sectionr the test proce-
dure used in this case study waa repeated for total
Semple Sizes Of B = 400 and 600 observations. The
meana of the five estimation error measures computed
for each selected value of B1 are plotted in Fig-
ure 5. The horizontal axis of the graph is the ra-
tio ~/B, and the vertical axia represents the ea-
timstion ● rror. The measurements obtained from each
value of B (i.e., 200, 400, and 600) were normalized
for comparison purposes. The flqure shows that for
all total sample size values, the ●stimation error
does not have a distinct minimum but is flat over
the region up to B1/B = 0.5 and rises thereafter.

Thus it can only be concluded that the initial
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semple size for this example should be less than
one-half of the total sample size. This appears to
suggest that, in general, the initial random sample
can be small, regardless of the total sample size.
The size of this sample may in fact be dictated by
the requirements on the estimation of the distribu-
tion of the explanatory variables in all the
groups. This point was not addressed in this peper,
which assumed that this distribution is known.

COWCLUSI(X4S

The two major conclusions from the work described
here may be stated as follows:

1. The SO procedure can introduce a significant
increase In parameter estimation accuracy, and

2. This optimization need not be based on accu-
rate initial parameter guesses; only a small pilot
sample ia needed to produce sufficiently accurate
guesses.

It should be emphasized, however, that these con-
clusions result from a specific set of tests per-
formed on prespecified models. Even though these
models were chosen without any regard to the final
results, these results can be generalized only with
caution. The results are, however, encouraging in
that the SO procedure appears to be worthwhile in
cases where it can be applied. It requires nonlin-
ear optimization software, which may not be easily
used in many environments.
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Procedure for Predicting Queues and Delays on

Expressways in Urban Core Areas
THOMAS E. LISCO

A proaaduro that prodiots morning inbound and waning outbound queuing dz-
Lsyson expraas hi~way faalitias in downtown ●raas is digausaad. lha proaa-
dura k basedon tha relationships wnong hourly traffic zspadtias at bottlanack
points, daily volumes at thoaa points, and assodatad queues and dslayx. Tha
naad for s@! a psoaedure arose from diffiaultios in usingtraffic agdplmerrt or
other existing analysis tadmiqsseato pradiat queues and delays moaiatad with
altarnativa higlsway plasm Esss@kel delay data for davolopirrgtha procedura
asnsefrom naarly 800 apaed nma ausdustad on the axpraas hi@way system in
and naar downtown Sostoss. Fourteassqueuing and potantial quauing situa-
tions wara analyrad. l%a ralationdslpe dsrivad ●ppaar to ba ganardizabl.,mwl
thaspsaific raaulta from the Soeton maa should apply to other urban araas of
orrmparabia siza.

A procedure that predicts peak-period queuing and
delays on express highway facilities in downtown
areas is discussed. The procedure is beeed on the
relationships among hourly traffic capacities at
bottleneck points, daily volumee at those points,
and associated peak-period queues and delays. (In
this paper the term daily volume refers to average
weekday traffic.) The procedure wae developed by
compering observed bottleneck capacities with empir-
ical delay data for traffic upstream of the bottle-
necks. Capacities were derived from traffic counts
at bottleneck locations. The delay data were from

almost 600 speed runs conducted on express highway
facilities in and near downtown Boston, mostly dur-
ing 1978 and 1979. The procedure was developed for
use in detailed evaluations of potential traffic izl-
pects and benefits of alternative highway invest-
ments in downtown areas.

The need for such a procedure arisee initially
from difficulties in using the output from traffic
assignment models to predict peak-period operating
conditions and cost-benefit statistics associated
with alternative highway plans. The baeic problem
is that the regional traffic assignment process
derives speeds for individual 1inks separately baaed
on their individual volume/capacity (v/c) ratios and
does not consider the queuing effacte of bottleneck
lccations. Thus in typical downtown area gISeUin9
e ituations, where one bottleneck highway seqment can
create queues stretching into many other segments~
traffic assignments cannot indicate the locations
and extents of queues or the delays associated with
them. Because queuing can be of major importance in
peak-perhd expressway operations in downtown areas,
the assignment can be grossly inaccurate in pre-
dicting peak-period operating speeds. Similarly,
the associated coet-benefit statistics can miss much
of the phenomenon they are intended to measure.
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A potential solution to this problem would be to
attempt a queuing analysis based on peak-period
traffic assignment results. Such an analyais would
fail for two reaaona. First, by ita very nature a
traffic aaaignment is balanced, with all highway
links clearing all traffic assigned ‘to them for the
time period of analysis. Thus there is no possibil-
ity of an aaaignment producing for a bottleneck link
the different vehicle arrival and service ratea nec-
eaaary to perforra a queuing analyais. Second, a
well-calibrated traffic assignment will indicate all
bottleneck links operating exactly at capacity dur-
ifigpeak periods, with no indication of which are
major and minor bottlenecks. In some cases the as-
signments will indicate volumes greater than actual
capacities at bottlenecks, but the degree to which
such volumes are indicated ia related more to the
ndture of the capacity constraint in the assignment
program than to the queuing phenomenon. Therefore,
these greater-than-capacityvolumes are not particu-
larly helpful in predicting the extents of potential
queues.

An alternative solution would be to perform a
queuing analysis based on daily traffic assignment
volumes”with given fractions of daily traffic as-
signed to peak hours. The traffic assigned to peak
hours would be compared with capacities at bottle-
neck pointa. Again there would be severe problems.
One problem is that different bottlenecks process
different fractions of daily traffic during the peak
periods, with lower fractions being handled by se-
vere bottlenecks. Thus a given fraction applied to
all bottlenecks would underestimate the effects of
smell bottlerteckaand overeatimeke the effects of
large ones. A more important consideration ia that
queues rarely contain more than several hundrad ve-
hicles at one time. Thus any procedure that at-
tempts to predict queues through calculating dif-
ferences between arrival and service rates “must
project flossswith a great deal of accuracy. Cer-
tainly, this cannot be done by allocating fractions
of daily traffic to hourly flows at bottleneck
points. AS before, the delays calculated will re-
late far more to the assumptions used in the alloca-
tion than to the queuing phenomenon.

Because of the difficulties involved in predict-
ing vehicle arrival and service ratea from traffic
aasignmenta and, more generally, the problems of ac-
curately predicting these ratea by any method (~-~),
the procedure documented in this paper follows an
approach that predicts queuing delaya directly with-
out calculating the difference between arrival and
service ratea. Specifically, the analysis approach
aasumea that there ia a consistent relationship be-
tween daily traffic voluare at a bottleneck point
c~rti with capacity, and typical peak-period de-
lays upstream of the bottleneck.

TO search for such a relationship, an extensive
analysis waa conducted of the complex expressway
queuing phenomenon in and near downtown sost~n. De-
lay data were coapared with volumes and capacities
at bottleneck pointe, and a set of rules was devel-
oped that operatee in the formation of queues and
appears to explain the interrelationships among
them. ultimately, a procedure waa developed that
predicts morning inbound qreuea and evening outbound
queues for downtown area expreaaways. The procedure
ia in two parts. In the firat part the average max-
imum peak-period delaya are predicted by using a
comparison of daily bottleneck volumes with hourly
capacities. In the second part queue speeds are
derived from hourly VIC ratios of queue sections,
and queue lengths are calculated frotnqueue speeds
and delaya.

In this analysia no attempt has been made to pre-
dict outbound morning delays or inbund evening de-

laya, or delays on highttayS that are not downtown
oriented. Also, no consideration has been given to
predicting delays caused by heavy stop-and-go traf-
fic with no explicit bottleneck points. Such cir-
cumstances were not adequately represented in the
data. Further, the procedure as presented does not
include any consideration of the variation of queue
lengths during the peak period. Patterns of within-
peak variations tend to be similar among queuea and
can be adjusted aa circumstances require.

BASIC RELATIONSHIPS ~VERNING NORNING AND EVENING
PEAR-PERIOD QUEUING DELAYS

The baaic relationships between average maximum
peak-period delays and daily traffic related to
hourly bottleneck capacity are ahown in Figures 1
and 2 for morning and evening peak periods. The
relationship ahown are manually fitted curves from
the Boston speed-run data. Six data points are for
the morning peak period, and eight data points are
for the evening peak period. The data in the fig-
ures indicate that peak-period queues and delays be-
gin to materialize when daily traffic volumes reach
the vicinity of S to 10 times the hourly capacity at
bottleneck ~inta. Evening peak-period delays are
greater than morning delays for any given daily vol-
ume relative to hourly bottleneck capacity because
evening peak-period traffic tends to be heavier than
morning peak-period traffic. Similarly, evening de-
lays increase more quickly than morning delays for
given increases in daily volumes relative to bottle-
neck capecitiea.

In evaluating the curves shown in Figures 1 and

2, it can be seen that their shapes are quite regu-
lar and sensible. Also, the relationships between

the fitted curves and the data points are close. In
no case does the predicted delay from the curves

Figurel. Dailytraffiivolurneeeamultiploofhourly oapaaity etlxrttheck
verauszverage maximum morningpszk+sriod delay.

1s1

Figure2. Daily trafficvolums asamultipleofhmrly cepzcityat bottleneck
versusaverage maximum evening peak-period delay.
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differ from the experienced average delay of the
speed cuns by more than 1 min. Thie difference rep-
reaenta less than 15 vehicles per lane in a typical
queue.

Of the 14 data points, only 2 are irregular in
their derivation. Theee data points are circled in
Figure 2. The circled point with the greater delay
is for travel from Logan Airport to downtwn Boston
through the Sumner Tunnel, an inbound rather than an
outbound route. This data point was included in the
evening outbound statistic becauae Logan Airport is
a major traffic generator in the Boston core area,
and because evening peak-period traffic from Logan
Airport can be considered to be outbound, regardless
of its direction.

The second irregulsr data point, which shws less
delay, is the data point for I-93 and the Boston
Central Artery southbound during the evening peak
period. In the derivation of delay data, the seg-
ment of this route considered is aesumed to have one

long queue, even though it has an intermediate sec-
tion that does not become solidly queued every even-
ing. Because this section ia quite short, it was
not considered to substantially affect the vslidity
of the data point.

There is one major drawback in the data: there
are so few data points; i.e., a total of 14 to fit
two curves. Boston has only a few explicit bottle-
neck points on its express highway system in and
near the downtwn area; thus data were taken for s1l
of them.

CALCULATING QUEOB LSNGTHS FROM DELAYS

To calculate queue lengths from the delay curves
shwn in Figures 1 and 2, it is necesssry to compare
queue speeds on highway segments with speeds on the
same segments under uncontested conditions. When
the delay per unit distance that the difference be-
tween queue apeed and congested apeed implies is
known, as well as the total delay in the queue,
queue length can be determined by calculating the
distance of travel necessary to accumulate the total
delay.

Information on queue speeds is shown in Figure
3. The data in thie figure relate queue speeds to
conventional hourly V[C ratios and also indicate
what ia, in effect, a level-of-service F curve for
queuea. The input speed data for the figure were
actual speeds from speed runs for all segments of
all morning and evening queues on the highway system
in the downtown Boston area. As the data in this
figure reveal, almost all of the observed apseds are

Figure3.Rolationvhip bstwwsnhourly v/c ratio and qtiauo spsad: morning
and avsning quouav.

— ESTIMATED CURVE: BOSTON QUEUE DATA

---- CURVE FOR LQa. ‘F” (HIGHWAY CAPACITV MANUAL, P.2S4)

I ; :?%%%Z;Z:E:O::E AREA /’,,
,8

Vf3LUME/CAPACITY RATIO

within 1 or 2 mph of what would be predicted by the
estimated curve.

Also shown in Figure 3 is the level-of-service F
curve from the 1965 Righway Capacity Manual (~, p.
264). It is interesting to note that the estimated
curve for queues in the downtown Boeton area has
speeds less than those of the curve in the Highway
Capacity Manual. Although the reason for this is
not clesr, it appears that the level-of-service F
curve in the Highway Capacity Manual was derived
frcm statistics for stop-and-go conditions, with no

explicit kttlenack points and no explicit queues.
There is support for this notion becauae the only
three Soeton data points that are near the curve in
the Highway Capacity Manual (the points circled in
Figure 3) are those for I-93 and the Central Artery
(southbound) in the evening. As notad previously,
this section of highway has a segment that ia not
solidly queued every evening. Thus average speeds
are higher. In any caae, the fitted Boston curve is
appropriate for estimatin9 existing and future queue
speeds and lengths.

The follwing ia a hypothetical delay and queue-
length calculation. Suppose an expressway haa three
travel lsnes inbound, ●ach of which has a capacity
of 2,000 vehicles per hour. Total inbound capacity
of the highway is 6,000 vehicles per hour. At one
point there is the constriction of a lane being
dropped. Beyond this point two lanes remain with a
total capacity of 4,000 vehicles per hour. Suppose
SISO that the average weekday traffic inbound at the
bottleneck Is 50,000 vehicles, or 12.5 times the
hourly capacity at that point. Finally, suppose
that the highway operates at 55 mph during uncen-
gested periods.

The questions to be answered are ae followe: (a)
What will be the average maximum morning delay up-
stream of the bottleneck? and (b) How long will the
average maximum morning queue be in which that delay
will be experienced? The anawer to the first ques-
tion comes directly from Figure 1. With an aversge
daily traffic volume 12.5 timee the hourly bottle-
neck capacity, the average maximum morning delay
will be about 5.7 min.

The calculation of queue length is a little more
complicated. In the queue area the VIC ratio is
0.67 (4,000 vehicles per hour traveling on three
lanes that could handle 6,000 vehicles if it were
not for the bottleneck). lhis correspond with a
queue speed of 9.5 mph (as shown in Figure 3). At
this speed it takes 6.316 min to travel a mile
(1/9.5 X 60). In uncongeeted conditions it takes
1.091 min to trsvel a mile (1/55 x 60). Thus a ve-
hicle traveling 1 mile in the queue will incur 5.225
min of delay (6.316 - 1.091). Because the total de-
lay in the queue waa calculated to be 5.7 rein,the
average maximum queue length will be 1.091 miles
(5.700/5,225),or 5,760 ft.

Clearly, the procedure for calculating queue de-
lays and lengths is quite simple. A little more
work is required if there are on-ramps and off-rampe
or variations in capacity within the queued eec-
tion. In such cases v/c ratioa and speeds must be
calculated separately by segments of the hi9hwaY
section (moving upstream from the bottleneck) and
delaya added up by segment until the total qweue
delay is achieved.

One final note is appropriate concerning the ap-
plication of the model. In determining hourly bot-
tleneck capacity for the determination of delaY, the
actual peak-period capacity of the bottleneck should
be used, including vehicle mix, weaves, and 9scQet-
rics. Alternatively, counts.may be used. Iiowever,

for determining queue length, capacities should be
considered to be approximately 2,OOO vehicles per
lane per hour becauee vehicle mix, weaves, and geo-
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irrelevant when vehicles are

D~INING IDCATIONS OF ~ POINTS

Before the procedure for predicting queue delays and
lengths can be carried out, the exact locations of
the bottleneck pointe relevant to the given queues
must be identified. This task can be more complex
than the application of the procedure. During the
course of the development of the ba~c model in this
study, a number of methcds of selecting bottleneck
points were tested in an attempt to develop consis-
tent relationships between peak-period delays and
daily volumes relative to hourly capacities at bot-
tlenecks. Ultimately, the best relationships were
established by using data that resulted from defin-
ing and selecting bottlenecks according to the rules
set forth in the following sections. In performing
the queuing analysia, the same rules should be used
for determining the locations of the bottleneck
points.

Simple Queue

When a queue forms on an express highway with heavy
traffic, the location of the queue will be upstream
of the point with the highest daily volume relative
to capacity, which point is the bottleneck point.
Such a point may be at a constriction, such as a
bridge or a lane drop, or at a merge or diverge of a
major flow of traffic.

A simple queue is shown in Figure 4, which shows
a bottleneck point and the queue upetreem of it.
Also shown in Figure 4 are areas upstream of the
queue and downstream from the bottleneck where free
flows of traffic are maintained.

‘IWOQueues in Succession

In some circumstances a highway may have two bottle-
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neck points in succession. Such a circumstance is
shown in Figure 5, which depicts an upstream bottle-
neck A and a downstream bottleneck B. Here queues
and delays depend primarily on which ie the greater
bottleneck (higher daily volume relative to capec-
ity). If bottleneck A is the greater bottleneck, a
queue will develop upstream of bottleneck A but no
queue will develop at bottleneck B, because bottle-
neck A will meter traffic to bottleneck B, so that
no queue can develop there. Similarly, if bottle-
neck B is the greater bottleneck, a queue will form
there but none will form at bottleneck A, becauee
traffic will meter itself in anticipation of the
queue downstream.

The only circumstance in which queues will de-
velop at both locations will be where the bottle-
necks are relatively far apert and substantial vol-
umes of traffic enter and leave the highway between
them. In this circumstance traffic at the tw
bottlenecks ia mostly ccaposed of different vehi-
cles, and delays at the two bottlenecks should be
predicted separately by ueing the volume relative to
capacity at each.

Split at Iieadof Queue

Where a highway divides at the head of a queue,
three potential bottleneck pointa may be considered
for predicting queue length and delay. This circum-
stance is ahown in Figure 6, which chows bottleneck
A before the diverge point and bottlenecks B and C
to the left and right after the diverge point.
Hypothetical queues predicted from the bottlenecks
are shown in the figure, where each queue is baeed
on the daily volume relative to capacity of the
given bottleneck.

In the case shown, bottleneck A would generate
tbe smallest queues and delays, bottleneck B would
generate the largest queuea and delays, and bottle-
neck C would generate queues and delays of inter-
mediate length and duration. Because it produces
the largest queues and delays, bottleneck B should
be ueed for prediction. Potential queuee formed by
bottlenecks A and C would simply be submerged in the
bottleneck B queue.

Split Near Head of Queue

A somewhat similar circumstance to that of a split
at the head of a queue is that of a major diverge
point near the head of a queue, with the diverging
traffic entering a bottleneck itself shortly after
the diverge point. This circumstance Is shown in
Figure 7, which again shows the potential bottle-
necks for use in queue and delay prediction. Ae
shown in the figure, bottleneck A in on the main
line just before the diverge point, bottleneck B ia

DOWNSTREAM

TBOTTLENECK

T
BOTTLENECKA

UPSTREAM

BOTTLENECK A GREATER

UPSTREAM

BOTTLENECK BGREATER

UPSTREAM

SEPARATED BOTTLENECKS
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FiWro6. Splitzthoed ofquaue.
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Figure 7. Split near head of queue.
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on the main line downstream of the diverge point,
and bottleneck C is on the route used by the diverg-
ing traffic.

Also shown in Figure 7 are hypothetical queue
lengths implied by the three bottlenecks individ-
ually. Bottleneck A would generate the shortest
queue, bottleneck B the longest queue, and bottle-
neck C a queue of intermediate length. In this case
it is the bottleneck that produces the queue that
stretches to the point farthest upstream that should
be used for prediction. In the example the relevant
queue is from bottleneck B. As before, potential
queues from the other bottlenecks would simply be
submerged in the bottleneck B queue.

Two Queues Joining at Bottleneck

Yet another circumstance is that of two major high-
way flows joining and encountering a bottleneck at
the merge point. Such a situation is shown In Fig-
ure 8. In this case the question is whether the
daily volume relative to capacity of the joined flow

at bottleneck A should be used to predict equivalent
queues and delays for the two merging flows of traf-
fic, or whether the two flows at bottlenecks B and C
should be considered separately. In this circum-
stance the flows should be coneiderad separately.
The daily volumes to be used are those at bottle-
necks B and C. The capacities to be used, hcuever,
are not those at bottlenecks B and C, but the frac-
tiona of the capacity at bottleneck A available
through channelization to the traffic flows from
bottlenecks B and C.

00WNSWHM
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UPSTREAM

BOTTLENECK C OUEUE

DOWNSTREAM

r

60TTLENECKC

UPSTREAM

SOTTLENECKCOUEUE

Queue Joining Queue Near Bottleneck

A final circumstance is that of two major highway
flows joining upstream of a bottleneck on one of
them. This circumstance is shown in Figure 9 by

three hypothetical cases. In all three cases a main
line queue is generated from bottleneck A. Three

different possible queues are illustrated from bot-
tleneck B, which is upstream from bottleneck A and
applies to the merging traffic where it enters the
main flow.

In case 1 bottleneck B createa a smell queue for
the entering traffic. l%is is the circumstance in
which the entering traffic is a relatively smell
fraction of the traffic on the main line and can
merge into the main flow without difficulty. Pre-

sumably, the relationship between daily traffic and
potential merge capacity at bottleneck B wuld
create only a minor queue. In case 2 a queue ia
formed upstream of bottleneck B equal in length to
that on the main line. Here both flows are deter-
mined effectively by bottleneck A, and there is
really one queue with two equivalent tails. In case
3 bottleneck B creates a queue longer than that of
the main line upstream of the merge point. Here the

queues are probably separate in cauae and operation.
Nhich of these three casee appliea in any given

situation ia difficult to determine becauae the gen-
eral circumstance ia, in pert, equivalent to two
queuea in aucceesion. The following guidelines,
however, may help determine which caae applies. If
the traffic flows through bottlenecks A and B are
largely composed of different vehicles, the queuin9



Transportation Research Record 944 153
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prediction can probably be accomplished separately
for the two bottlenecks, as in cases 1 and 3. If
most vehicles from both routes are destined for bot-
tleneck A, however, the queuing should probably be
predicted by assuming one queue with equivalent
tails from bottleneck A, as in case 2.

Summary

The rules just discussed for bottlenecks would indi-
cate that

1. The relationship between queue delays and
daily volumes compared with hourly capacities per-
tains only to unbroken stretches of congested
traffic;

2. The ratio to apply is that of the point with
the highest daily volume compared with hourly capac-
ity, the point of which will be at the head of the
queue; and

3. The delay to apply is that to the most dis-
tant end of the queue.

There are qualifications, and the rules need to
be applied with careful attention paid to actual
circumstances. But with adequate consideration of
geomatrics and traffic flows, followin9 the rules
previously described yields clear relationships be-
tween queue delays and daily volumes relative to
hourly capacities at bottleneck points.

STSENGTNB AND LIMITATIONSOF TNE PROCEOURE

The procedure descrhed in this paper has a number
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of strengths. Primary among these are its ability
to use traffic assignment data as input, its sim-

plicity, and its generally reasonable and consistent
results. The procedure appears to solve success-
fully the extremely difficult problem of predicting
vehicle arrival and service rates. At the same
time, however, the relationships developed for the
procedure are based on data collected for only a few
queues. Only six data points for morning inbound
queues and eight data points for evening outbound
queues could be derived from observations of traffic
in the Soston core area. Further, some of these
data points are subject to question.

An additional limitation of the procedure is its
narrow range of applicability: morning inbound and
evening outbound queues in the cores of urban areas
about the same size ai Boston. ?40attempt was made
to calibrate proceduretifor queues in reverse flows
or in nondirectional flows (such as on circumferen-
tial routes), for temporary queues where construc-
tion projects are under way, or for queues in urban
areas of different sizes. Nevertheless, the basic

aeeroach appears to be applicable to these circum-
stances, and analogous procedures could be derived
for them with further data collection and analysis.

Certainly, addressing problems of queuing is cen-
tral to imprwing the operations of many urban ex-
pressway systems. To the extent that the basic
approach can be applied to other cities and circum-
stances, the prediction of queuing from relation-
ships between daily traffic and bottleneck capaci-
ties may provide a powerful analysis tool. It could
enhance considerably the analyst”s ability to pre-
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diet and evaluate the potential impacts of urban ex-
pressway projects.
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